def prediction(pid, tasks, queue, results, model_type, lib_path_server, criterion): model = __factory_model(model_type, init_matlab=True, add_path_matlab=lib_path_server, DEBUG=False) while True: training = queue.get() if training is None: break model.learn(**training) sum80, sum65 = 0, 0 while True: task = tasks.get() if task is None: break evaluate, _ = model.evaluate(task['X_test'], criterion=criterion) print("(pid, prediction, ground-truth) (", pid, evaluate, task["y_test"], ")", flush=True) if task['y_test'] in evaluate: sum65 += u65(evaluate) sum80 += u80(evaluate) results.put(dict({'u65': sum65, 'u80': sum80})) queue.task_done() print("Worker PID finished", pid, flush=True)
def computing_best_imprecise_mean(in_path=None, out_path=None, cv_nfold=10, model_type="ieda", test_size=0.4, from_ell=0.1, to_ell=1.0, by_ell=0.1, seed=None, lib_path_server=None, scaling=False): assert os.path.exists(in_path), "Without training data, not testing" assert os.path.exists(out_path), "File for putting results does not exist" logger = create_logger("computing_best_imprecise_mean", True) logger.info('Training dataset %s', in_path) data = pd.read_csv(in_path) # , header=None) X = data.iloc[:, :-1].values if scaling: X = normalize_minmax(X) y = np.array(data.iloc[:, -1].tolist()) ell_u65, ell_u80 = dict(), dict() seed = random.randrange(pow(2, 30)) if seed is None else seed logger.debug("MODEL: %s, SEED: %s", model_type, seed) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=seed) kf = KFold(n_splits=cv_nfold, random_state=None, shuffle=True) splits = list([]) for idx_train, idx_test in kf.split(y_train): splits.append((idx_train, idx_test)) logger.info("Splits %s train %s", len(splits), idx_train) logger.info("Splits %s test %s", len(splits), idx_test) # Create a CSV file for saving results file_csv = open(out_path, 'a') writer = csv.writer(file_csv) model = __factory_model(model_type, solver_matlab=True, add_path_matlab=lib_path_server, DEBUG=True) for ell_current in np.arange(from_ell, to_ell, by_ell): ell_u65[ell_current], ell_u80[ell_current] = 0, 0 logger.info("ELL_CURRENT %s", ell_current) for idx_train, idx_test in splits: logger.info("Splits train %s", idx_train) logger.info("Splits test %s", idx_test) X_cv_train, y_cv_train = X_train[idx_train], y_train[idx_train] X_cv_test, y_cv_test = X_train[idx_test], y_train[idx_test] model.learn(X=X_cv_train, y=y_cv_train, ell=ell_current) sum_u65, sum_u80 = 0, 0 n_test = len(idx_test) for i, test in enumerate(X_cv_test): evaluate = model.evaluate(test) logger.debug("(testing, ell_current, prediction, ground-truth) (%s, %s, %s, %s)", i, ell_current, evaluate, y_cv_test[i]) if y_cv_test[i] in evaluate: sum_u65 += u65(evaluate) sum_u80 += u80(evaluate) ell_u65[ell_current] += sum_u65 / n_test ell_u80[ell_current] += sum_u80 / n_test logger.debug("Partial-kfold (%s, %s, %s)", ell_current, ell_u65[ell_current], ell_u80[ell_current]) ell_u65[ell_current] = ell_u65[ell_current] / cv_nfold ell_u80[ell_current] = ell_u80[ell_current] / cv_nfold writer.writerow([ell_current, ell_u65[ell_current], ell_u80[ell_current]]) file_csv.flush() logger.debug("Partial-ell (%s, %s, %s)", ell_current, ell_u65, ell_u80) file_csv.close() logger.debug("Total-ell %s %s %s", in_path, ell_u65, ell_u80)
