示例#1
0
    def _default_hparams(self):
        # Data Dimensions
        default_dict = AttrDict({
            'batch_size': -1,
            'max_seq_len': -1,
            'n_actions': -1,
            'state_dim': -1,
            'input_nc': 3,  # number of input feature maps
            'device': None,
            'data_conf': None,
            'img_sz': None,
            'goal_cond': True
        })

        # Network params
        default_dict.update({
            'use_convs': True,
            'use_batchnorm': True,  # TODO deprecate
            'normalization': 'batch',
        })

        # add new params to parent params
        parent_params = HParams()
        for k in default_dict.keys():
            parent_params.add_hparam(k, default_dict[k])

        return parent_params
    def loss(self, model_output):
        losses = AttrDict()
        for i_cl, cl in enumerate(self.tdist_classifiers):
            setattr(losses, 'tdist{}'.format(cl.tdist),
                    cl.loss(model_output[i_cl]))

        # compute total loss
        losses.total_loss = torch.stack(list(losses.values())).sum()
        return losses
示例#3
0
文件: gc_bc.py 项目: s-tian/mbold
 def loss(self, model_output):
     losses = AttrDict()
     setattr(
         losses, 'mse',
         torch.nn.MSELoss()(model_output.action.squeeze(),
                            self.labels.to(self._hp.device)))
     # compute total loss
     losses.total_loss = torch.stack(list(losses.values())).sum()
     return losses
    def loss(self, model_output):
        losses = AttrDict()
        setattr(
            losses, 'cross_entropy',
            torch.nn.CrossEntropyLoss()(model_output.logits,
                                        self.labels.to(self._hp.device)))

        # compute total loss
        losses.total_loss = torch.stack(list(losses.values())).sum()
        return losses
示例#5
0
    def _default_hparams(self):
        default_dict = AttrDict({
            'num_bins': 10,
        })

        # add new params to parent params
        parent_params = super()._default_hparams()
        for k in default_dict.keys():
            parent_params.add_hparam(k, default_dict[k])
        return parent_params
    def _default_hparams(self):
        default_dict = AttrDict({
            'ndist_max': 10,  # maximum temporal distance to classify
            'use_skips': False,  #todo try resnet architecture!
            'ngf': 8,
            'nz_enc': 64,
            'classifier_restore_path': None  # not really needed here.
        })

        # add new params to parent params
        parent_params = super()._default_hparams()
        for k in default_dict.keys():
            parent_params.add_hparam(k, default_dict[k])
        return parent_params
示例#7
0
    def _default_hparams(self):
        default_dict = AttrDict({
            'tmax_label':
            10,  # the highest label for temporal distance, values are clamped after that
            'use_skips': False,  #todo try resnet architecture!
            'ngf': 8,
            'nz_enc': 64,
            'classifier_restore_path': None  # not really needed here.
        })

        # add new params to parent params
        parent_params = super()._default_hparams()
        for k in default_dict.keys():
            parent_params.add_hparam(k, default_dict[k])
        return parent_params
示例#8
0
    def __getitem__(self, index):
        file_index = index // self.traj_per_file
        path = self.filenames[file_index]
        start_ind_str, _ = path.split('/')[-1][:-3].split('to')
        start_ind = self._get_num_from_str(start_ind_str)

        with h5py.File(path, 'r') as F:
            ex_index = index % self.traj_per_file  # get the index
            key = 'traj{}'.format(ex_index)

            traj_ind = start_ind + ex_index

            data_dict = AttrDict(images=(F[key + '/images'].value))
            # Fetch data into a dict
            for name in F[key].keys():
                if name in ['states', 'actions', 'pad_mask']:
                    data_dict[name] = F[key + '/' + name].value.astype(np.float32)

        data_dict = self.process_data_dict(data_dict)
        if self._data_conf.sel_len != -1:
            data_dict = self.sample_rand_shifts(data_dict)

