def setplot(plotdata=None): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of clawpack.visclaw.data.ClawPlotData. Output: a modified version of plotdata. """ if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() plotdata.clearfigures() # clear any old figures,axes,items data print("**** Python plotting tools not yet implemented in 3d") print("**** No frame plots will be generated.") #----------------------------------------- # Figures for gauges #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='q', figno=300, \ type='each_gauge') plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = 'auto' plotaxes.ylimits = 'auto' plotaxes.title = 'q' # Plot q as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 0 plotitem.plotstyle = 'b-' # Parameters used only when creating html and/or latex hardcopy # e.g., via clawpack.visclaw.frametools.printframes: plotdata.printfigs = False # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = [] # list of frames to print plotdata.print_fignos = [] # list of figures to print plotdata.html = False # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.html_movie = 'JSAnimation' # new style, or "4.x" for old style plotdata.latex = False # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata
def setplot(plotdata=None): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of clawpack.visclaw.data.ClawPlotData. Output: a modified version of plotdata. """ if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() plotdata.clearfigures() # clear any old figures,axes,items data print("**** Python plotting tools not yet implemented in 3d") print("**** No plots will be generated.") # Parameters used only when creating html and/or latex hardcopy # e.g., via clawpack.visclaw.frametools.printframes: plotdata.printfigs = False # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = [] # list of frames to print plotdata.print_fignos = [] # list of figures to print plotdata.html = False # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.html_movie = 'JSAnimation' # new style, or "4.x" for old style plotdata.latex = False # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata
def setplot(plotdata=None): """""" if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() # clear any old figures,axes,items data plotdata.clearfigures() plotdata.format = 'binary' # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir, 'claw.data')) physics = geodata.GeoClawData() physics.read(os.path.join(plotdata.outdir, 'geoclaw.data')) surge_data = geodata.SurgeData() surge_data.read(os.path.join(plotdata.outdir, 'surge.data')) friction_data = geodata.FrictionData() friction_data.read(os.path.join(plotdata.outdir, 'friction.data')) # Load storm track track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track')) # Set afteraxes function def surge_afteraxes(cd): surgeplot.surge_afteraxes(cd, track, plot_direction=False, kwargs={"markersize": 4}) # Color limits surface_limits = [physics.sea_level - 5.0, physics.sea_level + 5.0] surface_ticks = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5] surface_labels = [str(value) for value in surface_ticks] speed_limits = [0.0, 3.0] speed_ticks = [0, 1, 2, 3] speed_labels = [str(value) for value in speed_ticks] wind_limits = [0, 66] pressure_limits = [909, 1013] friction_bounds = [0.01, 0.04] def add_custom_colorbar_ticks_to_axes(axes, item_name, ticks, tick_labels=None): """Adjust colorbar ticks and labels""" axes.plotitem_dict[item_name].colorbar_ticks = ticks axes.plotitem_dict[item_name].colorbar_tick_labels = tick_labels def gulf_after_axes(cd): # plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96) surge_afteraxes(cd) def latex_after_axes(cd): # plt.subplot_adjust() surge_afteraxes(cd) def friction_after_axes(cd): # plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96) plt.title(r"Manning's $n$ Coefficient") # surge_afteraxes(cd) # ========================================================================== # Plot specifications # ========================================================================== regions = { "Coast": { "xlimits": (clawdata.lower[0], clawdata.upper[0]), "ylimits": (clawdata.lower[1], clawdata.upper[1]), "figsize": (8, 7.5) }, "Zhapo Station": { "xlimits": (111.71666667, 111.91666667), "ylimits": (21.48333333, 21.68333333), "figsize": (6, 6) }, "Landfall": { "xlimits": (112.26, 112.86), "ylimits": (21.3, 21.7), "figsize": (6, 4) }, "Quarry Bay": { "xlimits": (114.11333333, 114.31333333), "ylimits": (22.19111111, 22.39111111), "figsize": (6, 6) } } for (name, region_dict) in regions.items(): # Surface Figure plotfigure = plotdata.new_plotfigure(name="Surface - %s" % name) plotfigure.kwargs = {"figsize": region_dict['figsize']} plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Surface" plotaxes.xlimits = region_dict["xlimits"] plotaxes.ylimits = region_dict["ylimits"] plotaxes.afteraxes = surge_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks, surface_labels) # Speed Figure plotfigure = plotdata.new_plotfigure(name="Currents - %s" % name) plotfigure.kwargs = {"figsize": region_dict['figsize']} plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Currents" plotaxes.xlimits = region_dict["xlimits"] plotaxes.ylimits = region_dict["ylimits"] plotaxes.afteraxes = surge_afteraxes surgeplot.add_speed(plotaxes, bounds=speed_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks, speed_labels) # Hurricane Forcing fields # # Pressure field plotfigure = plotdata.new_plotfigure(name='Pressure') plotfigure.show = surge_data.pressure_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Coast']['xlimits'] plotaxes.ylimits = regions['Coast']['ylimits'] plotaxes.title = "Pressure Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_pressure(plotaxes, bounds=pressure_limits) surgeplot.add_land(plotaxes) # Wind field plotfigure = plotdata.new_plotfigure(name='Wind Speed') plotfigure.show = surge_data.wind_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Coast']['xlimits'] plotaxes.ylimits = regions['Coast']['ylimits'] plotaxes.title = "Wind Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_wind(plotaxes, bounds=wind_limits) surgeplot.add_land(plotaxes) # ======================================================================== # Figures for gauges # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Gauge Surfaces', figno=300, type='each_gauge') plotfigure.show = True plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [-2.25, 0.75] #plotaxes.xlabel = "Days from landfall" #plotaxes.ylabel = "Surface (m)" plotaxes.ylimits = [-1, 4] plotaxes.title = 'Surface' def gauge_afteraxes(cd): axes = plt.gca() surgeplot.plot_landfall_gauge(cd.gaugesoln, axes) # Fix up plot - in particular fix time labels axes.set_title('Station %s' % cd.gaugeno) axes.set_xlabel('Days relative to landfall') axes.set_ylabel('Surface (m)') axes.set_xlim([-2.25, 0.75]) axes.set_ylim([-1, 4]) axes.set_xticks([-2.25, -1.25, -0.25, 0.75]) axes.set_xticklabels([r"$-2.25$", r"$-1.25$", r"$-0.25$", r"$0.75$"]) axes.grid(True) plotaxes.afteraxes = gauge_afteraxes # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') #plotitem.plot_var = 3 #plotitem.plotstyle = 'b-' # # Gauge Location Plot # def gauge_location_afteraxes(cd): #plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.92) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos='all', format_string='ko', add_labels=True) plotfigure = plotdata.new_plotfigure(name="Gauge Locations") plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge Locations' plotaxes.scaled = True plotaxes.xlimits = [111.0, 115.0] plotaxes.ylimits = [21.0, 22.5] plotaxes.afteraxes = gauge_location_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # ----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = [1, 2] # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # parallel plotting return plotdata
def setplot(plotdata=None): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. """ from clawpack.visclaw import colormaps, geoplot from numpy import linspace if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() plotdata.clearfigures() # clear any old figures,axes,items data def speed(current_data): from numpy import ma, where, sqrt, log10 drytol = 1e-3 q = current_data.q h = q[0, :, :] hu = q[1, :, :] hv = q[2, :, :] u = where(h > 0.0, hu / h, 0.) v = where(h > 0.0, hv / h, 0.) speed = sqrt(u**2 + v**2) return speed def stress(current_data): from numpy import ma, where, sqrt, log10 q = current_data.q h = q[0, :, :] hu = q[1, :, :] hv = q[2, :, :] u = where(h > 0.0, hu / h, 0.) v = where(h > 0.0, hv / h, 0.) speed = np.sqrt(u**2 + v**2) #Speed calc, same as above n = 0.06 #Manning's n g = 9.8 #gravity cf = where( h > 0.0, (g * n**2) / (h**(1. / 3)), 0. ) #calculate friction coefficient, DONT FORGET THE F*****G PERIOD YOU IDIOT (mike) stress = 1000 * cf * (speed**2) return stress # def erodibilityratio(current_data): # ratio of impelling forces (dimensionless shear stress T) to resisting forces (critical shear stress Tc) # from numpy import ma, where, sqrt, log10 # q=current_data.q # h=q[0,:,:] # hu=q[1,:,:] # hv=q[2,:,:] # u = where(h>0.0, hu/h, 0.) # v = where(h>0.0, hv/h, 0.) # speed = sqrt(u**2 +v**2) #Speed calc, same as above # n = 0.06 #Manning's n # g = 9.8 #gravity # def dsp(current_data): # dsp = depth slope product # from numpy import ma, where, sqrt, log10 # q = current_data.q # h=q[0,:,:] # g = 9.8 # gravity # dsp = 1000*g*h*0.02 # using a bulk channel gradient of 0.02-- will need to figure out how to make a localized measurement of this # return dsp # def froude(current_data): # from numpy import ma, where, sqrt, log10 # drytol = 1e-3 # q = current_data.q # h=q[0,:,:] # hu=q[1,:,:] # hv=q[2,:,:] # u = where(h>0.0, hu/h, 0.) # v = where(h>0.0, hv/h, 0.) # g = 9.8 # speed = np.sqrt(u**2 +v**2) # froude = speed/((g*h)**(1.2)) # return froude # def blocksize(current_data): # from numpy import ma, where, sqrt, log10 # q = current_data.q # h=q[0,:,:] # hu=q[1,:,:] # hv=q[2,:,:] # u = where(h>0.0, hu/h, 0.) # v = where(h>0.0, hv/h, 0.) # speed = np.sqrt(u**2 +v**2) #Speed calc, same as above # n = 0.04 #Manning's n # g = 9.8 #gravity idiot # cf = where(h>0.0, (g*n**2)/(h**(1./3)), 0.) # stress = 1000*cf*(speed**2) # tc = 0.15*((0.02)**(1./4)) #need to choose a slope here, sooooo 0.02 # blocksize = stress/(tc*g*1700) # return blocksize #####----------------------------------------- # Lake (depth) #----------------------------------------- # plotfigure = plotdata.new_plotfigure(name='lake_depth', figno=1) plotfigure.show = True plotfigure.kwargs = {'figsize': [15, 15]} # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes('Depth') #plotaxes.title = 'Water Surface' plotaxes.scaled = True plotaxes.xlimits = [93.0, 95.6] plotaxes.ylimits = [28.0, 30.0] # Water plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') #plotitem.plot_var = geoplot.surface plotitem.plot_var = geoplot.depth #variable to plot plotitem.pcolor_cmap = geoplot.custom_river plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 200 plotitem.add_colorbar = True #turn off for making movies plotitem.amr_celledges_show = [0] plotitem.amr_patchedges_show = [0] # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.land #plotitem.pcolor_cmap = geoplot.blank plotitem.pcolor_cmap = geoplot.bw_colormap plotitem.pcolor_cmin = 2000.0 plotitem.pcolor_cmax = 6000.0 #plotitem.add_colorbar = True #turn off for making movies plotitem.amr_celledges_show = [0] #plotaxes.afteraxes = addgauges #####----------------------------------------- # Lake (speed) #----------------------------------------- # plotfigure = plotdata.new_plotfigure(name='lake_speed', figno=2) plotfigure.show = True plotfigure.kwargs = {'figsize': [15, 15]} # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes('Speed') #plotaxes.title = 'Water Surface' plotaxes.scaled = True plotaxes.xlimits = [93, 94.96] plotaxes.ylimits = [28.96, 29.77] # speed plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') #plotitem.plot_var = geoplot.surface plotitem.plot_var = speed plotitem.pcolor_cmap = geoplot.custom_river plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 80 plotitem.add_colorbar = True #turn off for making movies plotitem.amr_celledges_show = [0] plotitem.amr_patchedges_show = [0] # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.land #plotitem.pcolor_cmap = geoplot.blank plotitem.pcolor_cmap = geoplot.bw_colormap plotitem.pcolor_cmin = 2000.0 plotitem.pcolor_cmax = 6000.0 #plotitem.add_colorbar = True #turn off for making movies plotitem.amr_celledges_show = [0] #plotaxes.afteraxes = addgauges #####----------------------------------------- # Lake (stress) #----------------------------------------- # plotfigure = plotdata.new_plotfigure(name='lake_stress', figno=3) plotfigure.show = True plotfigure.kwargs = {'figsize': [15, 15]} # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes('Stress') #plotaxes.title = 'Water Surface' plotaxes.scaled = True plotaxes.xlimits = [93, 94.96] plotaxes.ylimits = [28.96, 29.77] # stress plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') #plotitem.plot_var = geoplot.surface plotitem.plot_var = stress plotitem.pcolor_cmap = geoplot.custom_river plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 2500 #make this reasonable max stress plotitem.add_colorbar = True #turn off for making movies plotitem.amr_celledges_show = [0] plotitem.amr_patchedges_show = [0] # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.land #plotitem.pcolor_cmap = geoplot.blank plotitem.pcolor_cmap = geoplot.bw_colormap plotitem.pcolor_cmin = 2000.0 plotitem.pcolor_cmax = 6000.0 #plotitem.add_colorbar = True #turn off for making movies plotitem.amr_celledges_show = [0] #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format #plotdata.print_framenos = np.arange(0,5,1) # list of frames to print #plotdata.print_framenos = [9] #frame is a timestep, so this is the way #plotdata.print_gaugenos = [1,2,3,4] # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = False # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = False # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata
def setplot(plotdata=None): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. """ from clawpack.visclaw import colormaps, geoplot from numpy import linspace if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() plotdata.clearfigures() # clear any old figures,axes,items data plotdata.format = 'ascii' # 'ascii' or 'binary' to match setrun.py # To plot gauge locations on pcolor or contour plot, use this as # an afteraxis function: def addgauges(current_data): from clawpack.visclaw import gaugetools gaugetools.plot_gauge_locations(current_data.plotdata, \ gaugenos='all', format_string='ko', add_labels=True) #----------------------------------------- # Figure for surface #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='Surface', figno=0) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes('pcolor') plotaxes.title = 'Surface' plotaxes.scaled = True def fixup(current_data): import pylab addgauges(current_data) t = current_data.t t = t / 3600. # hours pylab.title('Surface at %4.2f hours' % t, fontsize=20) pylab.xticks(fontsize=15) pylab.yticks(fontsize=15) plotaxes.afteraxes = fixup # Water plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') #plotitem.plot_var = geoplot.surface plotitem.plot_var = geoplot.surface_or_depth plotitem.pcolor_cmap = geoplot.tsunami_colormap plotitem.pcolor_cmin = -0.2 plotitem.pcolor_cmax = 0.2 plotitem.add_colorbar = True plotitem.amr_celledges_show = [0,0,0] plotitem.patchedges_show = 1 # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.land plotitem.pcolor_cmap = geoplot.land_colors plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 100.0 plotitem.add_colorbar = False plotitem.amr_celledges_show = [1,1,0] plotitem.patchedges_show = 1 plotaxes.xlimits = [-120,-60] plotaxes.ylimits = [-60,0] # add contour lines of bathy if desired: plotitem = plotaxes.new_plotitem(plot_type='2d_contour') plotitem.show = False plotitem.plot_var = geoplot.topo plotitem.contour_levels = linspace(-3000,-3000,1) plotitem.amr_contour_colors = ['y'] # color on each level plotitem.kwargs = {'linestyles':'solid','linewidths':2} plotitem.amr_contour_show = [1,0,0] plotitem.celledges_show = 0 plotitem.patchedges_show = 0 #----------------------------------------- # Figures for gauges #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='Surface at gauges', figno=300, \ type='each_gauge') plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = 'auto' plotaxes.ylimits = 'auto' plotaxes.title = 'Surface' # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 3 plotitem.plotstyle = 'b-' # Plot topo as green curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.show = False def gaugetopo(current_data): q = current_data.q h = q[0,:] eta = q[3,:] topo = eta - h return topo plotitem.plot_var = gaugetopo plotitem.plotstyle = 'g-' def add_zeroline(current_data): from pylab import plot, legend, xticks, floor, axis, xlabel t = current_data.t gaugeno = current_data.gaugeno if gaugeno == 32412: try: plot(TG32412[:,0], TG32412[:,1], 'r') legend(['GeoClaw','Obs'],loc='lower right') except: pass axis((0,t.max(),-0.3,0.3)) plot(t, 0*t, 'k') n = int(floor(t.max()/3600.) + 2) xticks([3600*i for i in range(n)], ['%i' % i for i in range(n)]) xlabel('time (hours)') plotaxes.afteraxes = add_zeroline #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = 'all' # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata
def setplot(plotdata=None): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of clawpack.visclaw.data.ClawPlotData. Output: a modified version of plotdata. """ if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() from clawpack.visclaw import colormaps plotdata.clearfigures() # clear any old figures,axes,items data plotdata.format = "ascii" # Figure for pcolor plot plotfigure = plotdata.new_plotfigure(name='q[0]', figno=0) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = 'auto' plotaxes.ylimits = 'auto' plotaxes.title = 'q[0]' plotaxes.scaled = True plotaxes.afteraxes = addgauges # Set up for item on these axes: plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = 0 plotitem.pcolor_cmap = colormaps.red_yellow_blue plotitem.pcolor_cmin = -1. plotitem.pcolor_cmax = 1. plotitem.add_colorbar = True plotitem.celledges_show = 0 plotitem.patchedges_show = 0 plotitem.MappedGrid = True plotitem.mapc2p = mapc2p plotitem.show = True # show on plot? # Figure for contour plot plotfigure = plotdata.new_plotfigure(name='contour', figno=1) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = 'auto' plotaxes.ylimits = 'auto' plotaxes.title = 'q[0]' plotaxes.scaled = True # Set up for item on these axes: plotitem = plotaxes.new_plotitem(plot_type='2d_contour') plotitem.plot_var = 0 plotitem.contour_levels = np.linspace(-0.9, 0.9, 10) plotitem.amr_contour_colors = ['k','b'] plotitem.patchedges_show = 1 plotitem.MappedGrid = True plotitem.mapc2p = mapc2p plotitem.show = True # show on plot? # Figure for grids plotfigure = plotdata.new_plotfigure(name='grids', figno=2) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = 'auto' plotaxes.ylimits = 'auto' plotaxes.title = 'grids' plotaxes.scaled = True # Set up for item on these axes: plotitem = plotaxes.new_plotitem(plot_type='2d_patch') plotitem.MappedGrid = True plotitem.mapc2p = mapc2p plotitem.amr_celledges_show = [1,1,0] plotitem.amr_patchedges_show = [1] #----------------------------------------- # Figures for gauges #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='q', figno=300, \ type='each_gauge') plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = 'auto' plotaxes.ylimits = 'auto' plotaxes.title = 'q' # Plot q as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 0 plotitem.plotstyle = 'b-' # Parameters used only when creating html and/or latex hardcopy # e.g., via clawpack.visclaw.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.html_movie = 'JSAnimation' # new style, or "4.x" for old style plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata
def setplot(plotdata=None): """""" if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() # clear any old figures,axes,items data plotdata.clearfigures() plotdata.format = 'ascii' # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir, 'claw.data')) physics = geodata.GeoClawData() physics.read(os.path.join(plotdata.outdir, 'geoclaw.data')) surge_data = geodata.SurgeData() surge_data.read(os.path.join(plotdata.outdir, 'surge.data')) friction_data = geodata.FrictionData() friction_data.read(os.path.join(plotdata.outdir, 'friction.data')) # Load storm track track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track')) # Calculate landfall time # Landfall for Ike in Houston was September 13th, at 7 UTC landfall_dt = datetime.datetime(2008, 9, 13, 7) - \ datetime.datetime(2008, 1, 1, 0) landfall = landfall_dt.days * 24.0 * 60**2 + landfall_dt.seconds # Set afteraxes function def surge_afteraxes(cd): surgeplot.surge_afteraxes(cd, track, landfall, plot_direction=False, kwargs={"markersize": 4}) # Color limits surface_limits = [-5.0, 5.0] speed_limits = [0.0, 3.0] wind_limits = [0, 64] pressure_limits = [935, 1013] friction_bounds = [0.01, 0.04] def gulf_after_axes(cd): # plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96) surge_afteraxes(cd) def latex_after_axes(cd): # plt.subplot_adjust() surge_afteraxes(cd) def friction_after_axes(cd): # plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96) plt.title(r"Manning's $n$ Coefficient") # surge_afteraxes(cd) # ========================================================================== # Plot specifications # ========================================================================== regions = {"Gulf": {"xlimits": (clawdata.lower[0], clawdata.upper[0]), "ylimits": (clawdata.lower[1], clawdata.upper[1]), "figsize": (6.4, 4.8)}, "LaTex Shelf": {"xlimits": (-97.5, -88.5), "ylimits": (27.5, 30.5), "figsize": (8, 2.7)}} for (name, region_dict) in regions.iteritems(): # Surface Figure plotfigure = plotdata.new_plotfigure(name="Surface - %s" % name) plotfigure.kwargs = {"figsize": region_dict['figsize']} plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Surface" plotaxes.xlimits = region_dict["xlimits"] plotaxes.ylimits = region_dict["ylimits"] plotaxes.afteraxes = surge_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # Speed Figure plotfigure = plotdata.new_plotfigure(name="Currents - %s" % name) plotfigure.kwargs = {"figsize": region_dict['figsize']} plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Currents" plotaxes.xlimits = region_dict["xlimits"] plotaxes.ylimits = region_dict["ylimits"] plotaxes.afteraxes = surge_afteraxes surgeplot.add_speed(plotaxes, bounds=speed_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # # Friction field # plotfigure = plotdata.new_plotfigure(name='Friction') plotfigure.show = friction_data.variable_friction and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Gulf']['xlimits'] plotaxes.ylimits = regions['Gulf']['ylimits'] # plotaxes.title = "Manning's N Coefficient" plotaxes.afteraxes = friction_after_axes plotaxes.scaled = True surgeplot.add_friction(plotaxes, bounds=friction_bounds, shrink=0.9) plotaxes.plotitem_dict['friction'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['friction'].colorbar_label = "$n$" # # Hurricane Forcing fields # # Pressure field plotfigure = plotdata.new_plotfigure(name='Pressure') plotfigure.show = surge_data.pressure_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Gulf']['xlimits'] plotaxes.ylimits = regions['Gulf']['ylimits'] plotaxes.title = "Pressure Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_pressure(plotaxes, bounds=pressure_limits) surgeplot.add_land(plotaxes) # Wind field plotfigure = plotdata.new_plotfigure(name='Wind Speed') plotfigure.show = surge_data.wind_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Gulf']['xlimits'] plotaxes.ylimits = regions['Gulf']['ylimits'] plotaxes.title = "Wind Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_wind(plotaxes, bounds=wind_limits) surgeplot.add_land(plotaxes) # ======================================================================== # Figures for gauges # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Gauge Surfaces', figno=300, type='each_gauge') plotfigure.show = True plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [-2, 1] # plotaxes.xlabel = "Days from landfall" # plotaxes.ylabel = "Surface (m)" plotaxes.ylimits = [-1, 5] plotaxes.title = 'Surface' def gauge_afteraxes(cd): axes = plt.gca() surgeplot.plot_landfall_gauge(cd.gaugesoln, axes, landfall=landfall) # Fix up plot - in particular fix time labels axes.set_title('Station %s' % cd.gaugeno) axes.set_xlabel('Days relative to landfall') axes.set_ylabel('Surface (m)') axes.set_xlim([-2, 1]) axes.set_ylim([-1, 5]) axes.set_xticks([-2, -1, 0, 1]) axes.set_xticklabels([r"$-2$", r"$-1$", r"$0$", r"$1$"]) axes.grid(True) plotaxes.afteraxes = gauge_afteraxes # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 3 plotitem.plotstyle = 'b-' # # Gauge Location Plot # def gauge_location_afteraxes(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos='all', format_string='ko', add_labels=True) plotfigure = plotdata.new_plotfigure(name="Gauge Locations") plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge Locations' plotaxes.scaled = True plotaxes.xlimits = [-95.5, -94] plotaxes.ylimits = [29.0, 30.0] plotaxes.afteraxes = gauge_location_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # ----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = [1, 2, 3, 4] # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # parallel plotting return plotdata
def setplot(plotdata=None): # -------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. """ if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() from clawpack.visclaw import colormaps, geoplot plotdata.clearfigures() # clear any old figures,axes,items data plotdata.format = "ascii" # Format of output # plotdata.format = 'netcdf' def set_drytol(current_data): # The drytol parameter is used in masking land and water and # affects what color map is used for cells with small water depth h. # The cell will be plotted as dry if h < drytol. # The best value to use often depends on the application and can # be set here (measured in meters): current_data.user["drytol"] = 1.0e-2 plotdata.beforeframe = set_drytol # To plot gauge locations on pcolor or contour plot, use this as # an afteraxis function: def addgauges(current_data): from clawpack.visclaw import gaugetools gaugetools.plot_gauge_locations(current_data.plotdata, gaugenos="all", format_string="ko", add_labels=True) # ----------------------------------------- # Figure for pcolor plot # ----------------------------------------- plotfigure = plotdata.new_plotfigure(name="pcolor", figno=0) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes("pcolor") plotaxes.title = "Surface" plotaxes.scaled = True # Water plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor") # plotitem.plot_var = geoplot.surface plotitem.plot_var = geoplot.surface_or_depth plotitem.pcolor_cmap = geoplot.tsunami_colormap plotitem.pcolor_cmin = -0.9 plotitem.pcolor_cmax = 0.9 plotitem.add_colorbar = True plotitem.amr_celledges_show = [1, 1, 0] plotitem.amr_patchedges_show = [1] # Land plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor") plotitem.plot_var = geoplot.land plotitem.pcolor_cmap = geoplot.land_colors plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 100.0 plotitem.add_colorbar = False plotitem.amr_celledges_show = [1, 1, 0] plotaxes.xlimits = [-100, 100] plotaxes.ylimits = [-100, 100] # ----------------------------------------- # Figure for zoom # ----------------------------------------- plotfigure = plotdata.new_plotfigure(name="Zoom", figno=10) # plotfigure.show = False plotfigure.kwargs = {"figsize": [12, 7]} # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes("diag zoom") plotaxes.axescmd = "axes([0.0,0.1,0.6,0.6])" plotaxes.title = "On diagonal" plotaxes.scaled = True plotaxes.xlimits = [55, 66] plotaxes.ylimits = [55, 66] plotaxes.afteraxes = addgauges # Water plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor") # plotitem.plot_var = geoplot.surface plotitem.plot_var = geoplot.surface_or_depth plotitem.pcolor_cmap = geoplot.tsunami_colormap plotitem.pcolor_cmin = -0.9 plotitem.pcolor_cmax = 0.9 plotitem.add_colorbar = True plotitem.amr_celledges_show = [1, 1, 0] plotitem.amr_patchedges_show = [1] # Land plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor") plotitem.plot_var = geoplot.land plotitem.pcolor_cmap = geoplot.land_colors plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 100.0 plotitem.add_colorbar = False plotitem.amr_celledges_show = [1, 1, 0] # Add contour lines of bathymetry: plotitem = plotaxes.new_plotitem(plot_type="2d_contour") plotitem.plot_var = geoplot.topo from numpy import arange, linspace plotitem.contour_levels = arange(-10.0, 0.0, 1.0) plotitem.amr_contour_colors = ["k"] # color on each level plotitem.kwargs = {"linestyles": "solid"} plotitem.amr_contour_show = [0, 0, 1] # show contours only on finest level plotitem.celledges_show = 0 plotitem.patchedges_show = 0 plotitem.show = True # Add contour lines of topography: plotitem = plotaxes.new_plotitem(plot_type="2d_contour") plotitem.plot_var = geoplot.topo from numpy import arange, linspace plotitem.contour_levels = arange(0.0, 11.0, 1.0) plotitem.amr_contour_colors = ["g"] # color on each level plotitem.kwargs = {"linestyles": "solid"} plotitem.amr_contour_show = [0, 0, 1] # show contours only on finest level plotitem.celledges_show = 0 plotitem.patchedges_show = 0 plotitem.show = True # Add dashed contour line for shoreline plotitem = plotaxes.new_plotitem(plot_type="2d_contour") plotitem.plot_var = geoplot.topo plotitem.contour_levels = [0.0] plotitem.amr_contour_colors = ["k"] # color on each level plotitem.kwargs = {"linestyles": "dashed"} plotitem.amr_contour_show = [0, 0, 1] # show contours only on finest level plotitem.celledges_show = 0 plotitem.patchedges_show = 0 plotitem.show = True # ----------------------------------------- # Figure for zoom near axis # ----------------------------------------- # plotfigure = plotdata.new_plotfigure(name='Zoom2', figno=11) # now included in same figure as zoom on diagonal # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes("x zoom") plotaxes.show = True plotaxes.axescmd = "axes([0.5,0.1,0.6,0.6])" plotaxes.title = "On x-axis" plotaxes.scaled = True plotaxes.xlimits = [82, 93] plotaxes.ylimits = [-5, 6] plotaxes.afteraxes = addgauges # Water plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor") # plotitem.plot_var = geoplot.surface plotitem.plot_var = geoplot.surface_or_depth plotitem.pcolor_cmap = geoplot.tsunami_colormap plotitem.pcolor_cmin = -0.9 plotitem.pcolor_cmax = 0.9 plotitem.add_colorbar = True plotitem.amr_celledges_show = [1, 1, 0] plotitem.amr_patchedges_show = [1] # Land plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor") plotitem.plot_var = geoplot.land plotitem.pcolor_cmap = geoplot.land_colors plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 100.0 plotitem.add_colorbar = False plotitem.amr_celledges_show = [1, 1, 0] # Add contour lines of bathymetry: plotitem = plotaxes.new_plotitem(plot_type="2d_contour") plotitem.plot_var = geoplot.topo from numpy import arange, linspace plotitem.contour_levels = arange(-10.0, 0.0, 1.0) plotitem.amr_contour_colors = ["k"] # color on each level plotitem.kwargs = {"linestyles": "solid"} plotitem.amr_contour_show = [0, 0, 1] # show contours only on finest level plotitem.celledges_show = 0 plotitem.patchedges_show = 0 plotitem.show = True # Add contour lines of topography: plotitem = plotaxes.new_plotitem(plot_type="2d_contour") plotitem.plot_var = geoplot.topo from numpy import arange, linspace plotitem.contour_levels = arange(0.0, 11.0, 1.0) plotitem.amr_contour_colors = ["g"] # color on each level plotitem.kwargs = {"linestyles": "solid"} plotitem.amr_contour_show = [0, 0, 1] # show contours only on finest level plotitem.celledges_show = 0 plotitem.patchedges_show = 0 plotitem.show = True # Add dashed contour line for shoreline plotitem = plotaxes.new_plotitem(plot_type="2d_contour") plotitem.plot_var = geoplot.topo plotitem.contour_levels = [0.0] plotitem.amr_contour_colors = ["k"] # color on each level plotitem.kwargs = {"linestyles": "dashed"} plotitem.amr_contour_show = [0, 0, 1] # show contours only on finest level plotitem.celledges_show = 0 plotitem.patchedges_show = 0 plotitem.show = True # ----------------------------------------- # Figures for gauges # ----------------------------------------- plotfigure = plotdata.new_plotfigure(name="Surface & topo", figno=300, type="each_gauge") plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = "auto" plotaxes.ylimits = [-2.0, 2.0] plotaxes.title = "Surface" # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type="1d_plot") plotitem.plot_var = 3 plotitem.plotstyle = "b-" # Plot topo as green curve: plotitem = plotaxes.new_plotitem(plot_type="1d_plot") def gaugetopo(current_data): q = current_data.q h = q[0, :] eta = q[3, :] topo = eta - h return topo plotitem.plot_var = gaugetopo plotitem.plotstyle = "g-" def add_zeroline(current_data): from pylab import plot, legend t = current_data.t legend(("surface", "topography"), loc="lower left") plot(t, 0 * t, "k") plotaxes.afteraxes = add_zeroline # ----------------------------------------- # Figure for patches alone # ----------------------------------------- plotfigure = plotdata.new_plotfigure(name="patches", figno=2) plotfigure.show = False # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [0, 1] plotaxes.ylimits = [0, 1] plotaxes.title = "patches" plotaxes.scaled = True # Set up for item on these axes: plotitem = plotaxes.new_plotitem(plot_type="2d_patch") plotitem.amr_patch_bgcolor = ["#ffeeee", "#eeeeff", "#eeffee"] plotitem.amr_celledges_show = [1, 1, 0] plotitem.amr_patchedges_show = [1] # ----------------------------------------- # Scatter plot of surface for radially symmetric # ----------------------------------------- plotfigure = plotdata.new_plotfigure(name="Scatter", figno=200) plotfigure.show = False # Note: will not look very good unless more of domain is refined # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [0.0, 100.0] plotaxes.ylimits = [-1.5, 2.0] plotaxes.title = "Scatter plot of surface" # Set up for item on these axes: plotitem = plotaxes.new_plotitem(plot_type="1d_from_2d_data") plotitem.plot_var = geoplot.surface def q_vs_radius(current_data): from numpy import sqrt x = current_data.x y = current_data.y r = sqrt(x ** 2 + y ** 2) q = current_data.var return r, q plotitem.map_2d_to_1d = q_vs_radius plotitem.plotstyle = "o" plotitem.amr_color = ["b", "r", "g"] plotaxes.afteraxes = "import pylab; pylab.legend(['Level 1','Level 2'])" # ----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = "png" # file format plotdata.print_framenos = "all" # list of frames to print plotdata.print_gaugenos = [4, 5, 104, 105] # list of gauges to print plotdata.print_fignos = "all" # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = "../README.html" # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata
def setplot(plotdata=None): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. """ from clawpack.visclaw import colormaps, geoplot from numpy import linspace if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() plotdata.clearfigures() # clear any old figures,axes,items data plotdata.format = 'binary' def timeformat(t): from numpy import mod hours = int(t / 3600.) tmin = mod(t, 3600.) min = int(tmin / 60.) sec = int(mod(tmin, 60.)) timestr = '%s:%s:%s' % (hours, str(min).zfill(2), str(sec).zfill(2)) return timestr def title_hours(current_data): from pylab import title t = current_data.t timestr = timeformat(t) title('%s after earthquake' % timestr) #----------------------------------------- # Figure for surface #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='Computational domain', figno=0) plotfigure.kwargs = {'figsize': (8, 7)} plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes('pcolor') plotaxes.title = 'Surface' plotaxes.scaled = True def fixup(current_data): import pylab #addgauges(current_data) t = current_data.t t = t / 60. # minutes pylab.title('Surface at %4.2f minutes' % t, fontsize=10) #pylab.xticks(fontsize=15) #pylab.yticks(fontsize=15) #plotaxes.afteraxes = fixup def aa(current_data): from pylab import ticklabel_format, xticks, gca, cos, pi, savefig gca().set_aspect(1. / cos(48 * pi / 180.)) title_hours(current_data) ticklabel_format(useOffset=False) xticks(rotation=20) def aa_topo(current_data): from pylab import contour, plot aa(current_data) #addgauges(current_data) #contour(topo.X, topo.Y, topo.Z, [0], colors='k') def aa_topo_nogauges(current_data): from pylab import contour, plot aa(current_data) #addgauges(current_data) #contour(topo.X, topo.Y, topo.Z, [0], colors='k') #plotaxes.afteraxes = aa_topo plotaxes.afteraxes = aa_topo_nogauges ## Limits below never used for AK, CSZ_L1 or SFL #plotaxes.xlimits = [-129.16,-122.16] #plotaxes.ylimits = [46.0,51.0] # Water plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') #plotitem.plot_var = geoplot.surface plotitem.plot_var = geoplot.surface_or_depth plotitem.pcolor_cmap = geoplot.tsunami_colormap plotitem.pcolor_cmin = cmin plotitem.pcolor_cmax = cmax plotitem.add_colorbar = True plotitem.amr_celledges_show = [0, 0, 0] plotitem.amr_patchedges_show = [0, 0, 0, 0] plotitem.amr_data_show = [1, 1, 1, 1, 1, 0, 0] # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.land plotitem.pcolor_cmap = geoplot.land_colors plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = cmax_land plotitem.add_colorbar = False plotitem.amr_celledges_show = [0] plotitem.amr_patchedges_show = [0, 0, 0, 0] plotitem.amr_data_show = [1, 1, 1, 1, 1, 0, 0] # add contour lines of bathy if desired: plotitem = plotaxes.new_plotitem(plot_type='2d_contour') plotitem.show = False plotitem.plot_var = geoplot.topo plotitem.contour_levels = linspace(-3000, -3000, 1) plotitem.amr_contour_colors = ['y'] # color on each level plotitem.kwargs = {'linestyles': 'solid', 'linewidths': 2} plotitem.amr_contour_show = [1, 0, 0] plotitem.celledges_show = 0 plotitem.patchedges_show = 0 #----------------------------------------- # Figure for fgmax area #----------------------------------------- x1, x2, y1, y2 = [-122.54, -122.4, 47.9, 48.04] plotfigure = plotdata.new_plotfigure(name="fgmax area", figno=11) plotfigure.show = True plotfigure.kwargs = {'figsize': (6, 7)} # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.scaled = False plotaxes.xlimits = [x1 - 0.01, x2 + 0.01] plotaxes.ylimits = [y1 - 0.01, y2 + 0.01] plotaxes.afteraxes = aa_topo # Water plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') #plotitem.plot_var = geoplot.surface plotitem.plot_var = geoplot.surface_or_depth plotitem.pcolor_cmap = geoplot.tsunami_colormap plotitem.pcolor_cmin = cmin plotitem.pcolor_cmax = cmax plotitem.add_colorbar = True plotitem.amr_celledges_show = [0, 0, 0] plotitem.patchedges_show = 0 # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.land plotitem.pcolor_cmap = geoplot.land_colors plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = cmax_land plotitem.add_colorbar = False plotitem.amr_celledges_show = [0] plotitem.patchedges_show = 0 #----------------------------------------- # Figures for gauges #----------------------------------------- time_scale = 1. / 3600. time_label = 'hours' plotfigure = plotdata.new_plotfigure(name='gauge depth', figno=300, \ type='each_gauge') #plotfigure.clf_each_gauge = False def setglimits_depth(current_data): from pylab import xlim, ylim, title, argmax, show, array, ylabel gaugeno = current_data.gaugeno q = current_data.q depth = q[0, :] t = current_data.t g = current_data.plotdata.getgauge(gaugeno) level = g.level maxlevel = max(level) #find first occurrence of the max of levels used by #this gauge and set the limits based on that time argmax_level = argmax(level) xlim(time_scale * array(t[argmax_level], t[-1])) ylabel('meters') min_depth = depth[argmax_level:].min() max_depth = depth[argmax_level:].max() ylim(min_depth - 0.5, max_depth + 0.5) title('Gauge %i : Flow Depth (h)\n' % gaugeno + \ 'max(h) = %7.3f, max(level) = %i' %(max_depth,maxlevel)) #show() # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.time_scale = time_scale plotaxes.time_label = time_label # Plot depth as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 0 plotitem.plotstyle = 'b-' ## Set the limits and the title in the function below plotaxes.afteraxes = setglimits_depth plotfigure = plotdata.new_plotfigure(name='gauge surface eta', figno=301, \ type='each_gauge') #plotfigure.clf_each_gauge = False def setglimits_eta(current_data): from pylab import xlim, ylim, title, argmax, show, array, ylabel gaugeno = current_data.gaugeno q = current_data.q eta = q[3, :] t = current_data.t g = current_data.plotdata.getgauge(gaugeno) level = g.level maxlevel = max(level) #find first occurrence of the max of levels used by #this gauge and set the limits based on that time argmax_level = argmax(level) #first occurrence of it xlim(time_scale * array(t[argmax_level], t[-1])) ylabel('meters') min_eta = eta[argmax_level:].min() max_eta = eta[argmax_level:].max() ylim(min_eta - 0.5, max_eta + 0.5) title('Gauge %i : Surface Elevation (eta)\n' % gaugeno + \ 'max(eta) = %7.3f, max(level) = %i' %(max_eta,maxlevel)) #show() # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.time_scale = time_scale plotaxes.time_label = time_label # Plot surface (eta) as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 3 plotitem.plotstyle = 'b-' ## Set the limits and the title in the function below plotaxes.afteraxes = setglimits_eta plotfigure = plotdata.new_plotfigure(name='speed', figno=302, \ type='each_gauge') #plotfigure.clf_each_gauge = False def speed(current_data): from numpy import sqrt, maximum, where q = current_data.q h = q[0, :] hu = q[1, :] hv = q[2, :] s = sqrt(hu**2 + hv**2) / maximum(h, 0.001) s = where(h > 0.001, s, 0.0) return s def setglimits_speed(current_data): from pylab import xlim, ylim, title, argmax, show, array, ylabel gaugeno = current_data.gaugeno s = speed(current_data) t = current_data.t g = current_data.plotdata.getgauge(gaugeno) level = g.level maxlevel = max(level) #find first occurrence of the max of levels used by #this gauge and set the limits based on that time argmax_level = argmax(level) #first occurrence of it xlim(time_scale * array(t[argmax_level], t[-1])) ylabel('meters/sec') min_speed = s[argmax_level:].min() max_speed = s[argmax_level:].max() ylim(min_speed - 0.5, max_speed + 0.5) title('Gauge %i : Speed (s)\n' % gaugeno + \ 'max(s) = %7.3f, max(level) = %i' %(max_speed,maxlevel)) #show() # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.time_scale = time_scale plotaxes.time_label = time_label # Plot speed (s) as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = speed plotitem.plotstyle = 'b-' ## Set the limits and the title in the function below plotaxes.afteraxes = setglimits_speed #----------------------------------------- # Figures for fgmax plots #----------------------------------------- # Note: You need to move fgmax png files into _plots/_other_figures after # creating them, e.g., by running the process_fgmax notebook or script. # The lines below just create links to these figures from _PlotIndex.html otherfigure = plotdata.new_otherfigure( name='max depth', fname='_other_figures/h_onshore.png') otherfigure = plotdata.new_otherfigure(name='max speed', fname='_other_figures/speed.png') # add additional lines for any other figures you want added to the index. # Plots of timing (CPU and wall time): def make_timing_plots(plotdata): import os from clawpack.visclaw import plot_timing_stats try: timing_plotdir = plotdata.plotdir + '/_timing_figures' os.system('mkdir -p %s' % timing_plotdir) units = { 'comptime': 'hours', 'simtime': 'hours', 'cell': 'billions' } plot_timing_stats.make_plots(outdir=plotdata.outdir, make_pngs=True, plotdir=timing_plotdir, units=units) os.system('cp %s/timing.* %s' % (plotdata.outdir, timing_plotdir)) except: print('*** Error making timing plots') # create a link to this webpage from _PlotIndex.html: otherfigure = plotdata.new_otherfigure(name='timing', fname='_timing_figures/timing.html') otherfigure.makefig = make_timing_plots #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = 'all' # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata
def setplot(plotdata=None): #-------------------------- r"""Setplot function for surge plotting""" if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() plotdata.clearfigures() # clear any old figures,axes,items data plotdata.format = 'binary' fig_num_counter = surgeplot.figure_counter() # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir,'claw.data')) amrdata = amrclaw.AmrclawInputData(clawdata) amrdata.read(os.path.join(plotdata.outdir,'amr.data')) physics = geodata.GeoClawData() physics.read(os.path.join(plotdata.outdir,'geoclaw.data')) surge_data = geodata.SurgeData() surge_data.read(os.path.join(plotdata.outdir,'surge.data')) friction_data = geodata.FrictionData() friction_data.read(os.path.join(plotdata.outdir,'friction.data')) # Load storm track track = surgeplot.track_data(os.path.join(plotdata.outdir,'fort.track')) # Calculate landfall time, off by a day, maybe leap year issue? landfall_dt = datetime.datetime(2008,9,13,7) - datetime.datetime(2008,1,1,0) landfall = (landfall_dt.days - 1.0) * 24.0 * 60**2 + landfall_dt.seconds # Set afteraxes function surge_afteraxes = lambda cd: surgeplot.surge_afteraxes(cd, track, landfall, plot_direction=False) # Color limits surface_range = 5.0 speed_range = 3.0 eta = physics.sea_level if not isinstance(eta,list): eta = [eta] surface_limits = [eta[0]-surface_range,eta[0]+surface_range] # surface_contours = numpy.linspace(-surface_range, surface_range,11) surface_contours = [-5,-4.5,-4,-3.5,-3,-2.5,-2,-1.5,-1,-0.5,0.5,1,1.5,2,2.5,3,3.5,4,4.5,5] surface_ticks = [-5,-4,-3,-2,-1,0,1,2,3,4,5] surface_labels = [str(value) for value in surface_ticks] speed_limits = [0.0,speed_range] speed_contours = numpy.linspace(0.0,speed_range,13) speed_ticks = [0,1,2,3] speed_labels = [str(value) for value in speed_ticks] wind_limits = [0,64] # wind_limits = [-0.002,0.002] pressure_limits = [935,1013] friction_bounds = [0.01,0.04] # vorticity_limits = [-1.e-2,1.e-2] # def pcolor_afteraxes(current_data): # surge_afteraxes(current_data) # surge.plot.gauge_locations(current_data,gaugenos=[6]) def contour_afteraxes(current_data): surge_afteraxes(current_data) def add_custom_colorbar_ticks_to_axes(axes, item_name, ticks, tick_labels=None): axes.plotitem_dict[item_name].colorbar_ticks = ticks axes.plotitem_dict[item_name].colorbar_tick_labels = tick_labels # ========================================================================== # ========================================================================== # Plot specifications # ========================================================================== # ========================================================================== # ======================================================================== # Entire Gulf # ======================================================================== gulf_xlimits = [clawdata.lower[0],clawdata.upper[0]] gulf_ylimits = [clawdata.lower[1],clawdata.upper[1]] gulf_shrink = 0.9 def gulf_after_axes(cd): plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96) surge_afteraxes(cd) # # Surface # plotfigure = plotdata.new_plotfigure(name='Surface - Entire Domain', figno=fig_num_counter.get_counter()) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Surface' plotaxes.scaled = True plotaxes.xlimits = gulf_xlimits plotaxes.ylimits = gulf_ylimits plotaxes.afteraxes = gulf_after_axes surgeplot.add_surface_elevation(plotaxes, plot_type='contourf', contours=surface_contours, shrink=gulf_shrink) surgeplot.add_land(plotaxes,topo_min=-10.0,topo_max=5.0) # surge.plot.add_bathy_contours(plotaxes) if article: plotaxes.plotitem_dict['surface'].add_colorbar = False else: add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks, surface_labels) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [1,1,1,1,1,1,1,1] # # Water Speed # plotfigure = plotdata.new_plotfigure(name='Currents - Entire Domain', figno=fig_num_counter.get_counter()) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents' plotaxes.scaled = True plotaxes.xlimits = gulf_xlimits plotaxes.ylimits = gulf_ylimits plotaxes.afteraxes = gulf_after_axes # Speed surgeplot.add_speed(plotaxes, plot_type='contourf', contours=speed_contours, shrink=gulf_shrink) if article: plotaxes.plotitem_dict['speed'].add_colorbar = False else: add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks, speed_labels) # Land surgeplot.add_land(plotaxes) surgeplot.add_bathy_contours(plotaxes) # # Friction field # plotfigure = plotdata.new_plotfigure(name='Friction', figno=fig_num_counter.get_counter()) plotfigure.show = friction_data.variable_friction and True def friction_after_axes(cd): plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96) plt.title(r"Manning's $n$ Coefficient") # surge_afteraxes(cd) plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = gulf_xlimits plotaxes.ylimits = gulf_ylimits # plotaxes.title = "Manning's N Coefficient" plotaxes.afteraxes = friction_after_axes plotaxes.scaled = True surgeplot.add_friction(plotaxes,bounds=friction_bounds,shrink=0.9) plotaxes.plotitem_dict['friction'].amr_patchedges_show = [0,0,0,0,0,0,0] plotaxes.plotitem_dict['friction'].colorbar_label = "$n$" # ======================================================================== # LaTex Shelf # ======================================================================== latex_xlimits = [-97.5,-88.5] latex_ylimits = [27.5,30.5] latex_shrink = 1.0 def latex_after_axes(cd): if article: plt.subplots_adjust(left=0.07, bottom=0.14, right=1.0, top=0.86) else: plt.subplots_adjust(right=1.0) surge_afteraxes(cd) # # Surface # plotfigure = plotdata.new_plotfigure(name='Surface - LaTex Shelf', figno=fig_num_counter.get_counter()) plotfigure.show = True if article: plotfigure.kwargs = {'figsize':(8,2.7), 'facecolor':'none'} else: plotfigure.kwargs = {'figsize':(9,2.7), 'facecolor':'none'} # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Surface' plotaxes.scaled = True plotaxes.xlimits = latex_xlimits plotaxes.ylimits = latex_ylimits plotaxes.afteraxes = latex_after_axes surgeplot.add_surface_elevation(plotaxes, plot_type='contourf', contours=surface_contours, shrink=latex_shrink) if article: plotaxes.plotitem_dict['surface'].add_colorbar = False # plotaxes.afteraxes = lambda cd: article_latex_after_axes(cd, landfall) else: add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', [-5,-2.5,0,2.5,5.0], ["-5.0","-2.5"," 0"," 2.5"," 5.0"]) # plotaxes.plotitem_dict['surface'].contour_cmap = plt.get_cmap('OrRd') # surge.plot.add_surface_elevation(plotaxes,plot_type='contour') surgeplot.add_land(plotaxes) # plotaxes.plotitem_dict['surface'].amr_patchedges_show = [1,1,1,0,0,0,0] plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0,0,0,0,0,0,0] # plotaxes.plotitem_dict['land'].amr_patchedges_show = [1,1,1,0,0,0,0] plotaxes.plotitem_dict['land'].amr_patchedges_show = [0,0,0,0,0,0,0] # Plot using jet and 0.0 to 5.0 to match figgen generated ADCIRC results # plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0 # plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0 # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet') # # Water Speed # plotfigure = plotdata.new_plotfigure(name='Currents - LaTex Shelf', figno=fig_num_counter.get_counter()) plotfigure.show = True if article: plotfigure.kwargs = {'figsize':(8,2.7), 'facecolor':'none'} else: plotfigure.kwargs = {'figsize':(9,2.7), 'facecolor':'none'} # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents' plotaxes.scaled = True plotaxes.xlimits = latex_xlimits plotaxes.ylimits = latex_ylimits plotaxes.afteraxes = latex_after_axes surgeplot.add_speed(plotaxes, plot_type='contourf', contours=speed_contours, shrink=latex_shrink) if article: plotaxes.plotitem_dict['speed'].add_colorbar = False else: add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks, speed_labels) # surge.plot.add_surface_elevation(plotaxes,plot_type='contour') surgeplot.add_land(plotaxes) # plotaxes.plotitem_dict['speed'].amr_patchedges_show = [1,1,0,0,0,0,0] # plotaxes.plotitem_dict['land'].amr_patchedges_show = [1,1,1,0,0,0,0] plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0,0,0,0,0,0,0] plotaxes.plotitem_dict['land'].amr_patchedges_show = [0,0,0,0,0,0,0] # ======================================================================== # Houston/Galveston # ======================================================================== houston_xlimits = [-(95.0 + 26.0 / 60.0), -(94.0 + 25.0 / 60.0)] houston_ylimits = [29.1, 29.0 + 55.0 / 60.0] houston_shrink = 0.9 def houston_after_axes(cd): if article: plt.subplots_adjust(left=0.05, bottom=0.07, right=0.99, top=0.92) else: plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) # surge.plot.gauge_locations(cd) # # Surface Elevations # plotfigure = plotdata.new_plotfigure(name='Surface - Houston/Galveston', figno=fig_num_counter.get_counter()) plotfigure.show = True # if article: # plotfigure.kwargs['figsize'] = # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Surface' plotaxes.scaled = True plotaxes.xlimits = houston_xlimits plotaxes.ylimits = houston_ylimits plotaxes.afteraxes = houston_after_axes surgeplot.add_surface_elevation(plotaxes, plot_type='contourf', contours=surface_contours, shrink=houston_shrink) if article: plotaxes.plotitem_dict['surface'].add_colorbar = False else: add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks, surface_labels) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0,0,0,0,0,0,0] plotaxes.plotitem_dict['land'].amr_patchedges_show = [0,0,0,0,0,0,0] # surge.plot.add_bathy_contours(plotaxes) # Plot using jet and 0.0 to 5.0 to match figgen generated ADCIRC results # plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0 # plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0 # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet') # # Water Speed # plotfigure = plotdata.new_plotfigure(name='Currents - Houston/Galveston', figno=fig_num_counter.get_counter()) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents' plotaxes.scaled = True plotaxes.xlimits = houston_xlimits plotaxes.ylimits = houston_ylimits plotaxes.afteraxes = houston_after_axes surgeplot.add_speed(plotaxes, plot_type='contourf', contours=speed_contours, shrink=houston_shrink) if article: plotaxes.plotitem_dict['speed'].add_colorbar = False else: add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks, speed_labels) surgeplot.add_land(plotaxes) # surge.plot.add_bathy_contours(plotaxes) # plotaxes.plotitem_dict['speed'].amr_patchedges_show = [1,1,1,1,1,1,1,1] # plotaxes.plotitem_dict['land'].amr_patchedges_show = [1,1,1,1,1,1,1,1] plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0,0,0,0,0,0,0] plotaxes.plotitem_dict['land'].amr_patchedges_show = [0,0,0,0,0,0,0] # ========================== # Hurricane Forcing fields # ========================== # Pressure field plotfigure = plotdata.new_plotfigure(name='Pressure', figno=fig_num_counter.get_counter()) plotfigure.show = surge_data.pressure_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = gulf_xlimits plotaxes.ylimits = gulf_ylimits plotaxes.title = "Pressure Field" plotaxes.afteraxes = gulf_after_axes plotaxes.scaled = True surgeplot.add_pressure(plotaxes, bounds=pressure_limits, shrink=gulf_shrink) surgeplot.add_land(plotaxes) # Wind field plotfigure = plotdata.new_plotfigure(name='Wind Speed', figno=fig_num_counter.get_counter()) plotfigure.show = surge_data.wind_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = gulf_xlimits plotaxes.ylimits = gulf_ylimits plotaxes.title = "Wind Field" plotaxes.afteraxes = gulf_after_axes plotaxes.scaled = True surgeplot.add_wind(plotaxes, bounds=wind_limits, plot_type='pcolor', shrink=gulf_shrink) surgeplot.add_land(plotaxes) # ======================================================================== # Figures for gauges # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \ type='each_gauge') plotfigure.show = True plotfigure.clf_each_gauge = True # plotfigure.kwargs['figsize'] = (16,10) def gauge_after_axes(cd): if cd.gaugeno in [1,2,3,4]: axes = plt.gca() # # Add Kennedy gauge data # kennedy_gauge = kennedy_gauges[gauge_name_trans[cd.gaugeno]] # axes.plot(kennedy_gauge['t'] - seconds2days(date2seconds(gauge_landfall[0])), # kennedy_gauge['mean_water'] + kennedy_gauge['depth'], 'k-', # label='Gauge Data') # Add GeoClaw gauge data geoclaw_gauge = cd.gaugesoln axes.plot(seconds2days(geoclaw_gauge.t - date2seconds(gauge_landfall[1])), geoclaw_gauge.q[3,:] + gauge_surface_offset[0], 'b--', label="GeoClaw") # Add ADCIRC gauge data # ADCIRC_gauge = ADCIRC_gauges[kennedy_gauge['gauge_no']] # axes.plot(seconds2days(ADCIRC_gauge[:,0] - gauge_landfall[2]), # ADCIRC_gauge[:,1] + gauge_surface_offset[1], 'r-.', label="ADCIRC") # Fix up plot axes.set_title('Station %s' % cd.gaugeno) axes.set_xlabel('Days relative to landfall') axes.set_ylabel('Surface (m)') axes.set_xlim([-2,1]) axes.set_ylim([-1,5]) axes.set_xticks([-2,-1,0,1]) axes.set_xticklabels([r"$-2$",r"$-1$",r"$0$",r"$1$"]) axes.grid(True) axes.legend() plt.hold(False) # surge.plot.gauge_afteraxes(cd) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [-2,1] # plotaxes.xlabel = "Days from landfall" # plotaxes.ylabel = "Surface (m)" plotaxes.ylimits = [-1,5] plotaxes.title = 'Surface' plotaxes.afteraxes = gauge_after_axes # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 3 plotitem.plotstyle = 'b-' # ===================== # Gauge Location Plot # ===================== gauge_xlimits = [-95.5, -94] gauge_ylimits = [29.0, 30.0] gauge_location_shrink = 0.75 def gauge_after_axes(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) surgeplot.gauge_locations(cd, gaugenos=[1, 2, 3, 4]) plt.title("Gauge Locations") plotfigure = plotdata.new_plotfigure(name='Gauge Locations', figno=fig_num_counter.get_counter()) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Surface' plotaxes.scaled = True plotaxes.xlimits = gauge_xlimits plotaxes.ylimits = gauge_ylimits plotaxes.afteraxes = gauge_after_axes surgeplot.add_surface_elevation(plotaxes, plot_type='contourf', contours=surface_contours, shrink=gauge_location_shrink) # surge.plot.add_surface_elevation(plotaxes, plot_type="contourf") add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks, surface_labels) surgeplot.add_land(plotaxes) # plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0,0,0,0,0,0,0] # plotaxes.plotitem_dict['surface'].add_colorbar = False # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet') # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('gist_yarg') # plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0 # plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0 plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0,0,0,0,0,0,0] plotaxes.plotitem_dict['land'].amr_patchedges_show = [0,0,0,0,0,0,0] # ============================================================== # Debugging Plots, only really work if using interactive plots # ============================================================== # # Water Velocity Components # plotfigure = plotdata.new_plotfigure(name='Velocity Components - Entire Domain', figno=fig_num_counter.get_counter()) plotfigure.show = False # X-Component plotaxes = plotfigure.new_plotaxes() plotaxes.axescmd = "subplot(121)" plotaxes.title = 'Velocity, X-Component' plotaxes.scaled = True plotaxes.xlimits = gulf_xlimits plotaxes.ylimits = gulf_ylimits plotaxes.afteraxes = gulf_after_axes plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = surgeplot.water_u plotitem.pcolor_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'}) plotitem.pcolor_cmin = -speed_limits[1] plotitem.pcolor_cmax = speed_limits[1] plotitem.colorbar_shrink = gulf_shrink plotitem.add_colorbar = True plotitem.amr_celledges_show = [0,0,0] plotitem.amr_patchedges_show = [1,1,1] surgeplot.add_land(plotaxes) # Y-Component plotaxes = plotfigure.new_plotaxes() plotaxes.axescmd = "subplot(122)" plotaxes.title = 'Velocity, Y-Component' plotaxes.scaled = True plotaxes.xlimits = gulf_xlimits plotaxes.ylimits = gulf_ylimits plotaxes.afteraxes = gulf_after_axes plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = surgeplot.water_v plotitem.pcolor_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'}) plotitem.pcolor_cmin = -speed_limits[1] plotitem.pcolor_cmax = speed_limits[1] plotitem.colorbar_shrink = gulf_shrink plotitem.add_colorbar = True plotitem.amr_celledges_show = [0,0,0] plotitem.amr_patchedges_show = [1,1,1] surgeplot.add_land(plotaxes) # # Depth # plotfigure = plotdata.new_plotfigure(name='Depth - Entire Domain', figno=fig_num_counter.get_counter()) plotfigure.show = False # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'depth' plotaxes.scaled = True plotaxes.xlimits = gulf_xlimits plotaxes.ylimits = gulf_ylimits plotaxes.afteraxes = gulf_after_axes plotitem = plotaxes.new_plotitem(plot_type='2d_imshow') plotitem.plot_var = 0 plotitem.imshow_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'}) plotitem.imshow_cmin = 0 plotitem.imshow_cmax = 100 plotitem.colorbar_shrink = gulf_shrink plotitem.add_colorbar = True plotitem.amr_celledges_show = [0,0,0] plotitem.amr_patchedges_show = [1,1,1,1,1,1,1,1,1] # Surge field plotfigure = plotdata.new_plotfigure(name='Surge Field', figno=fig_num_counter.get_counter()) plotfigure.show = ((surge_data.wind_forcing or surge_data.pressure_forcing) and False) plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = gulf_xlimits plotaxes.ylimits = gulf_ylimits plotaxes.title = "Storm Surge Source Term S" plotaxes.afteraxes = gulf_after_axes plotaxes.scaled = True plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = surgeplot.pressure_field + 1 plotitem.pcolor_cmap = plt.get_cmap('PuBu') plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 1e-3 plotitem.add_colorbar = True plotitem.colorbar_shrink = gulf_shrink plotitem.colorbar_label = "Source Strength" plotitem.amr_celledges_show = [0,0,0] plotitem.amr_patchedges_show = [1,1,1,1,1,0,0] surgeplot.add_land(plotaxes) plotfigure = plotdata.new_plotfigure(name='Friction/Coriolis Source', figno=fig_num_counter.get_counter()) plotfigure.show = False plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = gulf_xlimits plotaxes.ylimits = gulf_ylimits plotaxes.title = "Friction/Coriolis Source" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = surgeplot.pressure_field + 2 plotitem.pcolor_cmap = plt.get_cmap('PuBu') plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 1e-3 plotitem.add_colorbar = True plotitem.colorbar_shrink = gulf_shrink plotitem.colorbar_label = "Source Strength" plotitem.amr_celledges_show = [0,0,0] plotitem.amr_patchedges_show = [1,1,1,1,1,0,0] surgeplot.add_land(plotaxes) #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: if article: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = [54,60,66,72,78,84] # list of frames to print plotdata.print_gaugenos = [1,2,3,4] # list of gauges to print plotdata.print_fignos = [4,5,6,7,10,3,300] # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = False # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? else: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = [1,2,3,4] # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata
def setplot(plotdata=None): if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() plotdata.clearfigures() mapc2p, mx_edge, xp_edge = make_mapc2p(fname_celledges) def mapc2p_km(xc): x_m = mapc2p(xc) x_km = x_m / 1000. # convert to km return x_km def fixticks1(current_data): from pylab import ticklabel_format, grid ticklabel_format(useOffset=False) grid(True) def fixticks(current_data): from pylab import ticklabel_format, plot,grid,ones,sqrt, \ legend,title,ylabel,text ticklabel_format(useOffset=False) # to plot max elevation over entire computation: #if xmax is not None: # plot(xmax, etamax, 'r') #grid(True) hl = 3200. hr = 200. greens = (hl / hr)**(0.25) print('greens = ', greens) #plot(current_data.x, greens*ones(current_data.x.shape),'g--') plot(xlimits, [greens, greens], 'g--', label='$C_g$, Greens Law') ctrans = 2 * sqrt(hl) / (sqrt(hl) + sqrt(hr)) crefl = (sqrt(hl) - sqrt(hr)) / (sqrt(hl) + sqrt(hr)) print('ctrans = ', ctrans) plot(xlimits, [ctrans, ctrans], 'r--', label='$C_T$, Transmission coefficient') legend(loc='upper left') title('') ylabel('meters', fontsize=14) if current_data.frameno == 0: text(-80, -0.4, '$\longrightarrow$', fontsize=20) text(-80, -0.6, 'Incident') h = current_data.q[0, :] mx2 = int(round(len(h) / 2.)) etamax2 = (h[:mx2] - hl).max() print('mx2 = %i, etamax2 = %g' % (mx2, etamax2)) plotfigure = plotdata.new_plotfigure(name='domain', figno=0) plotfigure.kwargs = {'figsize': (7, 6.5)} plotaxes = plotfigure.new_plotaxes() plotaxes.axescmd = 'axes([.1,.4,.8,.5])' #'subplot(211)' plotaxes.xlimits = xlimits #plotaxes.xlimits = [-100e3,-20e3] plotaxes.ylimits = [-1, 3] plotaxes.title = 'Surface displacement' plotaxes.afteraxes = fixticks plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = geoplot.surface plotitem.color = 'b' plotitem.MappedGrid = True plotitem.mapc2p = mapc2p_km plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.show = False plotitem.plot_var = geoplot.topo plotitem.color = 'k' plotitem.MappedGrid = True plotitem.mapc2p = mapc2p_km plotaxes = plotfigure.new_plotaxes() plotaxes.show = False plotaxes.axescmd = 'subplot(312)' plotaxes.xlimits = xlimits #plotaxes.xlimits = [-100e3,-20e3] #plotaxes.ylimits = [-1000, 1000] #plotaxes.title = 'Full depth' plotaxes.title = 'momentum' plotaxes.afteraxes = fixticks1 plotitem.MappedGrid = True plotitem.mapc2p = mapc2p_km plotitem = plotaxes.new_plotitem(plot_type='1d_fill_between') plotitem.show = False plotitem.plot_var = geoplot.surface plotitem.plot_var2 = geoplot.topo plotitem.color = 'b' plotitem.MappedGrid = True plotitem.mapc2p = mapc2p_km plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.show = False plotitem.plot_var = geoplot.topo plotitem.color = 'k' plotitem.MappedGrid = True plotitem.mapc2p = mapc2p_km plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 1 plotitem.color = 'k' plotitem.MappedGrid = True plotitem.mapc2p = mapc2p_km plotaxes = plotfigure.new_plotaxes() plotaxes.axescmd = 'axes([.1,.1,.8,.2])' #'subplot(212)' plotaxes.xlimits = xlimits #plotaxes.xlimits = [-100e3,-20e3] #plotaxes.ylimits = [-1000, 1000] #plotaxes.title = 'Full depth' #plotaxes.title = 'topography' def fix_topo_plot(current_data): from pylab import title, xlabel title('') xlabel('kilometers', fontsize=14) plotaxes.afteraxes = fix_topo_plot plotitem.MappedGrid = True plotitem.mapc2p = mapc2p_km plotitem = plotaxes.new_plotitem(plot_type='1d_plot') #plotitem.show = False plotitem.plot_var = geoplot.topo plotitem.color = 'k' plotitem.MappedGrid = True plotitem.mapc2p = mapc2p_km #---------- plotfigure = plotdata.new_plotfigure(name='shore', figno=1) #plotfigure.kwargs = {'figsize':(9,11)} plotfigure.show = False plotaxes = plotfigure.new_plotaxes() plotaxes.axescmd = 'subplot(211)' plotaxes.xlimits = [0, 80e3] plotaxes.ylimits = [-4, 4] plotaxes.title = 'Zoom on shelf' plotaxes.afteraxes = fixticks plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = geoplot.surface #plotitem = plotaxes.new_plotitem(plot_type='1d_fill_between') #plotitem.plot_var = geoplot.surface #plotitem.plot_var2 = geoplot.topo plotitem.color = 'b' plotitem.MappedGrid = True plotitem.mapc2p = mapc2p_km plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = geoplot.topo plotitem.color = 'k' plotitem.MappedGrid = True plotitem.mapc2p = mapc2p_km plotaxes = plotfigure.new_plotaxes() plotaxes.axescmd = 'subplot(212)' #plotaxes.xlimits = [-2000,2000] plotaxes.xlimits = [-1000, 1000] #plotaxes.ylimits = [-10,40] plotaxes.ylimits = [-20, 60] plotaxes.title = 'Zoom around shore' plotaxes.afteraxes = fixticks plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.show = False plotitem.plot_var = geoplot.surface plotitem = plotaxes.new_plotitem(plot_type='1d_fill_between') plotitem.plot_var = geoplot.surface plotitem.plot_var2 = geoplot.topo plotitem.color = 'b' plotitem.MappedGrid = True plotitem.mapc2p = mapc2p_km plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = geoplot.topo plotitem.color = 'k' plotitem.MappedGrid = True plotitem.mapc2p = mapc2p_km plotdata.printfigs = True # Whether to output figures plotdata.print_format = 'png' # What type of output format plotdata.print_framenos = 'all' # Which frames to output plotdata.print_fignos = 'all' # Which figures to print plotdata.html = True # Whether to create HTML files plotdata.latex = False # Whether to make LaTeX output plotdata.parallel = True return plotdata
def setplot(plotdata=None): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. """ from clawpack.visclaw import colormaps, geoplot from numpy import linspace if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() plotdata.clearfigures() # clear any old figures,axes,items data plotdata.format = 'binary' # 'binary' for adjoint # To plot gauge locations on pcolor or contour plot, use this as # an afteraxis function: def addgauges(current_data): from clawpack.visclaw import gaugetools gaugetools.plot_gauge_locations(current_data.plotdata, \ gaugenos='all', format_string='ko', add_labels=True) def timeformat(t): from numpy import mod hours = int(t / 3600.) tmin = mod(t, 3600.) min = int(tmin / 60.) sec = int(mod(tmin, 60.)) timestr = '%s:%s:%s' % (hours, str(min).zfill(2), str(sec).zfill(2)) return timestr def title_hours(current_data): from pylab import title t = current_data.t timestr = timeformat(t) title('Adjoint time %s before time of interest' % timestr) #----------------------------------------- # Figure for surface #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='Surface', figno=0) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes('pcolor') plotaxes.title = 'Adjoint' plotaxes.scaled = True plotaxes.afteraxes = title_hours # Water plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') #plotitem.plot_var = geoplot.surface plotitem.plot_var = geoplot.surface_or_depth plotitem.pcolor_cmap = geoplot.tsunami_colormap plotitem.pcolor_cmin = -0.0005 plotitem.pcolor_cmax = 0.0005 plotitem.add_colorbar = True plotitem.amr_celledges_show = [0, 0, 0] plotitem.amr_patchedges_show = [0, 1, 0] # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.land plotitem.pcolor_cmap = geoplot.land_colors plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 100.0 plotitem.add_colorbar = False plotitem.amr_celledges_show = [0, 0, 0] plotitem.patchedges_show = 0 plotaxes.xlimits = [-120, -60] plotaxes.ylimits = [-60, 0] # add contour lines of bathy if desired: plotitem = plotaxes.new_plotitem(plot_type='2d_contour') plotitem.show = False plotitem.plot_var = geoplot.topo plotitem.contour_levels = linspace(-3000, -3000, 1) plotitem.amr_contour_colors = ['y'] # color on each level plotitem.kwargs = {'linestyles': 'solid', 'linewidths': 2} plotitem.amr_contour_show = [1, 0, 0] plotitem.celledges_show = 0 plotitem.patchedges_show = 0 #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = 'all' # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata
def setplot(plotdata=None): """""" if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() # clear any old figures,axes,items data plotdata.clearfigures() plotdata.format = 'ascii' # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir, 'claw.data')) physics = geodata.GeoClawData() physics.read(os.path.join(plotdata.outdir, 'geoclaw.data')) surge_data = geodata.SurgeData() surge_data.read(os.path.join(plotdata.outdir, 'surge.data')) friction_data = geodata.FrictionData() friction_data.read(os.path.join(plotdata.outdir, 'friction.data')) # Load storm track track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track')) # Set afteraxes function def surge_afteraxes(cd): surgeplot.surge_afteraxes(cd, track, plot_direction=False, kwargs={"markersize": 4}) # Color limits surface_limits = [-5.0, 5.0] speed_limits = [0.0, 3.0] wind_limits = [0, 64] pressure_limits = [935, 1013] friction_bounds = [0.01, 0.04] def friction_after_axes(cd): plt.title(r"Manning's $n$ Coefficient") # ========================================================================== # Plot specifications # ========================================================================== regions = { "Gulf": { "xlimits": (clawdata.lower[0], clawdata.upper[0]), "ylimits": (clawdata.lower[1], clawdata.upper[1]), "figsize": (6.4, 4.8) }, "LaTex Shelf": { "xlimits": (-90.5, -85.5), "ylimits": (22.5, 24.0), "figsize": (8, 2.7) } } for (name, region_dict) in regions.items(): # Surface Figure plotfigure = plotdata.new_plotfigure(name="Surface - %s" % name) plotfigure.kwargs = {"figsize": region_dict['figsize']} plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Surface" plotaxes.xlimits = region_dict["xlimits"] plotaxes.ylimits = region_dict["ylimits"] plotaxes.afteraxes = surge_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # Speed Figure plotfigure = plotdata.new_plotfigure(name="Currents - %s" % name) plotfigure.kwargs = {"figsize": region_dict['figsize']} plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Currents" plotaxes.xlimits = region_dict["xlimits"] plotaxes.ylimits = region_dict["ylimits"] plotaxes.afteraxes = surge_afteraxes surgeplot.add_speed(plotaxes, bounds=speed_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # # Friction field # plotfigure = plotdata.new_plotfigure(name='Friction') plotfigure.show = friction_data.variable_friction and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Gulf']['xlimits'] plotaxes.ylimits = regions['Gulf']['ylimits'] # plotaxes.title = "Manning's N Coefficient" plotaxes.afteraxes = friction_after_axes plotaxes.scaled = True surgeplot.add_friction(plotaxes, bounds=friction_bounds, shrink=0.9) plotaxes.plotitem_dict['friction'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['friction'].colorbar_label = "$n$" # # Hurricane Forcing fields # # Pressure field plotfigure = plotdata.new_plotfigure(name='Pressure') plotfigure.show = surge_data.pressure_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Gulf']['xlimits'] plotaxes.ylimits = regions['Gulf']['ylimits'] plotaxes.title = "Pressure Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_pressure(plotaxes, bounds=pressure_limits) surgeplot.add_land(plotaxes) # Wind field plotfigure = plotdata.new_plotfigure(name='Wind Speed') plotfigure.show = surge_data.wind_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Gulf']['xlimits'] plotaxes.ylimits = regions['Gulf']['ylimits'] plotaxes.title = "Wind Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_wind(plotaxes, bounds=wind_limits) surgeplot.add_land(plotaxes) # ======================================================================== # Figures for gauges # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Gauge Surfaces', figno=300, type='each_gauge') plotfigure.show = True plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [-2, 1] # plotaxes.xlabel = "Days from landfall" # plotaxes.ylabel = "Surface (m)" plotaxes.ylimits = [-1, 5] plotaxes.title = 'Surface' def gauge_afteraxes(cd): axes = plt.gca() surgeplot.plot_landfall_gauge(cd.gaugesoln, axes) # Fix up plot - in particular fix time labels axes.set_title('Station %s' % cd.gaugeno) axes.set_xlabel('Days relative to landfall') axes.set_ylabel('Surface (m)') axes.set_xlim([-2, 1]) axes.set_ylim([-1, 5]) axes.set_xticks([-2, -1, 0, 1]) axes.set_xticklabels([r"$-2$", r"$-1$", r"$0$", r"$1$"]) axes.grid(True) plotaxes.afteraxes = gauge_afteraxes # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') # plotitem.plot_var = 3 # plotitem.plotstyle = 'b-' # # Gauge Location Plot # def gauge_location_afteraxes(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos='all', format_string='ko', add_labels=True) plotfigure = plotdata.new_plotfigure(name="Gauge Locations") plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge Locations' plotaxes.scaled = True plotaxes.xlimits = [-95.5, -94] plotaxes.ylimits = [29.0, 30.0] plotaxes.afteraxes = gauge_location_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # ----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = [1, 2, 3, 4] # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # parallel plotting return plotdata
