def setup(use_petsc=False, solver_type='classic', kernel_language='Python', outdir='./_output'): from clawpack import riemann if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type == 'classic': if kernel_language == 'Fortran': solver = pyclaw.ClawSolver1D(riemann.vc_advection_1D) elif kernel_language == 'Python': solver = pyclaw.ClawSolver1D( riemann.vc_advection_1D_py.vc_advection_1D) elif solver_type == 'sharpclaw': if kernel_language == 'Fortran': solver = pyclaw.SharpClawSolver1D(riemann.vc_advection_1D) elif kernel_language == 'Python': solver = pyclaw.SharpClawSolver1D( riemann.vc_advection_1D_py.vc_advection_1D) solver.weno_order = weno_order else: raise Exception('Unrecognized value of solver_type.') solver.kernel_language = kernel_language solver.limiters = pyclaw.limiters.tvd.MC solver.bc_lower[0] = pyclaw.BC.custom solver.user_bc_lower = custom_bc solver.bc_upper[0] = pyclaw.BC.custom solver.user_bc_upper = custom_bc solver.aux_bc_lower[0] = 2 solver.aux_bc_upper[0] = 2 xlower = -100.0 xupper = 100.0 mx = steps x = pyclaw.Dimension(xlower, xupper, mx, name='x') domain = pyclaw.Domain(x) num_aux = 1 num_eqn = 1 state = pyclaw.State(domain, num_eqn, num_aux) qinit(state) auxinit(state) claw = pyclaw.Controller() claw.outdir = outdir claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.tfinal = 10.0 claw.setplot = setplot claw.keep_copy = True # print claw.solution._get_solution_attribute return claw
def shockbubble(use_petsc=False,outdir='./_output',solver_type='classic'): """ Solve the Euler equations of compressible fluid dynamics. This example involves a bubble of dense gas that is impacted by a shock. """ from clawpack import riemann if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type=='sharpclaw': solver = pyclaw.SharpClawSolver2D(riemann.euler_5wave_2D) solver.dq_src=dq_Euler_radial solver.weno_order=5 solver.lim_type=2 else: solver = pyclaw.ClawSolver2D(riemann.euler_5wave_2D) solver.dimensional_split = 0 solver.transverse_waves = 2 solver.limiters = [4,4,4,4,2] solver.step_source=step_Euler_radial solver.bc_lower[0]=pyclaw.BC.custom solver.bc_upper[0]=pyclaw.BC.extrap solver.bc_lower[1]=pyclaw.BC.wall solver.bc_upper[1]=pyclaw.BC.extrap #Aux variable in ghost cells doesn't matter solver.aux_bc_lower[0]=pyclaw.BC.extrap solver.aux_bc_upper[0]=pyclaw.BC.extrap solver.aux_bc_lower[1]=pyclaw.BC.extrap solver.aux_bc_upper[1]=pyclaw.BC.extrap # Initialize domain mx=160; my=40 x = pyclaw.Dimension('x',0.0,2.0,mx) y = pyclaw.Dimension('y',0.0,0.5,my) domain = pyclaw.Domain([x,y]) num_eqn = 5 num_aux=1 state = pyclaw.State(domain,num_eqn,num_aux) state.problem_data['gamma']= gamma state.problem_data['gamma1']= gamma1 qinit(state) auxinit(state) solver.user_bc_lower=shockbc claw = pyclaw.Controller() claw.tfinal = 0.75 claw.solution = pyclaw.Solution(state,domain) claw.solver = solver claw.num_output_times = 10 claw.outdir = outdir return claw
def setup(use_petsc=False, outdir='./_output', solver_type='classic'): """ Example python script for solving the 2d advection equation. """ from clawpack import riemann if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type == 'classic': solver = pyclaw.ClawSolver2D(riemann.advection_2D) solver.dimensional_split = 1 solver.limiters = pyclaw.limiters.tvd.vanleer elif solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver2D(riemann.advection_2D) solver.bc_lower[0] = pyclaw.BC.periodic solver.bc_upper[0] = pyclaw.BC.periodic solver.bc_lower[1] = pyclaw.BC.periodic solver.bc_upper[1] = pyclaw.BC.periodic solver.cfl_max = 1.0 solver.cfl_desired = 0.9 #=========================================================================== # Initialize domain, then initialize the solution associated to the domain and # finally initialize aux array #=========================================================================== # Domain: mx = 50 my = 50 x = pyclaw.Dimension('x', 0.0, 1.0, mx) y = pyclaw.Dimension('y', 0.0, 1.0, my) domain = pyclaw.Domain([x, y]) num_eqn = 1 state = pyclaw.State(domain, num_eqn) state.problem_data['u'] = 0.5 # Parameters (global auxiliary variables) state.problem_data['v'] = 1.0 # Initial solution # ================ qinit(state) # This function is defined above #=========================================================================== # Set up controller and controller parameters #=========================================================================== claw = pyclaw.Controller() claw.tfinal = 2.0 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.outdir = outdir claw.setplot = setplot claw.keep_copy = True return claw