        data_dict['index'] = index

        return data_dict
示例#9
0
    def val(self, test_control=True):
        print('Running Testing')
        if self.args.test_prediction:
            start = time.time()
            self.model_val.load_state_dict(self.model.state_dict())
            if self._hp.model_test is not None:
                self.model_test.load_state_dict(self.model.state_dict())
            losses_meter = RecursiveAverageMeter()
            with autograd.no_grad():
                for batch_idx, sample_batched in enumerate(self.val_loader):
                    inputs = AttrDict(map_dict(lambda x: x.to(self.device), sample_batched))

                    output = self.model_val(inputs)
                    losses = self.model_val.loss(output)

                    if self._hp.model_test is not None:
                        run_through_traj(self.model_test, inputs)

                    losses_meter.update(losses)
                    del losses

                if self.run_testmetrics:
                    print("Finished Evaluation! Exiting...")
                    exit(0)

                self.model_val.log_outputs(
                    output, inputs, losses_meter.avg, self.global_step, log_images=True, phase='val')
                print(('\nTest set: Average loss: {:.4f} in {:.2f}s\n'
                       .format(losses_meter.avg.total_loss.item(), time.time() - start)))
            del output
示例#10
0
    def _default_hparams(self):
        default_dict = AttrDict({
            'use_skips': False,  #todo try resnet architecture!
            'ngf': 8,
            'action_size': 2,
            'nz_enc': 64,
            'classifier_restore_path': None,  # not really needed here.,
            'low_dim': False,
            'gamma': 0.0
        })

        # add new params to parent params
        parent_params = super()._default_hparams()
        for k in default_dict.keys():
            parent_params.add_hparam(k, default_dict[k])
        return parent_params
示例#11
0
 def make_prediction(self, image_pairs_stacked):
     im_t0, im_t1 = image_pairs_stacked[:, 0], image_pairs_stacked[:, 1]
     embeddings = self.encoder(torch.cat([im_t0, im_t1], dim=1))
     embeddings = self.spatial_softmax(embeddings)
     self.tdist_estimates = self.linear(embeddings)
     model_output = AttrDict(tdist_estimates=self.tdist_estimates,
                             img_pair=image_pairs_stacked)
     return model_output
示例#12
0
    def _default_hparams(self):
        default_dict = AttrDict({
            'use_skips': False,
            'ngf': 8,
            'action_size': 2,
            'state_size': 30,
            'nz_enc': 64,
            'linear_layer_size': 128,
            'classifier_restore_path': None,  # not really needed here.,
            'low_dim': False,
            'gamma': 0.0,
            'terminal': True,
            'update_target_rate': 1,
            'action_range': [-1.0, 1.0],
            'action_stds': [0.6, 0.6, 0.3, 0.3],
            'est_max_samples': 100,
            'binary_reward': [0, 1],
            'n_step': 1,
            'min_q': False,
            'min_q_weight': 1.0,
            'min_q_lagrange': False,
            'min_q_eps': 0.1,
            'sigmoid': False,
            'optimize_actions': 'random_shooting',
            'target_network_update': 'replace',
            'polyak': 0.995,
            'sg_sample': 'half_unif_half_first',
            'geom_sample_p': 0.5,
            'bellman_weight': 1.0,
            'td_loss': 'mse',
            'add_negative_sample': False,
            'negative_sample_type': 'copy_arm',  # also rand_arm, batch_goal
            'gaussian_blur': False,
            'twin_critics': False,
            'add_action_noise': False,
            'action_scaling': 1.0,
            'eval_target_nets': True,
        })

        # add new params to parent params
        parent_params = super()._default_hparams()
        for k in default_dict.keys():
            parent_params.add_hparam(k, default_dict[k])
        return parent_params
示例#13
0
    def loss(self, model_output):
        if self._hp.low_dim:
            image_pairs = self.images[:, 2:]
        else:
            image_pairs = self.images[:, 3:]

