示例#1
0
def reprocess_images(list_folder_data):
    print('Init reprocess_images')

    for index, item in enumerate(list_folder_data):
        folder = item[0]
        min_score = item[1]

        print('Processing folder: {0}'.format(folder))
        list_files = os.listdir(folder)
        random.Random(seed).shuffle(list_files)

        for num_file, filename in enumerate(list_files):
            file = os.path.join(folder, filename)
            extension = ClassUtils.get_filename_extension(file)

            if extension == '.json':
                with open(file, 'r') as f:
                    data_str = f.read()

                data_json = json.loads(data_str)
                if 'vectors' in data_json:
                    print('Processing json file with new format: {0}'.format(file))
                    person_arr = data_json['vectors']
                else:
                    print('Processing json file: {0}'.format(file))
                    person_arr = data_json

                valid = ClassUtils.check_vector_integrity_pos(person_arr, min_score)
                only_pos = ClassUtils.check_vector_only_pos(person_arr, min_score)

                if not valid:
                    raise Exception('Vector integrity not valid for file: {0}'.format(file))

                if only_pos:
                    raise Exception('Invalid vector to perform detection')

                descriptors = ClassDescriptors.get_person_descriptors(person_arr, min_score, cam_number=0,
                                                                      image=None, calib_params=None,
                                                                      decode_img=False,
                                                                      instance_nn_pose=None)

                with open(file, 'w') as f:
                    f.write(json.dumps(descriptors))

                transformed_points = descriptors['transformedPoints']

                # Save pose for debugging purposes
                re_scale_factor = 100
                new_points = ClassDescriptors.re_scale_pose_factor(transformed_points,
                                                                   re_scale_factor, min_score)
                img_pose = ClassDescriptors.draw_pose_image(new_points, min_score, is_transformed=True)
                new_file_name = ClassUtils.get_filename_no_extension(file) + '_1.jpg'
                cv2.imwrite(new_file_name, img_pose)

    print('Done!')
示例#2
0
    def load_pose_descriptors(cls, type_desc: EnumDesc):
        training_data = list()
        training_labels = list()
        training_files = list()
        eval_data = list()
        eval_labels = list()
        eval_files = list()

        classes_number = 0

        if type_desc == EnumDesc.ANGLES or type_desc == EnumDesc.ANGLES_TRANSFORMED:
            data_folder = cls.list_folder_data_angles
        else:
            data_folder = cls.list_folder_data

        cont = True
        while cont:
            cont = False

            for folder_data in data_folder:
                if folder_data[2] == classes_number:
                    classes_number += 1
                    cont = True
                    break

        # Iterate folder
        for index, item in enumerate(data_folder):
            folder = item[0]
            min_score = item[1]
            label = item[2]

            list_files = os.listdir(folder)
            random.Random(cls.seed).shuffle(list_files)

            total_train = int(len(list_files)) * 70 / 100

            for num_file, file in enumerate(list_files):
                full_path = os.path.join(folder, file)

                extension = ClassUtils.get_filename_extension(full_path)
                if extension != '.json':
                    print('Ignoring file {0}'.format(full_path))
                    continue

                with open(full_path, 'r') as text_file:
                    arr_json = text_file.read()

                params = json.loads(arr_json)
                vectors = params['vectors']
                angles = params['angles']
                transformed_points = params['transformedPoints']

                valid = ClassUtils.check_vector_integrity_pos(
                    vectors, min_score)
                only_pos = ClassUtils.check_vector_only_pos(vectors, min_score)

                if not valid:
                    raise Exception(
                        'Vector integrity not valid for file: {0}'.format(
                            full_path))

                if only_pos:
                    raise Exception('Invalid vector to perform detection')

                # Fill training and eval list
                # Use angles and position information
                data_to_add = cls._get_descriptor_list(angles,
                                                       transformed_points,
                                                       type_desc)
                if num_file < total_train:
                    training_data.append(data_to_add)
                    training_labels.append(label)
                    training_files.append(full_path)
                else:
                    eval_data.append(data_to_add)
                    eval_labels.append(label)
                    eval_files.append(full_path)

        # Convert data to numpy array
        training_data_np = np.asanyarray(training_data, dtype=np.float)
        training_labels_np = np.asanyarray(training_labels, dtype=int)
        print(training_labels_np)

        eval_data_np = np.asanyarray(eval_data, dtype=np.float)
        eval_labels_np = np.asanyarray(eval_labels, dtype=int)
        print(eval_labels_np)

        training_files_np = np.asanyarray(training_files, dtype=np.str)
        eval_files_np = np.asanyarray(eval_files, dtype=np.str)

        # Getting label_names
        label_names = []
        for folder, _, label in data_folder:
            names = folder.split('/')
            label_name = names[-1]

            # Check if last character is /
            if len(label_name) == 0:
                label_names = names[-2]

            label_names.append((label_name, label))

        print('Total training: {0}'.format(len(training_labels)))
        print('Total eval: {0}'.format(len(eval_labels)))
        print('Shape training: {0}'.format(training_data_np.shape))
        print('Shape eval: {0}'.format(eval_data_np.shape))
        print('Classes number: {0}'.format(classes_number))

        results = {
            'trainingData': training_data_np,
            'trainingLabels': training_labels_np,
            'evalData': eval_data_np,
            'evalLabels': eval_labels_np,
            'trainingFiles': training_files_np,
            'evalFiles': eval_files_np,
            'labelNames': label_names,
            'classesNumber': classes_number
        }

        return results