def setplot(plotdata=None): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of clawpack.visclaw.data.ClawPlotData. Output: a modified version of plotdata. """ from clawpack.visclaw import colormaps if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() plotdata.clearfigures() # clear any old figures,axes,items data # Figure for density - pcolor plotfigure = plotdata.new_plotfigure(name='Density', figno=0) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [0, 1] plotaxes.ylimits = [0, 1] plotaxes.title = 'Density' plotaxes.scaled = True plotaxes.afteraxes = addgauges # Set up for item on these axes: plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = 0 #plotitem.pcolor_cmap = colormaps.yellow_red_blue plotitem.pcolor_cmin = 0. plotitem.pcolor_cmax = 2. plotitem.add_colorbar = True plotitem.amr_patchedges_show = [0] plotitem.amr_celledges_show = [0] # Figure for density - Schlieren plotfigure = plotdata.new_plotfigure(name='Schlieren', figno=1) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [0, 1] plotaxes.ylimits = [0, 1] plotaxes.title = 'Density' plotaxes.scaled = True # so aspect ratio is 1 # Set up for item on these axes: plotitem = plotaxes.new_plotitem(plot_type='2d_schlieren') plotitem.schlieren_cmin = 0.0 plotitem.schlieren_cmax = 1.0 plotitem.plot_var = 0 plotitem.add_colorbar = False # Figure for grid cells plotfigure = plotdata.new_plotfigure(name='cells', figno=2) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [0, 1] plotaxes.ylimits = [0, 1] plotaxes.title = 'Grid patches' plotaxes.scaled = True # Set up for item on these axes: plotitem = plotaxes.new_plotitem(plot_type='2d_patch') plotitem.amr_patch_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee'] plotitem.amr_celledges_show = [1, 0] plotitem.amr_patchedges_show = [1] #----------------------------------------- # Figures for gauges #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='q', figno=300, \ type='each_gauge') plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [0, 1] plotaxes.ylimits = [0, 1] plotaxes.title = 'Density' # Plot q as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 0 plotitem.plotstyle = 'b-' #----------------------------------------- # Plots of timing (CPU and wall time): def make_timing_plots(plotdata): from clawpack.visclaw import plot_timing_stats import os, sys try: timing_plotdir = plotdata.plotdir + '/_timing_figures' os.system('mkdir -p %s' % timing_plotdir) # adjust units for plots based on problem: units = { 'comptime': 'seconds', 'simtime': 'dimensionless', 'cell': 'millions' } plot_timing_stats.make_plots(outdir=plotdata.outdir, make_pngs=True, plotdir=timing_plotdir, units=units) except: print('*** Error making timing plots') otherfigure = plotdata.new_otherfigure(name='timing plots', fname='_timing_figures/timing.html') otherfigure.makefig = make_timing_plots #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via clawpack.visclaw.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.html_movie = 'JSAnimation' # new style, or "4.x" for old style plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata
def setplot(plotdata=None): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. """ from clawpack.visclaw import colormaps, geoplot from numpy import linspace if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() plotdata.clearfigures() # clear any old figures,axes,items data plotdata.format = 'ascii' # 'ascii', 'binary', 'netcdf' # To plot gauge locations on pcolor or contour plot, use this as # an afteraxis function: def addgauges(current_data): from clawpack.visclaw import gaugetools gaugetools.plot_gauge_locations(current_data.plotdata, \ gaugenos='all', format_string='ko', add_labels=True) # To add title with time format hours:minutes:seconds... def title_hours(current_data): from pylab import title, mod t = current_data.t hours = int(t / 3600.) tmin = mod(t, 3600.) min = int(tmin / 60.) tsec = mod(tmin, 60.) sec = int(mod(tmin, 60.)) timestr = '%s:%s:%s' % (hours, str(min).zfill(2), str(sec).zfill(2)) title('%s after earthquake' % timestr) #----------------------------------------- # Figure for surface #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='Surface', figno=0) plotfigure.kwargs = {'figsize': (12, 6)} # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes('pcolor') plotaxes.axescmd = 'subplot(121)' plotaxes.title = 'Surface' plotaxes.scaled = True def fixup(current_data): addgauges(current_data) title_hours(current_data) plotaxes.afteraxes = fixup # Water plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.surface_or_depth plotitem.pcolor_cmap = geoplot.tsunami_colormap plotitem.pcolor_cmin = -0.2 plotitem.pcolor_cmax = 0.2 plotitem.add_colorbar = False plotitem.amr_celledges_show = [0, 0, 0] plotitem.patchedges_show = 1 # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.land plotitem.pcolor_cmap = geoplot.land_colors plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 100.0 plotitem.add_colorbar = False plotitem.amr_celledges_show = [0, 0, 0] plotitem.patchedges_show = 0 plotaxes.xlimits = [-120, -60] plotaxes.ylimits = [-60, 0] # add contour lines of bathy if desired: plotitem = plotaxes.new_plotitem(plot_type='2d_contour') plotitem.show = False plotitem.plot_var = geoplot.topo plotitem.contour_levels = linspace(-3000, -3000, 1) plotitem.amr_contour_colors = ['y'] # color on each level plotitem.kwargs = {'linestyles': 'solid', 'linewidths': 2} plotitem.amr_contour_show = [1, 0, 0] plotitem.celledges_show = 0 plotitem.patchedges_show = 0 #----------------------------------------- # Figure for adjoint flagging #----------------------------------------- # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes('adjoint') plotaxes.axescmd = 'subplot(122)' plotaxes.scaled = True plotaxes.title = 'Adjoint flag' def fixup(current_data): from pylab import title addgauges(current_data) title('Adjoint flagging indicator') plotaxes.afteraxes = fixup def masked_inner_product(current_data): from numpy import ma aux = current_data.aux tol = 1e-15 soln = ma.masked_where(aux[3, :, :] < tol, aux[3, :, :]) return soln plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = masked_inner_product plotitem.pcolor_cmap = colormaps.white_red plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 0.0005 #plotitem.pcolor_cmax = 0.00001 # use for adjoint-error flagging plotitem.add_colorbar = False # doesn't work when adjoint all masked plotitem.colorbar_shrink = 0.75 plotitem.amr_celledges_show = [0, 0, 0] plotitem.amr_data_show = [1, 1, 0] # inner product not computed on finest level plotitem.patchedges_show = 0 # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.land plotitem.pcolor_cmap = geoplot.land_colors plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 100.0 plotitem.add_colorbar = False plotitem.amr_celledges_show = [0, 0, 0] plotitem.patchedges_show = 0 plotaxes.xlimits = [-120, -60] plotaxes.ylimits = [-60, 0] #----------------------------------------- # Figures for gauges #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='Surface at gauges', figno=300, \ type='each_gauge') plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = 'auto' plotaxes.ylimits = 'auto' plotaxes.title = 'Surface' # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 3 plotitem.plotstyle = 'b-' # Plot topo as green curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.show = False def gaugetopo(current_data): q = current_data.q h = q[0, :] eta = q[3, :] topo = eta - h return topo plotitem.plot_var = gaugetopo plotitem.plotstyle = 'g-' def add_zeroline(current_data): from pylab import plot, legend, xticks, floor, axis, xlabel t = current_data.t gaugeno = current_data.gaugeno if gaugeno == 32412: try: plot(TG32412[:, 0], TG32412[:, 1], 'r') legend(['GeoClaw', 'Obs'], loc='lower right') except: pass axis((0, t.max(), -0.3, 0.3)) plot(t, 0 * t, 'k') n = int(floor(t.max() / 3600.) + 2) xticks([3600 * i for i in range(n)], ['%i' % i for i in range(n)]) xlabel('time (hours)') plotaxes.afteraxes = add_zeroline #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = 'all' # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata
def setplot(plotdata=None): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. """ if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() plotdata.clearfigures() # clear any old figures,axes,items data # Figure for q[0] plotfigure = plotdata.new_plotfigure(name='q[0]', figno=0) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [0,1.5] plotaxes.ylimits = [-2.,4.] plotaxes.title = 'q[0]' # Set up for item on these axes: plotitem = plotaxes.new_plotitem(plot_type='1d') plotitem.plot_var = 0 plotitem.plotstyle = '-' plotitem.color = 'b' plotitem.show = True # show on plot? # Figure for q[1] plotfigure = plotdata.new_plotfigure(name='q[1]', figno=1) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = 'auto' plotaxes.ylimits = 'auto' plotaxes.title = 'q[1]' # Set up for item on these axes: plotitem = plotaxes.new_plotitem(plot_type='1d') plotitem.plot_var = 1 plotitem.plotstyle = '-' plotitem.color = 'b' plotitem.show = True # show on plot? # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata
def setplot(plotdata=None, bathy_location=0.15, bathy_angle=0.0, bathy_left=-1.0, bathy_right=-0.2): """Setup the plotting data objects. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. returns plotdata object """ if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir, 'claw.data')) multilayer_data = clawpack.geoclaw.data.MultilayerData() multilayer_data.read(os.path.join(plotdata.outdir, 'multilayer.data')) def transform_c2p(x, y, x0, y0, theta): return ((x+x0)*np.cos(theta) - (y+y0)*np.sin(theta), (x+x0)*np.sin(theta) + (y+y0)*np.cos(theta)) def transform_p2c(x, y, x0, y0, theta): return (x*np.cos(theta) + y*np.sin(theta) - x0, -x*np.sin(theta) + y*np.cos(theta) - y0) # Setup bathymetry reference lines with open(os.path.join(plotdata.outdir, "bathy_geometry.data"), 'r') \ as bathy_geometry_file: bathy_location = float(bathy_geometry_file.readline()) bathy_angle = float(bathy_geometry_file.readline()) x = [0.0, 0.0] y = [0.0, 1.0] x1, y1 = transform_c2p(x[0], y[0], bathy_location, 0.0, bathy_angle) x2, y2 = transform_c2p(x[1], y[1], bathy_location, 0.0, bathy_angle) if abs(x1 - x2) < 10**-3: x = [x1, x1] y = [clawdata.lower[1], clawdata.upper[1]] else: m = (y1 - y2) / (x1 - x2) x[0] = (clawdata.lower[1] - y1) / m + x1 y[0] = clawdata.lower[1] x[1] = (clawdata.upper[1] - y1) / m + x1 y[1] = clawdata.upper[1] ref_lines = [((x[0], y[0]), (x[1], y[1]))] plotdata.clearfigures() plotdata.save_frames = False # ======================================================================== # Generic helper functions def pcolor_afteraxes(current_data): bathy_ref_lines(current_data) def contour_afteraxes(current_data): axes = plt.gca() pos = -80.0 * (23e3 / 180) + 500e3 - 5e3 axes.plot([pos, pos], [-300e3, 300e3], 'b', [pos-5e3, pos-5e3], [-300e3, 300e3], 'y') wind_contours(current_data) bathy_ref_lines(current_data) def profile_afteraxes(current_data): pass def bathy_ref_lines(current_data): axes = plt.gca() for ref_line in ref_lines: x1 = ref_line[0][0] y1 = ref_line[0][1] x2 = ref_line[1][0] y2 = ref_line[1][1] axes.plot([x1, x2], [y1, y2], 'y--', linewidth=1) # ======================================================================== # Axis limits xlimits = [-0.5, 0.5] ylimits = [-0.5, 0.5] eta = [multilayer_data.eta[0], multilayer_data.eta[1]] top_surface_limits = [eta[0] - 0.03, eta[0] + 0.03] internal_surface_limits = [eta[1] - 0.015, eta[1] + 0.015] top_speed_limits = [0.0, 0.1] internal_speed_limits = [0.0, 0.03] # ======================================================================== # Surface Elevations plotfigure = plotdata.new_plotfigure(name='Surface') plotfigure.show = True plotfigure.kwargs = {'figsize': (14, 4)} # Top surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Top Surface' plotaxes.axescmd = 'subplot(1, 2, 1)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = pcolor_afteraxes ml_plot.add_surface_elevation(plotaxes,1,bounds=top_surface_limits) # ml_plot.add_surface_elevation(plotaxes,1,bounds=[-0.06,0.06]) # ml_plot.add_surface_elevation(plotaxes,1) ml_plot.add_land(plotaxes, 1) # Bottom surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Internal Surface' plotaxes.axescmd = 'subplot(1,2,2)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = pcolor_afteraxes # ml_plot.add_surface_elevation(plotaxes,2,bounds=[-300-0.5,-300+0.5]) ml_plot.add_surface_elevation(plotaxes,2,bounds=internal_surface_limits) # ml_plot.add_surface_elevation(plotaxes,2) ml_plot.add_land(plotaxes, 2) # ======================================================================== # Depths # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Depths', figno=42) plotfigure.show = False plotfigure.kwargs = {'figsize':(14,4)} # Top surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Top Layer Depth' plotaxes.axescmd = 'subplot(1,2,1)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = pcolor_afteraxes ml_plot.add_layer_depth(plotaxes,1,bounds=[-0.1,1.1]) ml_plot.add_land(plotaxes, 1) # Bottom surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Bottom Layer Depth' plotaxes.axescmd = 'subplot(1,2,2)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = pcolor_afteraxes ml_plot.add_layer_depth(plotaxes,2,bounds=[-0.1,0.7]) ml_plot.add_land(plotaxes, 2) # ======================================================================== # Water Speed plotfigure = plotdata.new_plotfigure(name='speed') plotfigure.show = True plotfigure.kwargs = {'figsize': (14, 4)} # Top layer speed plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents - Top Layer' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(1, 2, 1)' plotaxes.afteraxes = pcolor_afteraxes ml_plot.add_speed(plotaxes, 1, bounds=top_speed_limits) ml_plot.add_land(plotaxes, 1) # Bottom layer speed plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents - Bottom Layer' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(1,2,2)' plotaxes.afteraxes = pcolor_afteraxes # add_speed(plotaxes,2,bounds=[0.0,1e-10]) ml_plot.add_speed(plotaxes,2,bounds=internal_speed_limits) # add_speed(plotaxes,2) ml_plot.add_land(plotaxes, 2) # Individual components plotfigure = plotdata.new_plotfigure(name='speed_components',figno=401) plotfigure.show = False plotfigure.kwargs = {'figsize':(14,14)} # Top layer plotaxes = plotfigure.new_plotaxes() plotaxes.title = "X-Velocity - Top Layer" plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(2,2,1)' plotaxes.afteraxes = pcolor_afteraxes # add_x_velocity(plotaxes,1,bounds=[-1e-10,1e-10]) ml_plot.add_x_velocity(plotaxes,1) ml_plot.add_land(plotaxes, 1) plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Y-Velocity - Top Layer" plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(2,2,2)' plotaxes.afteraxes = pcolor_afteraxes # add_y_velocity(plotaxes,1,bounds=[-0.000125,0.000125]) ml_plot.add_y_velocity(plotaxes,1) ml_plot.add_land(plotaxes, 1) # Bottom layer plotaxes = plotfigure.new_plotaxes() plotaxes.title = "X-Velocity - Bottom Layer" plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(2,2,3)' plotaxes.afteraxes = pcolor_afteraxes # add_x_velocity(plotaxes,2,bounds=[-1e-10,1e-10]) ml_plot.add_x_velocity(plotaxes,2) ml_plot.add_land(plotaxes, 2) plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Y-Velocity - Bottom Layer" plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(2,2,4)' plotaxes.afteraxes = pcolor_afteraxes # add_y_velocity(plotaxes,2,bounds=[-0.8e-6,.8e-6]) ml_plot.add_y_velocity(plotaxes,2) ml_plot.add_land(plotaxes, 2) # ======================================================================== # Profile Plots # Note that these are not currently plotted by default - set # `plotfigure.show = True` is you want this to be plotted plotfigure = plotdata.new_plotfigure(name='profile') plotfigure.show = False # Top surface plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = xlimits plotaxes.ylimits = [-1.1, 0.1] plotaxes.title = "Profile of depth" plotaxes.afteraxes = profile_afteraxes slice_index = 30 # Internal surface def bathy_profile(current_data): return current_data.x[:, slice_index], b(current_data)[:, slice_index] def lower_surface(current_data): if multilayer_data.init_type == 2: return current_data.x[:, slice_index], \ eta2(current_data)[:, slice_index] elif multilayer_data.init_type == 6: return current_data.y[slice_index, :], \ eta2(current_data)[slice_index, :] def upper_surface(current_data): if multilayer_data.init_type == 2: return current_data.x[:, slice_index], \ eta1(current_data)[:, slice_index] elif multilayer_data.init_type == 6: return current_data.y[slice_index, :], \ eta1(current_data)[slice_index, :] def top_speed(current_data): if multilayer_data.init_type == 2: return current_data.x[:, slice_index], \ water_u1(current_data)[:, slice_index] elif multilayer_data.init_type == 6: return current_data.y[slice_index, :], \ water_u1(current_data)[slice_index, :] def bottom_speed(current_data): if multilayer_data.init_type == 2: return current_data.x[:, slice_index], \ water_u2(current_data)[:, slice_index] elif multilayer_data.init_type == 6: return current_data.y[slice_index, :], \ water_u2(current_data)[slice_index, :] # Bathy plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data') plotitem.map_2d_to_1d = bathy_profile plotitem.plot_var = 0 plotitem.amr_plotstyle = ['-', '+', 'x'] plotitem.color = 'k' plotitem.show = True # Internal Interface plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data') plotitem.map_2d_to_1d = lower_surface plotitem.plot_var = 7 plotitem.amr_plotstyle = ['-', '+', 'x'] plotitem.color = 'b' plotitem.show = True # Upper Interface plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data') plotitem.map_2d_to_1d = upper_surface plotitem.plot_var = 6 plotitem.amr_plotstyle = ['-', '+', 'x'] plotitem.color = (0.2, 0.8, 1.0) plotitem.