def wcblast(use_petsc=False, iplot=False, htmlplot=False, outdir='./_output', solver_type='classic'): """ Solve the Euler equations of compressible fluid dynamics. This example involves a pair of interacting shock waves. The conserved quantities are density, momentum density, and total energy density. """ if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver1D() else: solver = pyclaw.ClawSolver1D() from clawpack import riemann solver.rp = riemann.rp1_euler_with_efix solver.num_waves = 3 solver.bc_lower[0] = pyclaw.BC.wall solver.bc_upper[0] = pyclaw.BC.wall # Initialize domain mx = 500 x = pyclaw.Dimension('x', 0.0, 1.0, mx) domain = pyclaw.Domain([x]) num_eqn = 3 state = pyclaw.State(domain, num_eqn) state.problem_data['gamma'] = gamma state.problem_data['gamma1'] = gamma1 state.q[0, :] = 1. state.q[1, :] = 0. x = state.grid.x.centers state.q[2, :] = ((x < 0.1) * 1.e3 + (0.1 <= x) * (x < 0.9) * 1.e-2 + (0.9 <= x) * 1.e2) / gamma1 solver.limiters = 4 claw = pyclaw.Controller() claw.tfinal = 0.038 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.num_output_times = 10 claw.outdir = outdir # Solve status = claw.run() if htmlplot: pyclaw.plot.html_plot(outdir=outdir) if iplot: pyclaw.plot.interactive_plot(outdir=outdir) return claw.solution.q
def setup(nx=100, kernel_language='Python', use_petsc=False, solver_type='classic', weno_order=5, outdir='./_output'): import numpy as np from clawpack import riemann if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type == 'classic': if kernel_language == 'Fortran': solver = pyclaw.ClawSolver1D(riemann.advection_1D) elif kernel_language == 'Python': solver = pyclaw.ClawSolver1D(riemann.advection_1D_py.advection_1D) elif solver_type == 'sharpclaw': if kernel_language == 'Fortran': solver = pyclaw.SharpClawSolver1D(riemann.advection_1D) elif kernel_language == 'Python': solver = pyclaw.SharpClawSolver1D( riemann.advection_1D_py.advection_1D) solver.weno_order = weno_order else: raise Exception('Unrecognized value of solver_type.') solver.kernel_language = kernel_language solver.bc_lower[0] = 2 solver.bc_upper[0] = 2 x = pyclaw.Dimension('x', 0.0, 1.0, nx) domain = pyclaw.Domain(x) num_eqn = 1 state = pyclaw.State(domain, num_eqn) state.problem_data['u'] = 1. grid = state.grid xc = grid.x.centers beta = 100 gamma = 0 x0 = 0.75 state.q[0, :] = np.exp(-beta * (xc - x0)**2) * np.cos(gamma * (xc - x0)) claw = pyclaw.Controller() claw.keep_copy = True claw.solution = pyclaw.Solution(state, domain) claw.solver = solver if outdir is not None: claw.outdir = outdir else: claw.output_format = None claw.tfinal = 1.0 return claw
def setup(use_petsc=0, kernel_language='Fortran', outdir='./_output', solver_type='classic'): """ Example python script for solving the 1d Burgers equation. """ import numpy as np from clawpack import riemann if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw #=========================================================================== # Setup solver and solver parameters #=========================================================================== if solver_type == 'sharpclaw': if kernel_language == 'Python': solver = pyclaw.SharpClawSolver1D(riemann.burgers_1D_py.burgers_1D) elif kernel_language == 'Fortran': solver = pyclaw.SharpClawSolver1D(riemann.burgers_1D) else: if kernel_language == 'Python': solver = pyclaw.ClawSolver1D(riemann.burgers_1D_py.burgers_1D) elif kernel_language == 'Fortran': solver = pyclaw.ClawSolver1D(riemann.burgers_1D) solver.limiters = pyclaw.limiters.tvd.vanleer solver.kernel_language = kernel_language solver.bc_lower[0] = pyclaw.BC.periodic solver.bc_upper[0] = pyclaw.BC.periodic #=========================================================================== # Initialize domain and then initialize the solution associated to the domain #=========================================================================== x = pyclaw.Dimension('x', 0.0, 1.0, 500) domain = pyclaw.Domain(x) num_eqn = 1 state = pyclaw.State(domain, num_eqn) grid = state.grid xc = grid.x.centers state.q[0, :] = np.sin(np.pi * 2 * xc) + 0.50 state.problem_data['efix'] = True #=========================================================================== # Setup controller and controller parameters. Then solve the problem #=========================================================================== claw = pyclaw.Controller() claw.tfinal = 0.5 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.outdir = outdir return claw
def setup(kernel_language='Python', use_petsc=False, outdir='./_output', solver_type='classic'): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw solver = pyclaw.ClawSolver1D(riemann.shallow_1D_py.shallow_fwave_1d) solver.limiters = pyclaw.limiters.tvd.vanleer solver.kernel_language = "Python" solver.fwave = True solver.num_waves = 2 solver.num_eqn = 2 solver.bc_lower[0] = pyclaw.BC.wall solver.bc_upper[0] = pyclaw.BC.wall solver.aux_bc_lower[0] = pyclaw.BC.wall solver.aux_bc_upper[0] = pyclaw.BC.wall solver.step_source = stepSource # solver.dt = 0.00001 x_star = numpy.sqrt(80.0 / 1e-2) - 1.2 xlower = -x_star xupper = x_star x = pyclaw.Dimension(xlower, xupper, 500, name='x') domain = pyclaw.Domain(x) state = pyclaw.State(domain, 2, 1) # Gravitational constant state.problem_data['grav'] = 9.8 state.problem_data['sea_level'] = 0.0 xc = state.grid.x.centers # state.aux[0, :] = 0.8 * numpy.exp(-xc**2 / 0.2**2) - 1.0 state.aux[0, :] = 1.e-2 * (xc**2) - 80 ze = -((xc)**2) / 10 state.q[0, :] = numpy.where( ze > -10., 40.e0 * numpy.exp(ze) - state.aux[0, :], numpy.where(state.aux[0, :] <= 0, -state.aux[0, :], 0.)) state.q[1, :] = 0.0 claw = pyclaw.Controller() claw.keep_copy = True claw.tfinal = 8.0 claw.output_style = 1 claw.num_output_times = 25 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.setplot = setplot claw.write_aux_init = True if outdir is not None: claw.outdir = outdir else: claw.output_format = None return claw