        ## Get max_a Q (s_t+1) (Is a min since lower is better)
        qs = []
        for ns in range(100):
            actions = torch.FloatTensor(
                model_output.size(0), self._hp.action_size).uniform_(-1,
                                                                     1).cuda()
            targetq = self.target_qnetwork(image_pairs, actions)
            qs.append(targetq)
        qs = torch.stack(qs)
        qval = torch.sum(
            (1 + torch.arange(qs.shape[2])[None]).float().to(self._hp.device) *
            qs, 2)
        ## Select corresponding target Q distribution
        ids = qval.min(0)[1]
        newqs = []
        for k in range(self._hp.batch_size * 2):
            newqs.append(qs[ids[k], k])
        qs = torch.stack(newqs)

        ## Shift Q*(s_t+1) to get Q*(s_t)
        shifted = torch.zeros(qs.size()).to(self._hp.device)
        shifted[:, 1:] = qs[:, :-1]
        shifted[:, -1] += qs[:, -1]
        lb = self.labels.to(self._hp.device).unsqueeze(-1)
        isg = torch.zeros((self._hp.batch_size * 2, 10)).to(self._hp.device)
        isg[:, 0] = 1

        ## If next state is goal then target should be 0, else should be shifted
        losses = AttrDict()
        target = (lb * isg) + ((1 - lb) * shifted)

        ## KL between target and output
        log_q = self.out_softmax.clamp(1e-5, 1 - 1e-5).log()
        log_t = target.clamp(1e-5, 1 - 1e-5).log()
        losses.total_loss = (target * (log_t - log_q)).sum(1).mean()

        self.target_qnetwork.load_state_dict(self.qnetwork.state_dict())
        return losses
示例#14
0
    def loss(self, model_output):
        #         BCE = F.binary_cross_entropy(self.rec.view(-1, 3, 64, 64), self.images.view(-1, 3, 64, 64), size_average=False)
        #         BCE = F.mse_loss(self.rec.view(-1, 3, 64, 64), ((self.images.view(-1, 3, 64, 64) + 1 ) / 2.0), size_average=False)
        BCE = ((self.rec - ((self.images + 1) / 2.0))**2).mean()
        for i in range(10):
            rec = self.rec[i, 0].permute(1, 2,
                                         0).cpu().detach().numpy() * 255.0
            im = ((self.images + 1) / 2.0)[i, 0].permute(
                1, 2, 0).cpu().detach().numpy() * 255.0
            ex = np.concatenate([rec, im], 0)
            cv2.imwrite("ex" + str(i) + ".png", ex)

#         print(BCE)
        KLD = -0.5 * torch.mean(1 + self.logvar - self.mu.pow(2) -
                                self.logvar.exp())
        #         print(KLD)
        losses = AttrDict()
        losses.total_loss = BCE + 0.00001 * KLD
        return losses
 def make_prediction(self, image_pairs_stacked):
     im_t0, im_t1 = image_pairs_stacked[:, 0], image_pairs_stacked[:, 1]
     embeddings = self.encoder(torch.cat([im_t0, im_t1], dim=1))
     embeddings = self.spatial_softmax(embeddings)
     logits = self.linear(embeddings)
     self.out_softmax = torch.softmax(logits, dim=1)
     model_output = AttrDict(logits=logits,
                             out_softmax=self.out_softmax,
                             img_pair=image_pairs_stacked)
     return model_output
示例#16
0
    def loss(self, model_output):
        if self._hp.low_dim:
            image_pairs = self.images[:, 2:]
        else:
            image_pairs = self.images[:, 3:]

        qs = []
        for ns in range(100):
            actions = torch.FloatTensor(
                model_output.size(0), self._hp.action_size).uniform_(-1,
                                                                     1).cuda()
            targetq = self.target_qnetwork(image_pairs, actions)
            qs.append(targetq)
        qs = torch.stack(qs)
        lb = self.labels.to(self._hp.device)

