def naive_bayes_classify(self): nb = NaiveBayesClassifier() nb.train(self.X_train, self.y_train) predictions = nb.predict(self.X_test) accuracy = str(self.main.accuracy(self.y_test, predictions)) accuracy = accuracy[0:4] self.naive_bayes_acc_label.setText(accuracy)
def classify_custom_input(self, custom_input_vector): nb = NaiveBayesClassifier() nb.train(self.X_train, self.y_train) prediction = nb.predict([custom_input_vector]) self.custom_text_nb_label.setText(str(prediction[0])) knn = KNNClassifier() prediction = knn.predict_classification(self.X_train, self.y_train, [custom_input_vector]) self.custom_text_knn_label.setText(str(prediction[0])) rf = SklearnRandomForest() prediction = rf.random_forest(self.X_train, self.y_train, [custom_input_vector]) self.custom_text_dt_label.setText(str(prediction[0])) dt = SklearnDecisionTree() prediction = dt.decision_tree(self.X_train, self.y_train, [custom_input_vector]) self.custom_text_rf_label.setText(str(prediction[0]))