def setup(use_petsc=False, outdir='./_output', solver_type='classic', kernel_language='Python', disable_output=False): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if kernel_language == 'Python': rs = riemann.euler_1D_py.euler_hllc_1D elif kernel_language == 'Fortran': rs = riemann.euler_hlle_1D if solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver1D(rs) elif solver_type == 'classic': solver = pyclaw.ClawSolver1D(rs) solver.kernel_language = kernel_language solver.bc_lower[0] = pyclaw.BC.extrap solver.bc_upper[0] = pyclaw.BC.extrap mx = 800 x = pyclaw.Dimension(-1.0, 1.0, mx, name='x') domain = pyclaw.Domain([x]) state = pyclaw.State(domain, num_eqn) state.problem_data['gamma'] = gamma state.problem_data['gamma1'] = gamma - 1. x = state.grid.x.centers rho_l = 1. rho_r = 1. / 8 p_l = 1. p_r = 0.1 state.q[density, :] = (x < 0.) * rho_l + (x >= 0.) * rho_r state.q[momentum, :] = 0. velocity = state.q[momentum, :] / state.q[density, :] pressure = (x < 0.) * p_l + (x >= 0.) * p_r state.q[energy, :] = pressure / ( gamma - 1.) + 0.5 * state.q[density, :] * velocity**2 claw = pyclaw.Controller() claw.tfinal = 0.4 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.num_output_times = 10 claw.outdir = outdir claw.setplot = setplot claw.keep_copy = True if disable_output: claw.output_format = None return claw
def setup(nx=100, kernel_language='Python', use_petsc=False, solver_type='classic', weno_order=5, time_integrator='SSP104', outdir='./_output'): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if kernel_language == 'Fortran': riemann_solver = riemann.advection_1D elif kernel_language == 'Python': riemann_solver = riemann.advection_1D_py.advection_1D if solver_type == 'classic': solver = pyclaw.ClawSolver1D(riemann_solver) elif solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver1D(riemann_solver) solver.weno_order = weno_order solver.time_integrator = time_integrator else: raise Exception('Unrecognized value of solver_type.') solver.kernel_language = kernel_language solver.bc_lower[0] = pyclaw.BC.periodic solver.bc_upper[0] = pyclaw.BC.periodic x = pyclaw.Dimension('x', 0.0, 1.0, nx) domain = pyclaw.Domain(x) state = pyclaw.State(domain, solver.num_eqn) state.problem_data['u'] = 1. # Advection velocity # Initial data xc = state.grid.x.centers beta = 100 gamma = 0 x0 = 0.75 state.q[0, :] = np.exp(-beta * (xc - x0)**2) * np.cos(gamma * (xc - x0)) claw = pyclaw.Controller() claw.keep_copy = True claw.solution = pyclaw.Solution(state, domain) claw.solver = solver if outdir is not None: claw.outdir = outdir else: claw.output_format = None claw.tfinal = 1.0 claw.setplot = setplot return claw
def advection(kernel_language='Python',iplot=False,htmlplot=False, use_petsc=False,solver_type='classic', weno_order=5, outdir='./_output'): """ Example python script for solving the 1d advection equation. """ import numpy as np if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type=='sharpclaw': solver = pyclaw.SharpClawSolver1D() solver.weno_order=weno_order else: solver = pyclaw.ClawSolver1D() solver.kernel_language = kernel_language from clawpack.riemann import rp_advection solver.num_waves = rp_advection.num_waves if solver.kernel_language=='Python': solver.rp = rp_advection.rp_advection_1d else: from clawpack import riemann solver.rp = riemann.rp1_advection solver.bc_lower[0] = 2 solver.bc_upper[0] = 2 x = pyclaw.Dimension('x',0.0,1.0,100) domain = pyclaw.Domain(x) num_eqn = 1 state = pyclaw.State(domain,num_eqn) state.problem_data['u']=1. grid = state.grid xc=grid.x.centers beta=100; gamma=0; x0=0.75 state.q[0,:] = np.exp(-beta * (xc-x0)**2) * np.cos(gamma * (xc - x0)) claw = pyclaw.Controller() claw.keep_copy = True claw.solution = pyclaw.Solution(state,domain) claw.solver = solver if outdir is not None: claw.outdir = outdir else: claw.output_format = None claw.tfinal =1.0 status = claw.run() if htmlplot: pyclaw.plot.html_plot(outdir=outdir) if iplot: pyclaw.plot.interactive_plot(outdir=outdir) return claw