        losses = AttrDict()
        target = lb + self._hp.gamma * torch.max(qs, 0)[0].squeeze()
        losses.total_loss = F.mse_loss(target, model_output.squeeze())

        self.target_qnetwork.load_state_dict(self.qnetwork.state_dict())
        return losses
示例#17
0
 def make_prediction(self, image_pairs_stacked):
     im_t0, im_t1 = image_pairs_stacked[:, 0], image_pairs_stacked[:, 1]
     embeddings = self.encoder(torch.cat([im_t0, im_t1], dim=1))
     if self._hp.spatial_softmax:
         embeddings = self.spatial_softmax(embeddings)
     else:
         embeddings = torch.flatten(embeddings, start_dim=1)
         for fc_layer in self.fc_layers:
             embeddings = F.relu(fc_layer(embeddings))
     self.tdist_estimates = self.linear(embeddings)
     model_output = AttrDict(tdist_estimates=self.tdist_estimates,
                             img_pair=image_pairs_stacked)
     return model_output
    def forward(self, inputs):
        """
        forward pass at training time
        :param
            images shape = batch x channel x height x width
        :return: model_output
        """

        image_pairs = torch.cat([inputs['current_img'], inputs['goal_img']], dim=1)
        embeddings = self.encoder(image_pairs)
        embeddings = self.spatial_softmax(embeddings)
        fraction = torch.sigmoid(self.linear(embeddings))
        model_output = AttrDict(fraction=fraction)
        return model_output
示例#19
0
    def get_configs(self):
        self.args = args = self.get_trainer_args()
        exp_dir = get_exp_dir()
        # conf_path = get_config_path(args.path)
        # print('loading from the config file {}'.format(conf_path))

        conf_path = os.path.abspath(args.path)
        conf_module = imp.load_source('conf', args.path)
        conf = conf_module.configuration
        model_conf = conf_module.model_config
        
        try:
            data_conf = conf_module.data_config
        except AttributeError:
            data_conf_file = imp.load_source('dataset_spec',os.path.join(AttrDict(conf).data_dir, 'dataset_spec.py'))
            data_conf = AttrDict()
            data_conf.dataset_spec = AttrDict(data_conf_file.dataset_spec)
        
        if args.gpu != -1:
            os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
        else:
            os.environ["CUDA_VISIBLE_DEVICES"] = str(0)

        return args, conf_module, conf, model_conf, data_conf, exp_dir, conf_path
    def forward(self, inputs):
        """
        forward pass at training time
        :param
            images shape = batch x time x channel x height x width
        :return: model_output
        """

        tlen = inputs.demo_seq_images.shape[1]
        pos_pairs, neg_pairs = self.sample_image_pair(inputs.demo_seq_images, tlen, self.tdist)
        image_pairs = torch.cat([pos_pairs, neg_pairs], dim=0)
        embeddings = self.encoder(image_pairs)
        embeddings = self.spatial_softmax(embeddings)
        fraction = torch.sigmoid(self.linear(embeddings))
        model_output = AttrDict(fraction=fraction, pos_pair=self.pos_pair, neg_pair=self.neg_pair)
        return model_output
示例#21
0
    def train_epoch(self, epoch):
        self.model.train()
        epoch_len = len(self.train_loader)
        end = time.time()
        batch_time = AverageMeter()
        upto_log_time = AverageMeter()
        data_load_time = AverageMeter()
        self.log_outputs_interval = 10
        self.log_images_interval = int(epoch_len / self.args.imepoch)

        print('starting epoch ', epoch)

        for self.batch_idx, sample_batched in enumerate(self.train_loader):
            data_load_time.update(time.time() - end)
            inputs = AttrDict(map_dict(lambda x: x.to(self.device), sample_batched))

            self.optimizer.zero_grad()
            output = self.model(inputs)
            losses = self.model.loss(output)
            losses.total_loss.backward()
            self.optimizer.step()
            