def performance_hold_out(in_path=None, out_path=None, model_type='lda', test_pct=0.4, n_times=10, seeds=None, scaling=False): assert os.path.exists(in_path), "Without training data, not testing" assert os.path.exists(out_path), "Without output saving performance" logger = create_logger("performance_hold_out", True) logger.info('Training data set %s, test percentage %s, model_type %s', in_path, test_pct, model_type) data = pd.read_csv(in_path, header=None) X = data.iloc[:, :-1].values if scaling: X = normalize_minmax(X) y = data.iloc[:, -1].tolist() seeds = generate_seeds(n_times) if seeds is None else seeds logger.info('Seeds generated %s', seeds) file_csv = open(out_path, 'w') writer = csv.writer(file_csv) model = __factory_model_precise(model_type, store_covariance=True) mean_u65, mean_u80 = np.array([]), np.array([]) for i in range(0, n_times): X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=test_pct, random_state=seeds[i]) sum_u65, sum_u80 = 0, 0 model.fit(X_train, y_train) n, _ = X_test.shape for j, test in enumerate(X_test): evaluate = model.predict([test]) if y_test[j] in evaluate: sum_u65 += u65(evaluate) sum_u80 += u80(evaluate) logger.info("time, u65, u80 (%s, %s, %s)", i, sum_u65 / n, sum_u80 / n) mean_u65 = np.append(mean_u65, sum_u65 / n) mean_u80 = np.append(mean_u80, sum_u80 / n) writer.writerow([-999, i, mean_u65[i], mean_u80[i]]) file_csv.flush() file_csv.close() logger.info("[total:data-set:avgResults] (%s, %s)", np.mean(mean_u65), np.mean(mean_u80))
def performance_accuracy_hold_out(in_path=None, model_type="ilda", ell_optimal=0.1, lib_path_server=None, seeds=None, DEBUG=False, scaling=False): assert os.path.exists( in_path ), "Without training data, cannot performing cross hold-out accuracy" logger = create_logger("performance_accuracy_hold_out", True) logger.info('Training dataset (%s, %s, %s)', in_path, model_type, ell_optimal) X, y = dataset_to_Xy(in_path, scaling=scaling) seeds = generate_seeds(cv_n_fold) if seeds is None else seeds logger.info('Seeds used for accuracy %s', seeds) n_time = len(seeds) mean_u65, mean_u80 = 0, 0 model = __factory_model(model_type, solver_matlab=True, add_path_matlab=lib_path_server, DEBUG=DEBUG) for k in range(0, n_time): X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.4, random_state=seeds[k]) model.learn(X=X_cv_train, y=y_cv_train, ell=ell_optimal) sum_u65, sum_u80 = 0, 0 n_test, _ = X_test.shape for i, test in enumerate(X_test): evaluate = lqa.evaluate(test) logger.debug( "(testing, ell_current, prediction, ground-truth) (%s, %s, %s, %s)", i, ell_optimal, evaluate, y_test[i]) if y_test[i] in evaluate: sum_u65 += u65(evaluate) sum_u80 += u80(evaluate) logger.debug("Partial-kfold (%s, %s, %s, %s)", ell_current, k, sum_u65 / n_test, sum_u80 / n_test) mean_u65 += sum_u65 / n_test mean_u80 += sum_u80 / n_test mean_u65 = mean_u65 / n_time mean_u80 = mean_u80 / n_time logger.debug("Total-ell (%s, %s, %s, %s)", in_path, ell_optimal, mean_u65, mean_u80)
def performance_cv_accuracy(in_path=None, model_type='lda', cv_n_fold=10, seeds=None, scaling=False): assert os.path.exists(in_path), "Without training data, not testing" data = pd.read_csv(in_path, header=None) logger = create_logger("performance_cv_accuracy", True) logger.info('Training data set %s, cv_n_fold %s, model_type %s', in_path, cv_n_fold, model_type) X = data.iloc[:, :-1].values if scaling: X = normalize_minmax(X) y = np.array(data.iloc[:, -1].tolist()) avg_u65, avg_u80 = 0, 0 seeds = generate_seeds(cv_n_fold) if seeds is None else seeds logger.info('Seeds generated %s', seeds) for time in range(cv_n_fold): # Generation a random k-fold validation. kf = KFold(n_splits=cv_n_fold, random_state=seeds[time], shuffle=True) model = __factory_model_precise(model_type, store_covariance=True) mean_u65, mean_u80 = 0, 0 for idx_train, idx_test in kf.split(y): X_cv_train, y_cv_train = X[idx_train], y[idx_train] X_cv_test, y_cv_test = X[idx_test], y[idx_test] model.fit(X_cv_train, y_cv_train) n_test = len(idx_test) sum_u65, sum_u80 = 0, 0 for i, test in enumerate(X_cv_test): evaluate = model.predict([test]) logger.debug( "(testing, prediction, ground-truth) (%s, %s, %s)", i, evaluate, y_cv_test[i]) if y_cv_test[i] in evaluate: sum_u65 += u65(evaluate) sum_u80 += u80(evaluate) mean_u65 += sum_u65 / n_test mean_u80 += sum_u80 / n_test logger.info("Time, seed, u65, u80 (%s, %s, %s, %s)", time, seeds[time], mean_u65 / cv_n_fold, mean_u80 / cv_n_fold) avg_u65 += mean_u65 / cv_n_fold avg_u80 += mean_u80 / cv_n_fold logger.info("[Total:data-set:avgResults] (%s, %s, %s)", in_path, avg_u65 / cv_n_fold, avg_u80 / cv_n_fold)
def performance_qda_regularized(in_path=None, out_path=None, cv_n_fold=10, seeds=None, from_alpha=0, to_alpha=2.0, by_alpha=0.01, scaling=False): assert os.path.exists(in_path), "Without training data, not testing" assert os.path.exists(out_path), "Without output saving performance" data = pd.read_csv(in_path, header=None) logger = create_logger("performance_qda_regularized", True) logger.info('Training data set %s, cv_n_fold %s, model_type %s', in_path, cv_n_fold, "qda") X = data.iloc[:, :-1].values if scaling: X = normalize_minmax(X) y = np.array(data.iloc[:, -1].tolist()) seeds = generate_seeds(cv_n_fold) if seeds is None else seeds logger.info('Seeds generated %s', seeds) file_csv = open(out_path, 'a') writer = csv.writer(file_csv) alphas = np.arange(from_alpha, to_alpha, by_alpha) writer.writerow(alphas) qda_regularized = [None] * len(alphas) for idx, alpha in enumerate(alphas): qda_regularized[idx] = __factory_model_precise("qda", store_covariance=True, reg_param=alpha) # Generation a random k-fold validation. kf_second = KFold(n_splits=cv_n_fold, random_state=None, shuffle=True) ikfold, accuracy, best_alphas = 0, [0] * cv_n_fold, [0] * cv_n_fold for idx_learning, idx_testing in kf_second.split(y): X_training, y_training = X[idx_learning], y[idx_learning] X_testing, y_testing = X[idx_testing], y[idx_testing] kf = KFold(n_splits=cv_n_fold, random_state=seeds[ikfold], shuffle=True) acc_u80 = [0] * len(qda_regularized) for idx_train, idx_test in kf.split(y_training): X_cv_train, y_cv_train = X_training[idx_train], y_training[ idx_train] X_cv_test, y_cv_test = X_training[idx_test], y_training[idx_test] for model in qda_regularized: model.fit(X_cv_train, y_cv_train) n_test = len(idx_test) for i, test in enumerate(X_cv_test): for im, model in enumerate(qda_regularized): evaluate = model.predict([test]) if y_cv_test[i] in evaluate: acc_u80[im] += (u80(evaluate) / n_test) / cv_n_fold idx_best = np.argmax(acc_u80) logger.info("[1kfold:best_model:seed:u80] (%s, %s, %s, %s)", ikfold, alphas[idx_best], seeds[ikfold], acc_u80) writer.writerow(acc_u80) file_csv.flush() best_model = __factory_model_precise("qda", store_covariance=True, reg_param=alphas[idx_best]) best_model.fit(X_training, y_training) accuracy[ikfold], bn_test, best_alphas[ikfold] = 0, len( idx_testing), alphas[idx_best] for i, test in enumerate(X_testing): evaluate = best_model.predict([test]) if y_testing[i] in evaluate: accuracy[ikfold] += u80(evaluate) / bn_test logger.info("[2kfold:best_model:seed:accuracy] (%s, %s, %s)", ikfold, alphas[idx_best], accuracy[ikfold]) ikfold += 1 file_csv.close() logger.info("[total:data-set:avgResults] (%s, %s, %s, %s)", in_path, np.mean(accuracy), best_alphas, accuracy)