def shocktube(kernel_language='Fortran', solver_type='classic', use_petsc=False, outdir='shocktube_output', output_format='hdf5', disable_output=False, mx=10, my=10, mz=128, tfinal=1.0, num_output_times=10): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type == 'classic': solver = pyclaw.ClawSolver3D(riemann.euler_3D) solver.dimensional_split = True solver.limiters = pyclaw.limiters.tvd.MC solver.cfl_max = 1.0 solver.cfl_desired = 0.80 elif solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver3D(riemann.euler_3D) else: raise Exception('Unrecognized solver_type.') domain = pyclaw.Domain((-1., -1., -1.), (1., 1., 1.), (mx, my, mz)) state = pyclaw.State(domain, num_eqn) state.problem_data['gamma'] = gamma grid = state.grid X, Y, Z = grid.p_centers pressure = 3. * (Z <= 0) + 1. * (Z > 0) state.q[density, :, :, :] = 3. * (Z <= 0) + 1. * (Z > 0) state.q[x_momentum, :, :, :] = 0. state.q[y_momentum, :, :, :] = 0. state.q[z_momentum, :, :, :] = 0. state.q[energy, :, :, :] = pressure / (gamma - 1.) solver.all_bcs = pyclaw.BC.extrap claw = pyclaw.Controller() claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.output_format = output_format claw.keep_copy = True if disable_output: claw.output_format = None claw.tfinal = tfinal claw.num_output_times = num_output_times claw.outdir = outdir return claw
def kpp(use_petsc=False, iplot=False, htmlplot=False, outdir='./_output', solver_type='classic'): """ Example python script for solving the 2d KPP equations. """ if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver2D() else: solver = pyclaw.ClawSolver2D() from clawpack import riemann solver.rp = riemann.rp2_kpp solver.num_waves = 1 solver.bc_lower[0] = pyclaw.BC.extrap solver.bc_upper[0] = pyclaw.BC.extrap solver.bc_lower[1] = pyclaw.BC.extrap solver.bc_upper[1] = pyclaw.BC.extrap # Initialize domain mx = 200 my = 200 x = pyclaw.Dimension('x', -2.0, 2.0, mx) y = pyclaw.Dimension('y', -2.0, 2.0, my) domain = pyclaw.Domain([x, y]) num_eqn = 1 state = pyclaw.State(domain, num_eqn) qinit(state) solver.dimensional_split = 1 solver.cfl_max = 1.0 solver.cfl_desired = 0.9 solver.num_waves = 2 solver.limiters = pyclaw.limiters.tvd.minmod claw = pyclaw.Controller() claw.tfinal = 1.0 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.num_output_times = 10 # Solve status = claw.run() if htmlplot: pyclaw.plot.html_plot(outdir=outdir) if iplot: pyclaw.plot.interactive_plot(outdir=outdir)
def setup(use_petsc=False,solver_type='classic', outdir='_output', kernel_language='Fortran', disable_output=False, mx=320, my=80, tfinal=0.6, num_output_times = 10): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type=='sharpclaw': solver = pyclaw.SharpClawSolver2D(riemann.euler_5wave_2D) solver.dq_src = dq_Euler_radial solver.weno_order = 5 solver.lim_type = 2 else: solver = pyclaw.ClawSolver2D(riemann.euler_5wave_2D) solver.step_source = step_Euler_radial solver.source_split = 1 solver.limiters = [4,4,4,4,2] solver.cfl_max = 0.5 solver.cfl_desired = 0.45 x = pyclaw.Dimension(0.0,2.0,mx,name='x') y = pyclaw.Dimension(0.0,0.5,my,name='y') domain = pyclaw.Domain([x,y]) num_aux=1 state = pyclaw.State(domain,num_eqn,num_aux) state.problem_data['gamma']= gamma qinit(state) auxinit(state) solver.user_bc_lower = incoming_shock solver.bc_lower[0]=pyclaw.BC.custom solver.bc_upper[0]=pyclaw.BC.extrap solver.bc_lower[1]=pyclaw.BC.wall solver.bc_upper[1]=pyclaw.BC.extrap #Aux variable in ghost cells doesn't matter solver.aux_bc_lower[0]=pyclaw.BC.extrap solver.aux_bc_upper[0]=pyclaw.BC.extrap solver.aux_bc_lower[1]=pyclaw.BC.extrap solver.aux_bc_upper[1]=pyclaw.BC.extrap claw = pyclaw.Controller() claw.solution = pyclaw.Solution(state,domain) claw.solver = solver claw.keep_copy = True if disable_output: claw.output_format = None claw.tfinal = tfinal claw.num_output_times = num_output_times claw.outdir = outdir claw.setplot = setplot return claw
def setup(use_petsc=False, iplot=False, htmlplot=False, outdir='./_output', solver_type='sharpclaw', kernel_language='Fortran'): """ Solve the Euler equations of compressible fluid dynamics. This example involves a shock wave impacting a sinusoidal density field. """ from clawpack import riemann if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver1D(riemann.euler_with_efix_1D) solver.time_integrator = 'RK' solver.a, solver.b, solver.c = a, b, c solver.cfl_desired = 0.6 solver.cfl_max = 0.7 else: solver = pyclaw.ClawSolver1D(riemann.euler_with_efix_1D) solver.bc_lower[0] = pyclaw.BC.extrap solver.bc_upper[0] = pyclaw.BC.extrap # Initialize domain mx = 400 x = pyclaw.Dimension('x', -5.0, 5.0, mx) domain = pyclaw.Domain([x]) state = pyclaw.State(domain, solver.num_eqn) state.problem_data['gamma'] = gamma state.problem_data['gamma1'] = gamma1 xc = state.grid.x.centers epsilon = 0.2 state.q[0, :] = (xc < -4.) * 3.857143 + (xc >= -4.) * ( 1 + epsilon * np.sin(5 * xc)) velocity = (xc < -4.) * 2.629369 state.q[1, :] = velocity * state.q[0, :] pressure = (xc < -4.) * 10.33333 + (xc >= -4.) * 1. state.q[2, :] = pressure / gamma1 + 0.5 * state.q[0, :] * velocity**2 claw = pyclaw.Controller() claw.tfinal = 1.8 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.num_output_times = 10 claw.outdir = outdir claw.setplot = setplot return claw