            upto_log_time.update(time.time() - end)
            if self.log_outputs_now:
                self.model.log_outputs(output, inputs, losses, self.global_step,
                                       log_images=self.log_images_now, phase='train')
            batch_time.update(time.time() - end)
            end = time.time()
            
            if self.log_outputs_now:
                print('GPU {}: {}'.format(os.environ["CUDA_VISIBLE_DEVICES"] if self.use_cuda else 'none', self._hp.exp_path))
                print(('itr: {} Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                    self.global_step, epoch, self.batch_idx, len(self.train_loader),
                    100. * self.batch_idx / len(self.train_loader), losses.total_loss.item())))
                
                print('avg time for loading: {:.2f}s, logs: {:.2f}s, compute: {:.2f}s, total: {:.2f}s'
                      .format(data_load_time.avg,
                              batch_time.avg - upto_log_time.avg,
                              upto_log_time.avg - data_load_time.avg,
                              batch_time.avg))
                togo_train_time = batch_time.avg * (self._hp.num_epochs - epoch) * epoch_len / 3600.
                print('ETA: {:.2f}h'.format(togo_train_time))
            
            del output, losses
            self.global_step = self.global_step + 1
示例#22
0
    def __getitem__(self, index):
        file_index = index // self.traj_per_file
        path = self.filenames[file_index]

        with h5py.File(path, 'r') as F:
            ex_index = index % self.traj_per_file  # get the index
            key = 'traj{}'.format(ex_index)

            # Fetch data into a dict
            data_dict = AttrDict(images=(F[key + '/images'].value))
            for name in F[key].keys():
                if name in ['states', 'actions', 'pad_mask']:
                    data_dict[name] = F[key + '/' + name].value.astype(
                        np.float32)

        data_dict = self.process_data_dict(data_dict)
        if self._data_conf.sel_len != -1:
            data_dict = self.sample_rand_shifts(data_dict)

        return data_dict
示例#23
0
 def get_random_observations(self):
     hp = AttrDict(img_sz=(64, 64), sel_len=-1, T=31)
     dataset = FixLenVideoDataset(self._hp.graph_dataset,
                                  self.learned_cost.model._hp,
                                  hp).get_data_loader(self._hp.dloader_bs)
     total_images = []
     dl = iter(dataset)
     for i in range(self._hp.graph_size // self._hp.dloader_bs):
         try:
             batch = next(dl)
         except StopIteration:
             dl = iter(dataset)
             batch = next(dl)
         images = batch['demo_seq_images']
         selected_images = images[torch.arange(len(images)),
                                  torch.randint(0, images.shape[1],
                                                (len(images), ))]
         total_images.append(selected_images)
     total_images = torch.cat(total_images)
     return total_images
示例#24
0
 def val(self):
     print('Running Testing')
     if self.args.test_prediction:
         start = time.time()
         self.model_val.to(torch.device('cuda'))
         self.model_val.load_state_dict(self.model.state_dict())
         if self._hp.model_test is not None:
             self.model_test.load_state_dict(self.model.state_dict())
         losses_meter = RecursiveAverageMeter()
         with autograd.no_grad():
             for batch_idx, sample_batched in enumerate(self.val_loader):
                 inputs = AttrDict(map_dict(lambda x: x.to(self.device), sample_batched))
                 output = self.model_val(inputs)
                 losses = self.model_val.loss(output)
                 losses_meter.update(losses)
                 del losses
             self.model_val.log_outputs(
                 output, inputs, losses_meter.avg, self.global_step, log_images=True, phase='val')
             print(('\nTest set: Average loss: {:.4f} in {:.2f}s\n'
                    .format(losses_meter.avg.total_loss.item(), time.time() - start)))
         del output
     self.model_val.to(torch.device('cpu'))
示例#25
0
    def loss(self, model_output):
        if self._hp.low_dim:
            image_pairs = self.images[:, self._hp.state_size:]
        else:
            image_pairs = self.images[:, 3:]