def __init__(self, shape=None, mx=160, my=40, use_petsc=False, **kwargs): super(PFASSTShockBubble, self).__init__() if use_petsc: import clawpack.petclaw as pyclaw else: import clawpack.pyclaw as pyclaw import clawpack.riemann as riemann solver = pyclaw.SharpClawSolver2D() solver.dq_src = dq_Euler_radial solver.weno_order = 5 solver.lim_type = 2 solver.rp = riemann.rp2_euler_5wave solver.cfl_max = 0.5 solver.cfl_desired = 0.45 solver.num_waves = 5 solver.bc_lower[0] = pyclaw.BC.custom solver.bc_upper[0] = pyclaw.BC.extrap solver.bc_lower[1] = pyclaw.BC.wall solver.bc_upper[1] = pyclaw.BC.extrap solver.aux_bc_lower[0] = pyclaw.BC.extrap solver.aux_bc_upper[0] = pyclaw.BC.extrap solver.aux_bc_lower[1] = pyclaw.BC.extrap solver.aux_bc_upper[1] = pyclaw.BC.extrap # initialize domain x = pyclaw.Dimension('x', 0.0, 2.0, mx) y = pyclaw.Dimension('y', 0.0, 0.5, my) domain = pyclaw.Domain([x, y]) state = pyclaw.State(domain, 5, 1) state.problem_data['gamma'] = gamma state.problem_data['gamma1'] = gamma1 qinit(state) auxinit(state) solver.user_bc_lower = shockbc solution = pyclaw.Solution(state, domain) solver.setup(solution) self.solution = solution self.solver = solver self.state = state self.shape = (5 * mx * my, ) self.size = 5 * mx * my self.qshape = (5, mx, my)
def setup(use_petsc=0, outdir='./_output', solver_type='classic'): """ Example python script for solving 1d traffic model: $$ q_t + umax( q(1-q) )_x = 0.$$ """ import numpy as np from clawpack import riemann if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw #=========================================================================== # Setup solver and solver parameters #=========================================================================== if solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver1D(riemann.traffic_1D) else: solver = pyclaw.ClawSolver1D(riemann.traffic_1D) solver.bc_lower[0] = pyclaw.BC.extrap solver.bc_upper[0] = pyclaw.BC.extrap #=========================================================================== # Initialize domain and then initialize the solution associated to the domain #=========================================================================== x = pyclaw.Dimension('x', -1.0, 1.0, 500) domain = pyclaw.Domain(x) num_eqn = 1 state = pyclaw.State(domain, num_eqn) grid = state.grid xc = grid.x.centers state.q[0, :] = 0.75 * (xc < 0) + 0.1 * (xc > 0.) state.problem_data['efix'] = True state.problem_data['umax'] = 1. #=========================================================================== # Setup controller and controller parameters. Then solve the problem #=========================================================================== claw = pyclaw.Controller() claw.tfinal = 2.0 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.outdir = outdir claw.setplot = setplot claw.keep_copy = True return claw
def setup(use_petsc=False, riemann_solver='roe'): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if riemann_solver.lower() == 'roe': solver = pyclaw.ClawSolver2D(riemann.euler_4wave_2D) solver.transverse_waves = 2 elif riemann_solver.lower() == 'hlle': solver = pyclaw.ClawSolver2D(riemann.euler_hlle_2D) solver.transverse_waves = 0 solver.cfl_desired = 0.4 solver.cfl_max = 0.5 solver.all_bcs = pyclaw.BC.extrap domain = pyclaw.Domain([0., 0.], [1., 1.], [100, 100]) solution = pyclaw.Solution(num_eqn, domain) gamma = 1.4 solution.problem_data['gamma'] = gamma # Set initial data xx, yy = domain.grid.p_centers l = xx < 0.8 r = xx >= 0.8 b = yy < 0.8 t = yy >= 0.8 solution.q[density,...] = 1.5 * r * t + 0.532258064516129 * l * t \ + 0.137992831541219 * l * b \ + 0.532258064516129 * r * b u = 0.0 * r * t + 1.206045378311055 * l * t \ + 1.206045378311055 * l * b \ + 0.0 * r * b v = 0.0 * r * t + 0.0 * l * t \ + 1.206045378311055 * l * b \ + 1.206045378311055 * r * b p = 1.5 * r * t + 0.3 * l * t + 0.029032258064516 * l * b + 0.3 * r * b solution.q[x_momentum, ...] = solution.q[density, ...] * u solution.q[y_momentum, ...] = solution.q[density, ...] * v solution.q[energy, ...] = 0.5 * solution.q[density, ...] * (u**2 + v**2) + p / (gamma - 1.0) claw = pyclaw.Controller() claw.tfinal = 0.8 claw.num_output_times = 10 claw.solution = solution claw.solver = solver claw.output_format = 'ascii' claw.outdir = "./_output" claw.setplot = setplot return claw