        losses = AttrDict()

        if self._hp.min_q:
            # Implement minq loss
            total_min_q_loss = []
            self.min_q_lse = 0
            for i, q_fn in enumerate(self.qnetworks):
                random_q_values = self.network_out_2_qval(
                    self.compute_action_samples(self.get_sg_pair(self.images),
                                                q_fn,
                                                parallel=True,
                                                detach_grad=False))
                random_density = np.log(
                    0.5**self._hp.action_size)  # log uniform density
                random_q_values -= random_density
                min_q_loss = torch.logsumexp(random_q_values, dim=0) - np.log(
                    self._hp.est_max_samples)
                min_q_loss = min_q_loss.mean()
                self.min_q_lse += min_q_loss
                total_min_q_loss.append(min_q_loss - model_output[i].mean())
            total_min_q_loss = self.cql_sign * torch.stack(
                total_min_q_loss).mean()
            if self._hp.min_q_lagrange and hasattr(self, 'log_alpha'):
                min_q_weight = self.log_alpha.exp().squeeze()
                total_min_q_loss -= self._hp.min_q_eps
            else:
                min_q_weight = self._hp.min_q_weight
            losses.min_q_loss = min_q_weight * total_min_q_loss
            self.min_q_lagrange_loss = -1 * losses.min_q_loss

        losses.bellman_loss = self._hp.bellman_weight * self.get_td_error(
            image_pairs, model_output)

        losses.total_loss = torch.stack(list(losses.values())).sum()

        if 'min_q_loss' in losses:
            losses.min_q_loss /= min_q_weight  # Divide this back out so we can compare log likelihoods
        return losses
示例#26
0
文件: gc_bc.py 项目: s-tian/mbold
 def make_prediction(self, images):
     self.action = self.actor_network(images)
     model_output = AttrDict(action=self.action)
     return model_output
示例#27
0
import os
from classifier_control.classifier.utils.general_utils import AttrDict
current_dir = os.path.dirname(os.path.realpath(__file__))
from classifier_control.classifier.models.tempdist_regressor import TempdistRegressor, TempdistRegressorTestTime
from classifier_control.classifier.utils.logger import TdistRegressorLogger

configuration = {
    'model': TempdistRegressor,
    'model_test': TempdistRegressorTestTime,
    'logger': TdistRegressorLogger,
    'data_dir': os.environ['VMPC_DATA'] +
    '/classifier_control/data_collection/sim/tabletop-reacher',  # 'directory containing data.' ,
    'batch_size': 32,
    'num_epochs': 1000,
    'seed': 1,
}

configuration = AttrDict(configuration)

data_config = AttrDict(img_sz=(64, 64), sel_len=-1, T=31)

model_config = {}
示例#28
0
        elif len < target_length:
            raise ValueError("not enough length")
        else:
            return val

    @staticmethod
    def get_dataset_spec(data_dir):
        return imp.load_source('dataset_spec',
                               os.path.join(data_dir,
                                            'dataset_spec.py')).dataset_spec


if __name__ == '__main__':
    data_dir = os.environ[
        'VMPC_DATA'] + '/classifier_control/data_collection/sim/1_obj_cartgripper_xz_rejsamp'
    hp = AttrDict(img_sz=(48, 64), sel_len=-1, T=31)

    loader = FixLenVideoDataset(data_dir, hp).get_data_loader(32)

    for i_batch, sample_batched in enumerate(loader):
        images = np.asarray(sample_batched['demo_seq_images'])

        pdb.set_trace()
        images = np.transpose((images + 1) / 2,
                              [0, 1, 3, 4, 2])  # convert to channel-first
        actions = np.asarray(sample_batched['actions'])
        print('actions', actions)

        plt.imshow(np.asarray(images[0, 0]))
        plt.show()