def setup(kernel_language='Fortran', solver_type='classic', use_petsc=False, outdir='./_output'): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if kernel_language == 'Fortran': solver = pyclaw.ClawSolver1D(riemann.shallow_bathymetry_fwave_1D) elif kernel_language == 'Python': solver = pyclaw.ClawSolver1D(riemann.shallow_1D_py.shallow_fwave_1d) solver.kernel_language = 'Python' solver.limiters = pyclaw.limiters.tvd.vanleer solver.fwave = True solver.num_waves = 2 solver.num_eqn = 2 solver.bc_lower[0] = pyclaw.BC.extrap solver.bc_upper[0] = pyclaw.BC.extrap solver.aux_bc_lower[0] = pyclaw.BC.extrap solver.aux_bc_upper[0] = pyclaw.BC.extrap xlower = -1.0 xupper = 1.0 x = pyclaw.Dimension(xlower, xupper, 500, name='x') domain = pyclaw.Domain(x) state = pyclaw.State(domain, 2, 1) # Gravitational constant state.problem_data['grav'] = 9.8 state.problem_data['dry_tolerance'] = 1e-3 state.problem_data['sea_level'] = 0.0 xc = state.grid.x.centers state.aux[0, :] = 0.8 * numpy.exp(-xc**2 / 0.2**2) - 1.0 state.q[0, :] = 0.1 * numpy.exp(-(xc + 0.4)**2 / 0.2**2) - state.aux[0, :] state.q[1, :] = 0.0 claw = pyclaw.Controller() claw.keep_copy = True claw.tfinal = 1.0 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.setplot = setplot claw.write_aux_init = True if outdir is not None: claw.outdir = outdir else: claw.output_format = None return claw
def setup(use_petsc=0, kernel_language='Python', outdir='./_output', solver_type='classic'): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if kernel_language == 'Python': riemann_solver = adsolver elif kernel_language == 'Fortran': riemann_solver = riemann.burgers_1D if solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver1D(riemann_solver) else: solver = pyclaw.ClawSolver1D(riemann_solver) solver.limiters = pyclaw.limiters.tvd.vanleer solver.kernel_language = kernel_language solver.bc_lower[0] = pyclaw.BC.periodic #solver.user_bc_lower=custom_bc_one solver.bc_upper[0] = pyclaw.BC.periodic #solver.user_bc_upper=custom_bc_two solver.num_waves = 1 solver.num_eqn = 1 x = pyclaw.Dimension(0.0, 1.0, 500, name='x') domain = pyclaw.Domain(x) num_eqn = 1 state = pyclaw.State(domain, num_eqn) xc = state.grid.x.centers state.q[0, :] = np.sin(np.pi * 2 * xc) + 0.50 state.problem_data['efix'] = True state.problem_data['a'] = 1.0 claw = pyclaw.Controller() claw.tfinal = 2.0 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.outdir = outdir claw.setplot = setplot claw.keep_copy = True return claw
def setup(use_petsc=False,solver_type='classic',kernel_language='Python',outdir='./_output'): from clawpack import riemann if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type=='classic': if kernel_language == 'Fortran': solver = pyclaw.ClawSolver1D(riemann.vc_advection_1D) elif kernel_language=='Python': solver = pyclaw.ClawSolver1D(riemann.vc_advection_1D_py.vc_advection_1D) elif solver_type=='sharpclaw': if kernel_language == 'Fortran': solver = pyclaw.SharpClawSolver1D(riemann.vc_advection_1D) elif kernel_language=='Python': solver = pyclaw.SharpClawSolver1D(riemann.vc_advection_1D_py.vc_advection_1D) solver.weno_order=weno_order else: raise Exception('Unrecognized value of solver_type.') solver.kernel_language = kernel_language solver.limiters = pyclaw.limiters.tvd.MC solver.bc_lower[0] = 2 solver.bc_upper[0] = 2 solver.aux_bc_lower[0] = 2 solver.aux_bc_upper[0] = 2 xlower=0.0; xupper=1.0; mx=100 x = pyclaw.Dimension('x',xlower,xupper,mx) domain = pyclaw.Domain(x) num_aux=1 num_eqn = 1 state = pyclaw.State(domain,num_eqn,num_aux) qinit(state) auxinit(state) claw = pyclaw.Controller() claw.outdir = outdir claw.solution = pyclaw.Solution(state,domain) claw.solver = solver claw.tfinal = 1.0 return claw
def vc_advection(use_petsc=False,solver_type='classic',kernel_language='Python',iplot=False,htmlplot=False,outdir='./_output'): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type=='sharpclaw': solver = pyclaw.SharpClawSolver1D() else: solver = pyclaw.ClawSolver1D() from clawpack import riemann solver.num_waves = riemann.rp_vc_advection.num_waves solver.kernel_language = kernel_language if solver.kernel_language=='Python': solver.rp = riemann.rp_vc_advection.rp_vc_advection_1d elif solver.kernel_language=='Fortran': raise NotImplementedError('The 1D variable coefficient advection Riemann solver has not yet been ported.') solver.limiters = pyclaw.limiters.tvd.MC solver.bc_lower[0] = 2 solver.bc_upper[0] = 2 solver.aux_bc_lower[0] = 2 solver.aux_bc_upper[0] = 2 xlower=0.0; xupper=1.0; mx=100 x = pyclaw.Dimension('x',xlower,xupper,mx) domain = pyclaw.Domain(x) num_aux=1 num_eqn = 1 state = pyclaw.State(domain,num_eqn,num_aux) qinit(state) auxinit(state) claw = pyclaw.Controller() claw.outdir = outdir claw.solution = pyclaw.Solution(state,domain) claw.solver = solver claw.tfinal = 1.0 status = claw.run() if htmlplot: pyclaw.plot.html_plot(outdir=outdir) if iplot: pyclaw.plot.interactive_plot(outdir=outdir)
def setup(use_petsc=False, outdir='./_output', solver_type='classic'): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type == 'classic': solver = pyclaw.ClawSolver2D(riemann.shallow_roe_with_efix_2D) solver.limiters = pyclaw.limiters.tvd.MC solver.dimensional_split = 1 elif solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver2D(riemann.shallow_roe_with_efix_2D) solver.bc_lower[0] = pyclaw.BC.extrap solver.bc_upper[0] = pyclaw.BC.wall solver.bc_lower[1] = pyclaw.BC.extrap solver.bc_upper[1] = pyclaw.BC.wall # Domain: xlower = -2.5 xupper = 2.5 mx = 150 ylower = -2.5 yupper = 2.5 my = 150 x = pyclaw.Dimension('x', xlower, xupper, mx) y = pyclaw.Dimension('y', ylower, yupper, my) domain = pyclaw.Domain([x, y]) state = pyclaw.State(domain, solver.num_eqn) # Gravitational constant state.problem_data['grav'] = 1.0 qinit(state) claw = pyclaw.Controller() claw.tfinal = 2.5 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.outdir = outdir claw.num_output_times = 10 claw.setplot = setplot claw.keep_copy = True return claw
def setup(use_petsc=0, kernel_language='Fortran', outdir='./_output', solver_type='classic'): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if kernel_language == 'Python': riemann_solver = riemann.burgers_1D_py.burgers_1D elif kernel_language == 'Fortran': riemann_solver = riemann.burgers_1D if solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver1D(riemann_solver) else: solver = pyclaw.ClawSolver1D(riemann_solver) solver.limiters = pyclaw.limiters.tvd.vanleer solver.kernel_language = kernel_language solver.bc_lower[0] = pyclaw.BC.custom solver.user_bc_lower = custom_bc solver.bc_upper[0] = pyclaw.BC.custom solver.user_bc_upper = custom_bc x = pyclaw.Dimension(-100.0, 100.0, steps, name='x') domain = pyclaw.Domain(x) num_eqn = 1 state = pyclaw.State(domain, num_eqn) xc = state.grid.x.centers state.q[0, :] = np.exp(-xc**2) state.problem_data['efix'] = True claw = pyclaw.Controller() claw.tfinal = 10.0 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.outdir = outdir claw.setplot = setplot claw.keep_copy = True return claw
def setup(use_petsc=False, outdir='./_output', solver_type='classic'): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type == 'classic': solver = pyclaw.ClawSolver2D(riemann.advection_2D) solver.dimensional_split = 1 solver.limiters = pyclaw.limiters.tvd.vanleer elif solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver2D(riemann.advection_2D) solver.bc_lower[0] = pyclaw.BC.periodic solver.bc_upper[0] = pyclaw.BC.periodic solver.bc_lower[1] = pyclaw.BC.periodic solver.bc_upper[1] = pyclaw.BC.periodic solver.cfl_max = 1.0 solver.cfl_desired = 0.9 # Domain: mx = 50 my = 50 x = pyclaw.Dimension(0.0, 1.0, mx, name='x') y = pyclaw.Dimension(0.0, 1.0, my, name='y') domain = pyclaw.Domain([x, y]) num_eqn = 1 state = pyclaw.State(domain, num_eqn) state.problem_data['u'] = 0.5 # Advection velocity state.problem_data['v'] = 1.0 qinit(state) claw = pyclaw.Controller() claw.tfinal = 2.0 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.outdir = outdir claw.setplot = setplot claw.keep_copy = True return claw
def setup(use_petsc=False, outdir='./_output', solver_type='classic'): """ Example python script for solving the 2d KPP equations. """ from clawpack import riemann if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver2D(riemann.kpp_2D) else: solver = pyclaw.ClawSolver2D(riemann.kpp_2D) solver.bc_lower[0] = pyclaw.BC.extrap solver.bc_upper[0] = pyclaw.BC.extrap solver.bc_lower[1] = pyclaw.BC.extrap solver.bc_upper[1] = pyclaw.BC.extrap # Initialize domain mx = 200 my = 200 x = pyclaw.Dimension('x', -2.0, 2.0, mx) y = pyclaw.Dimension('y', -2.0, 2.0, my) domain = pyclaw.Domain([x, y]) state = pyclaw.State(domain, solver.num_eqn) qinit(state) solver.dimensional_split = 1 solver.cfl_max = 1.0 solver.cfl_desired = 0.9 solver.limiters = pyclaw.limiters.tvd.minmod claw = pyclaw.Controller() claw.tfinal = 1.0 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.num_output_times = 10 claw.setplot = setplot claw.keep_copy = True return claw
def setup(use_petsc=0, outdir='./_output', solver_type='classic', weno_order=5, N=1000): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw riemann_solver = riemann.cubic_1D if solver_type=='sharpclaw': solver = pyclaw.SharpClawSolver1D(riemann_solver) solver.weno_order = weno_order else: solver = pyclaw.ClawSolver1D(riemann_solver) solver.limiters = pyclaw.limiters.tvd.vanleer solver.cfl_max = 1.0 solver.cfl_desired = 0.5 solver.kernel_language = 'Fortran' solver.bc_lower[0] = pyclaw.BC.extrap solver.bc_upper[0] = pyclaw.BC.extrap x = pyclaw.Dimension(-1.0, 3.0, N, name='x') domain = pyclaw.Domain(x) num_eqn = 1 state = pyclaw.State(domain, num_eqn) xc = state.grid.x.centers qL = 4.0 qR = -2.0 state.q[0,:] = (xc < -0.5) * qL + (xc >= -0.5) * qR claw = pyclaw.Controller() claw.tfinal = 0.2 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.outdir = outdir claw.setplot = setplot claw.keep_copy = True return claw
def setup(use_petsc=False, outdir='./_output', solver_type='classic'): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver2D(riemann.kpp_2D) else: solver = pyclaw.ClawSolver2D(riemann.kpp_2D) solver.dimensional_split = 1 solver.cfl_max = 1.0 solver.cfl_desired = 0.9 solver.limiters = pyclaw.limiters.tvd.minmod solver.bc_lower[0] = pyclaw.BC.extrap solver.bc_upper[0] = pyclaw.BC.extrap solver.bc_lower[1] = pyclaw.BC.extrap solver.bc_upper[1] = pyclaw.BC.extrap # Initialize domain mx = 200 my = 200 x = pyclaw.Dimension(-2.0, 2.0, mx, name='x') y = pyclaw.Dimension(-2.0, 2.0, my, name='y') domain = pyclaw.Domain([x, y]) state = pyclaw.State(domain, solver.num_eqn) # Initial data X, Y = state.grid.p_centers r = np.sqrt(X**2 + Y**2) state.q[0, :, :] = 0.25 * np.pi + 3.25 * np.pi * (r <= 1.0) claw = pyclaw.Controller() claw.tfinal = 1.0 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.setplot = setplot claw.keep_copy = True return claw
def setup(use_petsc=0,outdir='./_output',solver_type='classic'): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type=='sharpclaw': solver = pyclaw.SharpClawSolver1D(riemann.traffic_1D) else: solver = pyclaw.ClawSolver1D(riemann.traffic_1D) solver.bc_lower[0] = pyclaw.BC.extrap solver.bc_upper[0] = pyclaw.BC.extrap x = pyclaw.Dimension('x',-1.0,1.0,500) domain = pyclaw.Domain(x) num_eqn = 1 state = pyclaw.State(domain,num_eqn) grid = state.grid xc=grid.p_centers[0] state.q[0,:] = 0.75*(xc<0) + 0.1*(xc>0.) state.problem_data['efix']=True state.problem_data['umax']=1. claw = pyclaw.Controller() claw.tfinal =2.0 claw.solution = pyclaw.Solution(state,domain) claw.solver = solver claw.outdir = outdir claw.setplot = setplot claw.keep_copy = True return claw
def setup(use_petsc=False, kernel_language='Fortran', outdir='./_output', solver_type='classic'): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if kernel_language == 'Python': rs = riemann.shallow_1D_py.shallow_1D elif kernel_language == 'Fortran': rs = riemann.shallow_roe_with_efix_1D if solver_type == 'classic': solver = pyclaw.ClawSolver1D(rs) solver.limiters = pyclaw.limiters.tvd.vanleer elif solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver1D(rs) solver.kernel_language = kernel_language solver.bc_lower[0] = pyclaw.BC.extrap solver.bc_upper[0] = pyclaw.BC.extrap xlower = -5.0 xupper = 5.0 mx = 500 x = pyclaw.Dimension(xlower, xupper, mx, name='x') domain = pyclaw.Domain(x) state = pyclaw.State(domain, num_eqn) # Gravitational constant state.problem_data['grav'] = 1.0 xc = state.grid.x.centers IC = 'dam-break' x0 = 0. if IC == 'dam-break': hl = 3. ul = 0. hr = 1. ur = 0. state.q[depth, :] = hl * (xc <= x0) + hr * (xc > x0) state.q[momentum, :] = hl * ul * (xc <= x0) + hr * ur * (xc > x0) elif IC == '2-shock': hl = 1. ul = 1. hr = 1. ur = -1. state.q[depth, :] = hl * (xc <= x0) + hr * (xc > x0) state.q[momentum, :] = hl * ul * (xc <= x0) + hr * ur * (xc > x0) elif IC == 'perturbation': eps = 0.1 state.q[depth, :] = 1.0 + eps * np.exp(-(xc - x0)**2 / 0.5) state.q[momentum, :] = 0. claw = pyclaw.Controller() claw.keep_copy = True claw.tfinal = 2.0 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.outdir = outdir claw.setplot = setplot return claw
def setup(use_petsc=False, iplot=False, htmlplot=False, outdir='./_output', solver_type='sharpclaw', kernel_language='Fortran', use_char_decomp=False, tfluct_solver=True): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if kernel_language == 'Python': rs = riemann.euler_1D_py.euler_roe_1D elif kernel_language == 'Fortran': rs = riemann.euler_with_efix_1D if solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver1D(rs) solver.time_integrator = 'RK' solver.a, solver.b, solver.c = a, b, c solver.cfl_desired = 0.6 solver.cfl_max = 0.7 if use_char_decomp: try: import sharpclaw1 # Import custom Fortran code solver.fmod = sharpclaw1 solver.tfluct_solver = tfluct_solver # Use total fluctuation solver for efficiency if solver.tfluct_solver: try: import euler_tfluct solver.tfluct = euler_tfluct except ImportError: import logging logger = logging.getLogger() logger.error( 'Unable to load tfluct solver, did you run make?') print 'Unable to load tfluct solver, did you run make?' raise except ImportError: import logging logger = logging.getLogger() logger.error( 'Unable to load sharpclaw1 solver, did you run make?') print 'Unable to load sharpclaw1 solver, did you run make?' pass solver.lim_type = 2 # WENO reconstruction solver.char_decomp = 2 # characteristic-wise reconstruction else: solver = pyclaw.ClawSolver1D(rs) solver.kernel_language = kernel_language solver.bc_lower[0] = pyclaw.BC.extrap solver.bc_upper[0] = pyclaw.BC.extrap mx = 400 x = pyclaw.Dimension(-5.0, 5.0, mx, name='x') domain = pyclaw.Domain([x]) state = pyclaw.State(domain, num_eqn) state.problem_data['gamma'] = gamma if kernel_language == 'Python': state.problem_data['efix'] = False xc = state.grid.p_centers[0] epsilon = 0.2 velocity = (xc < -4.) * 2.629369 pressure = (xc < -4.) * 10.33333 + (xc >= -4.) * 1. state.q[density, :] = (xc < -4.) * 3.857143 + (xc >= -4.) * ( 1 + epsilon * np.sin(5 * xc)) state.q[momentum, :] = velocity * state.q[density, :] state.q[energy, :] = pressure / ( gamma - 1.) + 0.5 * state.q[density, :] * velocity**2 claw = pyclaw.Controller() claw.tfinal = 1.8 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.num_output_times = 10 claw.outdir = outdir claw.setplot = setplot claw.keep_copy = True return claw