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Y-Velocity' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = pcolor_afteraxes # Water # plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') # # plotitem.plot_var = geoplot.surface # plotitem.plot_var = water_v # plotitem.pcolor_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'}) # # plotitem.pcolor_cmin = -1.e-10 # # plotitem.pcolor_cmax = 1.e-10 # # plotitem.pcolor_cmin = -2.5 # -3.0 # # plotitem.pcolor_cmax = 2.5 # 3.0 # plotitem.add_colorbar = True # plotitem.amr_celledges_show = [0,0,0] # plotitem.amr_patchedges_show = [1,1,1] # Land ml_plot.add_land(plotaxes, 1) # ======================================================================== # Contour plot for surface # ======================================================================== plotfigure = plotdata.new_plotfigure(name='contour_surface',figno=15) plotfigure.show = False plotfigure.kwargs = {'figsize':(14,4)} # Set up for axes in this figure: # Top Surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Top Surface' plotaxes.axescmd = 'subplot(1,2,1)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = contour_afteraxes ml_plot.add_surface_elevation(plotaxes,plot_type='contour',surface=1,bounds=[-2.5,-1.5,-0.5,0.5,1.5,2.5]) ml_plot.add_land(plotaxes, 1, plot_type='contour') # Internal Surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Internal Surface' plotaxes.axescmd = 'subplot(1,2,2)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = contour_afteraxes ml_plot.add_surface_elevation(plotaxes,plot_type='contour',surface=2,bounds=[-2.5,-1.5,-0.5,0.5,1.5,2.5]) ml_plot.add_land(plotaxes, 2, plot_type='contour') # ======================================================================== # Contour plot for speed # ======================================================================== plotfigure = plotdata.new_plotfigure(name='contour_speed',figno=16) plotfigure.show = False plotfigure.kwargs = {'figsize':(14,4)} # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Current' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = contour_afteraxes # Surface plotitem = plotaxes.new_plotitem(plot_type='2d_contour') plotitem.plot_var = ml_plot.water_speed_depth_ave plotitem.kwargs = {'linewidths':1} # plotitem.contour_levels = [1.0,2.0,3.0,4.0,5.0,6.0] plotitem.contour_levels = [0.5,1.5,3,4.5,6.0] plotitem.amr_contour_show = [1,1,1] plotitem.amr_celledges_show = [0,0,0] plotitem.amr_patchedges_show = [1,1,1] plotitem.amr_contour_colors = 'k' # plotitem.amr_contour_colors = ['r','k','b'] # color on each level # plotitem.amr_grid_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee'] plotitem.show = True # Land plotitem = plotaxes.new_plotitem(plot_type='2d_contour') plotitem.plot_var = geoplot.land plotitem.contour_nlevels = 40 plotitem.contour_min = 0.0 plotitem.contour_max = 100.0 plotitem.amr_contour_colors = ['g'] # color on each level plotitem.amr_patch_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee'] plotitem.amr_celledges_show = 0 plotitem.amr_patchedges_show = 0 plotitem.show = True # ======================================================================== # Grid Cells # ======================================================================== # Figure for grid cells plotfigure = plotdata.new_plotfigure(name='cells', figno=2) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.title = 'Grid patches' plotaxes.scaled = True # Set up for item on these axes: plotitem = plotaxes.new_plotitem(plot_type='2d_patch') plotitem.amr_patch_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee'] plotitem.amr_celledges_show = [0,0,0] plotitem.amr_patchedges_show = [1,1,1] # ======================================================================== # Vorticity Plot # ======================================================================== # plotfigure = plotdata.new_plotfigure(name='vorticity',figno=17) # plotfigure.show = False # plotaxes = plotfigure.new_plotaxes() # plotaxes.title = "Vorticity" # plotaxes.scaled = True # plotaxes.xlimits = xlimits # plotaxes.ylimits = ylimits # plotaxes.afteraxes = pcolor_afteraxes # # # Vorticity # plotitem = plotaxes.new_plotitem(plot_type='2d_imshow') # plotitem.plot_var = 9 # plotitem.imshow_cmap = plt.get_cmap('PRGn') # # plotitem.pcolor_cmap = plt.get_cmap('PuBu') # # plotitem.pcolor_cmin = 0.0 # # plotitem.pcolor_cmax = 6.0 # plotitem.imshow_cmin = -1.e-2 # plotitem.imshow_cmax = 1.e-2 # plotitem.add_colorbar = True # plotitem.amr_celledges_show = [0,0,0] # plotitem.amr_patchedges_show = [1] # # # Land # plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') # plotitem.plot_var = geoplot.land # plotitem.pcolor_cmap = geoplot.land_colors # plotitem.pcolor_cmin = 0.0 # plotitem.pcolor_cmax = 80.0 # plotitem.add_colorbar = False # plotitem.amr_celledges_show = [0,0,0] # ======================================================================== # Figures for gauges # Top plotfigure = plotdata.new_plotfigure(name='Surface & topo', type='each_gauge', figno=301) plotfigure.show = True plotfigure.clf_each_gauge = True plotfigure.kwargs = {'figsize': (14, 4)} # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.axescmd = 'subplot(1, 2, 1)' plotaxes.xlimits = [0.0, 1.0] plotaxes.ylimits = top_surface_limits plotaxes.title = 'Top Surface' # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 6 plotitem.plotstyle = 'b-' # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.axescmd = 'subplot(1, 2, 2)' plotaxes.xlimits = [0.0, 1.0] plotaxes.ylimits = internal_surface_limits plotaxes.title = 'Bottom Surface' # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 7 plotitem.plotstyle = 'b-' # ========================================================================= # Other plots # Gauge Locations - Enable to see where gauges are located def locations_afteraxes(current_data, gaugenos='all'): gaugetools.plot_gauge_locations(current_data.plotdata, gaugenos=gaugenos, format_string='kx', add_labels=True) pcolor_afteraxes(current_data) plotfigure = plotdata.new_plotfigure(name='Gauge Locations') plotfigure.show = False plotfigure.kwargs = {'figsize': (14, 4)} # Top surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Top Surface' plotaxes.axescmd = 'subplot(1, 2, 1)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = locations_afteraxes ml_plot.add_surface_elevation(plotaxes, 1, bounds=top_surface_limits) ml_plot.add_land(plotaxes, 1) # Bottom surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Internal Surface' plotaxes.axescmd = 'subplot(1, 2, 2)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = locations_afteraxes ml_plot.add_surface_elevation(plotaxes, 2, bounds=internal_surface_limits) ml_plot.add_land(plotaxes, 2) # ----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.latex = False # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata
def setplot(plotdata=None): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. """ from clawpack.visclaw import colormaps, geoplot if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() plotdata.clearfigures() # clear any old figures,axes,items data def set_drytol(current_data): # The drytol parameter is used in masking land and water and # affects what color map is used for cells with small water depth h. # The cell will be plotted as dry if h < drytol. # The best value to use often depends on the application and can # be set here (measured in meters): current_data.user["drytol"] = 1.e-3 plotdata.beforeframe = set_drytol #----------------------------------------- # Figure for pcolor plot #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='pcolor', figno=0) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes('pcolor') plotaxes.title = 'Surface' plotaxes.scaled = True # Water plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.surface plotitem.pcolor_cmap = geoplot.tsunami_colormap plotitem.pcolor_cmin = -0.1 plotitem.pcolor_cmax = 0.1 plotitem.add_colorbar = True plotitem.amr_celledges_show = [0, 0, 0] plotitem.patchedges_show = 1 # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.land plotitem.pcolor_cmap = geoplot.land_colors plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 100.0 plotitem.add_colorbar = False plotitem.amr_celledges_show = [0, 0, 0] plotitem.patchedges_show = 1 plotaxes.xlimits = [-2, 2] plotaxes.ylimits = [-2, 2] # Add contour lines of bathymetry: plotitem = plotaxes.new_plotitem(plot_type='2d_contour') plotitem.plot_var = geoplot.topo from numpy import arange, linspace plotitem.contour_levels = linspace(-.1, 0.5, 20) plotitem.amr_contour_colors = ['k'] # color on each level plotitem.kwargs = {'linestyles': 'solid'} plotitem.amr_contour_show = [1] plotitem.celledges_show = 0 plotitem.patchedges_show = 0 plotitem.show = True #----------------------------------------- # Figure for cross section #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='cross-section', figno=1) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [-2, 2] plotaxes.ylimits = [-0.15, 0.3] plotaxes.title = 'Cross section at y=0' def plot_topo_xsec(current_data): from pylab import plot, cos, sin, where, legend, nan t = current_data.t x = linspace(-2, 2, 201) y = 0. B = h0 * (x**2 + y**2) / a**2 - h0 eta1 = sigma * h0 / a**2 * (2. * x * cos(omega * t) + 2. * y * sin(omega * t) - sigma) etatrue = where(eta1 > B, eta1, nan) plot(x, etatrue, 'r', label="true solution", linewidth=2) plot(x, B, 'g', label="bathymetry") ## plot([0],[-1],'kx',label="Level 1") # shouldn't show up in plots, ## plot([0],[-1],'bo',label="Level 2") # but will produced desired legend plot([0], [-1], 'bo', label="Computed") ## need to fix plotstyle legend() plotaxes.afteraxes = plot_topo_xsec plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data') def xsec(current_data): # Return x value and surface eta at this point, along y=0 from pylab import where, ravel x = current_data.x y = ravel(current_data.y) dy = current_data.dy q = current_data.q ij = where((y <= dy / 2.) & (y > -dy / 2.)) x_slice = ravel(x)[ij] eta_slice = ravel(q[3, :, :])[ij] return x_slice, eta_slice plotitem.map_2d_to_1d = xsec plotitem.plotstyle = 'kx' ## need to be able to set amr_plotstyle plotitem.kwargs = {'markersize': 3} plotitem.amr_show = [1] # plot on all levels #----------------------------------------- # Figure for grids alone #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='grids', figno=2) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [-2, 2] plotaxes.ylimits = [-2, 2] plotaxes.title = 'grids' plotaxes.scaled = True # Set up for item on these axes: plotitem = plotaxes.new_plotitem(plot_type='2d_patch') plotitem.amr_patch_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee'] plotitem.amr_celledges_show = [1, 1, 0] plotitem.amr_patchedges_show = [1] #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = [] # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata
def setplot(plotdata=None): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. """ import os import numpy as np import matplotlib.pyplot as plt from clawpack.visclaw import geoplot, gaugetools, colormaps import clawpack.clawutil.data as clawutil import clawpack.amrclaw.data as amrclaw import clawpack.geoclaw.data import clawpack.geoclaw.multilayer.plot as ml_plot if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() from numpy import linspace plotdata.clearfigures() # clear any old figures,axes,items data plotdata.save_frames = False # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir,'claw.data')) amrdata = amrclaw.AmrclawInputData(clawdata) amrdata.read(os.path.join(plotdata.outdir,'amr.data')) geodata = clawpack.geoclaw.data.GeoClawData() geodata.read(os.path.join(plotdata.outdir,'geoclaw.data')) multilayer_data = clawpack.geoclaw.data.MultilayerData() multilayer_data.read(os.path.join(plotdata.outdir,'multilayer.data')) # To plot gauge locations on pcolor or contour plot, use this as # an afteraxis function: def addgauges(current_data): from clawpack.visclaw import gaugetools gaugetools.plot_gauge_locations(current_data.plotdata, \ gaugenos='all', format_string='ko', add_labels=True) # ======================================================================== # Generic helper functions # ======================================================================== def pcolor_afteraxes(current_data): # bathy_ref_lines(current_data) gauge_locations(current_data) def contour_afteraxes(current_data): # gauge_locations(current_data) # m_to_km_labels() plt.hold(True) pos = -80.0 * (23e3 / 180) + 500e3 - 5e3 plt.plot([pos,pos],[-300e3,300e3],'b',[pos-5e3,pos-5e3],[-300e3,300e3],'y') plt.hold(False) wind_contours(current_data) bathy_ref_lines(current_data) def profile_afteraxes(current_data): pass def gauge_locations(current_data,gaugenos='all'): plt.hold(True) gaugetools.plot_gauge_locations(current_data.plotdata, \ gaugenos=gaugenos, format_string='kx', add_labels=True) plt.hold(False) # ======================================================================== # Axis limits # xlimits = [amrdata.xlower,amrdata.xupper] xlimits = [-100.0, 100.0] # ylimits = [amrdata.ylower,amrdata.yupper] ylimits = [-100.0, 100.0] eta = [multilayer_data.eta[0],multilayer_data.eta[1]] top_surface_limits = [eta[0]-10,eta[0]+10] internal_surface_limits = [eta[1]-5,eta[1]+5] depth_limits = [0.0, 0.4] top_speed_limits = [0.0,0.1] internal_speed_limits = [0.0,0.03] # ======================================================================== # Surface Elevations # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Surface', figno=0) plotfigure.show = True plotfigure.kwargs = {'figsize':(14,4)} # Top surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Top Surface' plotaxes.axescmd = 'subplot(1,2,1)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits ml_plot.add_inundation(plotaxes, 1, bounds=depth_limits) ml_plot.add_surface_elevation(plotaxes,1,bounds=top_surface_limits) ml_plot.add_land(plotaxes, 1) # Bottom surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Internal Surface' plotaxes.axescmd = 'subplot(1,2,2)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits ml_plot.add_inundation(plotaxes, 2, bounds=depth_limits) ml_plot.add_surface_elevation(plotaxes,2,bounds=internal_surface_limits) ml_plot.add_colorbar = True ml_plot.add_land(plotaxes, 2) # ======================================================================== # Figure for cross section # ======================================================================== plotfigure = plotdata.new_plotfigure(name='cross-section', figno=4) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.title = 'Cross section at y=0' ml_plot.add_cross_section(plotaxes, 1) ml_plot.add_cross_section(plotaxes, 2) ml_plot.add_land_cross_section(plotaxes) # ======================================================================== # Water Speed # ======================================================================== plotfigure = plotdata.new_plotfigure(name='speed', figno=1) plotfigure.show = False plotfigure.kwargs = {'figsize':(14,4)} # Top layer speed plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents - Top Layer' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(1,2,1)' ml_plot.add_speed(plotaxes,1,bounds=top_speed_limits) ml_plot.add_land(plotaxes, 1) # Bottom layer speed plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents - Bottom Layer' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(1,2,2)' ml_plot.add_speed(plotaxes,2,bounds=internal_speed_limits) ml_plot.add_land(plotaxes, 2) # Individual components plotfigure = plotdata.new_plotfigure(name='speed_components',figno=401) plotfigure.show = False plotfigure.kwargs = {'figsize':(14,14)} # Top layer plotaxes = plotfigure.new_plotaxes() plotaxes.title = "X-Velocity - Top Layer" plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(2,2,1)' ml_plot.add_x_velocity(plotaxes,1) ml_plot.add_land(plotaxes, 1) plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Y-Velocity - Top Layer" plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(2,2,2)' ml_plot.add_y_velocity(plotaxes,1) ml_plot.add_land(plotaxes, 1) # Bottom layer plotaxes = plotfigure.new_plotaxes() plotaxes.title = "X-Velocity - Bottom Layer" plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(2,2,3)' ml_plot.add_x_velocity(plotaxes,2) ml_plot.add_land(plotaxes, 2) plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Y-Velocity - Bottom Layer" plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(2,2,4)' ml_plot.add_y_velocity(plotaxes,2) ml_plot.add_land(plotaxes, 2) #----------------------------------------- # Figures for gauges #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='Surface at gauges', figno=300, \ type='each_gauge') plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = 'auto' plotaxes.ylimits = 'auto' plotaxes.title = 'Surface' # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 3 plotitem.plotstyle = 'b-' # Plot topo as green curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.show = False def gaugetopo(current_data): q = current_data.q h = q[0,:] eta = q[3,:] topo = eta - h return topo plotitem.plot_var = gaugetopo plotitem.plotstyle = 'g-' def add_zeroline(current_data): from pylab import plot, legend, xticks, floor, axis, xlabel t = current_data.t gaugeno = current_data.gaugeno if gaugeno == 32412: try: plot(TG32412[:,0], TG32412[:,1], 'r') legend(['GeoClaw','Obs'],loc='lower right') except: pass axis((0,t.max(),-0.3,0.3)) plot(t, 0*t, 'k') n = int(floor(t.max()/3600.) + 2) xticks([3600*i for i in range(n)], ['%i' % i for i in range(n)]) xlabel('time (hours)') #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = 'all' # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata
def setplot(plotdata=None, bathy_location=0.15, bathy_angle=0.0, bathy_left=-1.0, bathy_right=-0.2): """Setup the plotting data objects. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. returns plotdata object """ if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir, 'claw.data')) multilayer_data = clawpack.geoclaw.data.MultilayerData() multilayer_data.read(os.path.join(plotdata.outdir, 'multilayer.data')) def transform_c2p(x, y, x0, y0, theta): return ((x + x0) * np.cos(theta) - (y + y0) * np.sin(theta), (x + x0) * np.sin(theta) + (y + y0) * np.cos(theta)) def transform_p2c(x, y, x0, y0, theta): return (x * np.cos(theta) + y * np.sin(theta) - x0, -x * np.sin(theta) + y * np.cos(theta) - y0) # Setup bathymetry reference lines with open(os.path.join(plotdata.outdir, "bathy_geometry.data"), 'r') \ as bathy_geometry_file: bathy_location = float(bathy_geometry_file.readline()) bathy_angle = float(bathy_geometry_file.readline()) x = [0.0, 0.0] y = [0.0, 1.0] x1, y1 = transform_c2p(x[0], y[0], bathy_location, 0.0, bathy_angle) x2, y2 = transform_c2p(x[1], y[1], bathy_location, 0.0, bathy_angle) if abs(x1 - x2) < 10**-3: x = [x1, x1] y = [clawdata.lower[1], clawdata.upper[1]] else: m = (y1 - y2) / (x1 - x2) x[0] = (clawdata.lower[1] - y1) / m + x1 y[0] = clawdata.lower[1] x[1] = (clawdata.upper[1] - y1) / m + x1 y[1] = clawdata.upper[1] ref_lines = [((x[0], y[0]), (x[1], y[1]))] plotdata.clearfigures() plotdata.save_frames = False # ======================================================================== # Generic helper functions def pcolor_afteraxes(current_data): bathy_ref_lines(current_data) def contour_afteraxes(current_data): axes = plt.gca() pos = -80.0 * (23e3 / 180) + 500e3 - 5e3 axes.plot([pos, pos], [-300e3, 300e3], 'b', [pos - 5e3, pos - 5e3], [-300e3, 300e3], 'y') wind_contours(current_data) bathy_ref_lines(current_data) def profile_afteraxes(current_data): pass def bathy_ref_lines(current_data): axes = plt.gca() for ref_line in ref_lines: x1 = ref_line[0][0] y1 = ref_line[0][1] x2 = ref_line[1][0] y2 = ref_line[1][1] axes.plot([x1, x2], [y1, y2], 'y--', linewidth=1) # ======================================================================== # Axis limits xlimits = [-0.5, 0.5] ylimits = [-0.5, 0.5] eta = [multilayer_data.eta[0], multilayer_data.eta[1]] top_surface_limits = [eta[0] - 0.03, eta[0] + 0.03] internal_surface_limits = [eta[1] - 0.015, eta[1] + 0.015] top_speed_limits = [0.0, 0.1] internal_speed_limits = [0.0, 0.03] # ======================================================================== # Surface Elevations plotfigure = plotdata.new_plotfigure(name='Surface') plotfigure.show = True plotfigure.kwargs = {'figsize': (14, 4)} # Top surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Top Surface' plotaxes.axescmd = 'subplot(1, 2, 1)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = pcolor_afteraxes ml_plot.add_surface_elevation(plotaxes, 1, bounds=top_surface_limits) # ml_plot.add_surface_elevation(plotaxes,1,bounds=[-0.06,0.06]) # ml_plot.add_surface_elevation(plotaxes,1) ml_plot.add_land(plotaxes, 1) # Bottom surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Internal Surface' plotaxes.axescmd = 'subplot(1,2,2)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = pcolor_afteraxes # ml_plot.add_surface_elevation(plotaxes,2,bounds=[-300-0.5,-300+0.5]) ml_plot.add_surface_elevation(plotaxes, 2, bounds=internal_surface_limits) # ml_plot.add_surface_elevation(plotaxes,2) ml_plot.add_land(plotaxes, 2) # ======================================================================== # Depths # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Depths', figno=42) plotfigure.show = False plotfigure.kwargs = {'figsize': (14, 4)} # Top surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Top Layer Depth' plotaxes.axescmd = 'subplot(1,2,1)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = pcolor_afteraxes ml_plot.add_layer_depth(plotaxes, 1, bounds=[-0.1, 1.1]) ml_plot.add_land(plotaxes, 1) # Bottom surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Bottom Layer Depth' plotaxes.axescmd = 'subplot(1,2,2)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = pcolor_afteraxes ml_plot.add_layer_depth(plotaxes, 2, bounds=[-0.1, 0.7]) ml_plot.add_land(plotaxes, 2) # ======================================================================== # Water Speed plotfigure = plotdata.new_plotfigure(name='speed') plotfigure.show = True plotfigure.kwargs = {'figsize': (14, 4)} # Top layer speed plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents - Top Layer' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(1, 2, 1)' plotaxes.afteraxes = pcolor_afteraxes ml_plot.add_speed(plotaxes, 1, bounds=top_speed_limits) ml_plot.add_land(plotaxes, 1) # Bottom layer speed plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents - Bottom Layer' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(1,2,2)' plotaxes.afteraxes = pcolor_afteraxes # add_speed(plotaxes,2,bounds=[0.0,1e-10]) ml_plot.add_speed(plotaxes, 2, bounds=internal_speed_limits) # add_speed(plotaxes,2) ml_plot.add_land(plotaxes, 2) # Individual components plotfigure = plotdata.new_plotfigure(name='speed_components', figno=401) plotfigure.show = False plotfigure.kwargs = {'figsize': (14, 14)} # Top layer plotaxes = plotfigure.new_plotaxes() plotaxes.title = "X-Velocity - Top Layer" plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(2,2,1)' plotaxes.afteraxes = pcolor_afteraxes # add_x_velocity(plotaxes,1,bounds=[-1e-10,1e-10]) ml_plot.add_x_velocity(plotaxes, 1) ml_plot.add_land(plotaxes, 1) plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Y-Velocity - Top Layer" plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(2,2,2)' plotaxes.afteraxes = pcolor_afteraxes # add_y_velocity(plotaxes,1,bounds=[-0.000125,0.000125]) ml_plot.add_y_velocity(plotaxes, 1) ml_plot.add_land(plotaxes, 1) # Bottom layer plotaxes = plotfigure.new_plotaxes() plotaxes.title = "X-Velocity - Bottom Layer" plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(2,2,3)' plotaxes.afteraxes = pcolor_afteraxes # add_x_velocity(plotaxes,2,bounds=[-1e-10,1e-10]) ml_plot.add_x_velocity(plotaxes, 2) ml_plot.add_land(plotaxes, 2) plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Y-Velocity - Bottom Layer" plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(2,2,4)' plotaxes.afteraxes = pcolor_afteraxes # add_y_velocity(plotaxes,2,bounds=[-0.8e-6,.8e-6]) ml_plot.add_y_velocity(plotaxes, 2) ml_plot.add_land(plotaxes, 2) # ======================================================================== # Profile Plots # Note that these are not currently plotted by default - set # `plotfigure.show = True` is you want this to be plotted plotfigure = plotdata.new_plotfigure(name='profile') plotfigure.show = False # Top surface plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = xlimits plotaxes.ylimits = [-1.1, 0.1] plotaxes.title = "Profile of depth" plotaxes.afteraxes = profile_afteraxes slice_index = 30 # Internal surface def bathy_profile(current_data): return current_data.x[:, slice_index], b(current_data)[:, slice_index] def lower_surface(current_data): if multilayer_data.init_type == 2: return current_data.x[:, slice_index], \ eta2(current_data)[:, slice_index] elif multilayer_data.init_type == 6: return current_data.y[slice_index, :], \ eta2(current_data)[slice_index, :] def upper_surface(current_data): if multilayer_data.init_type == 2: return current_data.x[:, slice_index], \ eta1(current_data)[:, slice_index] elif multilayer_data.init_type == 6: return current_data.y[slice_index, :], \ eta1(current_data)[slice_index, :] def top_speed(current_data): if multilayer_data.init_type == 2: return current_data.x[:, slice_index], \ water_u1(current_data)[:, slice_index] elif multilayer_data.init_type == 6: return current_data.y[slice_index, :], \ water_u1(current_data)[slice_index, :] def bottom_speed(current_data): if multilayer_data.init_type == 2: return current_data.x[:, slice_index], \ water_u2(current_data)[:, slice_index] elif multilayer_data.init_type == 6: return current_data.y[slice_index, :], \ water_u2(current_data)[slice_index, :] # Bathy plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data') plotitem.map_2d_to_1d = bathy_profile plotitem.plot_var = 0 plotitem.amr_plotstyle = ['-', '+', 'x'] plotitem.color = 'k' plotitem.show = True # Internal Interface plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data') plotitem.map_2d_to_1d = lower_surface plotitem.plot_var = 7 plotitem.amr_plotstyle = ['-', '+', 'x'] plotitem.color = 'b' plotitem.show = True # Upper Interface plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data') plotitem.map_2d_to_1d = upper_surface plotitem.plot_var = 6 plotitem.amr_plotstyle = ['-', '+', 'x'] plotitem.color = (0.2, 0.8, 1.0) plotitem.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Y-Velocity' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = pcolor_afteraxes # Water # plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') # # plotitem.plot_var = geoplot.surface # plotitem.plot_var = water_v # plotitem.pcolor_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'}) # # plotitem.pcolor_cmin = -1.e-10 # # plotitem.pcolor_cmax = 1.e-10 # # plotitem.pcolor_cmin = -2.5 # -3.0 # # plotitem.pcolor_cmax = 2.5 # 3.0 # plotitem.add_colorbar = True # plotitem.amr_celledges_show = [0,0,0] # plotitem.amr_patchedges_show = [1,1,1] # Land ml_plot.add_land(plotaxes, 1) # ======================================================================== # Contour plot for surface # ======================================================================== plotfigure = plotdata.new_plotfigure(name='contour_surface', figno=15) plotfigure.show = False plotfigure.kwargs = {'figsize': (14, 4)} # Set up for axes in this figure: # Top Surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Top Surface' plotaxes.axescmd = 'subplot(1,2,1)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = contour_afteraxes ml_plot.add_surface_elevation(plotaxes, plot_type='contour', surface=1, bounds=[-2.5, -1.5, -0.5, 0.5, 1.5, 2.5]) ml_plot.add_land(plotaxes, 1, plot_type='contour') # Internal Surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Internal Surface' plotaxes.axescmd = 'subplot(1,2,2)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = contour_afteraxes ml_plot.add_surface_elevation(plotaxes, plot_type='contour', surface=2, bounds=[-2.5, -1.5, -0.5, 0.5, 1.5, 2.5]) ml_plot.add_land(plotaxes, 2, plot_type='contour') # ======================================================================== # Contour plot for speed # ======================================================================== plotfigure = plotdata.new_plotfigure(name='contour_speed', figno=16) plotfigure.show = False plotfigure.kwargs = {'figsize': (14, 4)} # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Current' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = contour_afteraxes # Surface plotitem = plotaxes.new_plotitem(plot_type='2d_contour') plotitem.plot_var = ml_plot.water_speed_depth_ave plotitem.kwargs = {'linewidths': 1} # plotitem.contour_levels = [1.0,2.0,3.0,4.0,5.0,6.0] plotitem.contour_levels = [0.5, 1.5, 3, 4.5, 6.0] plotitem.amr_contour_show = [1, 1, 1] plotitem.amr_celledges_show = [0, 0, 0] plotitem.amr_patchedges_show = [1, 1, 1] plotitem.amr_contour_colors = 'k' # plotitem.amr_contour_colors = ['r','k','b'] # color on each level # plotitem.amr_grid_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee'] plotitem.show = True # Land plotitem = plotaxes.new_plotitem(plot_type='2d_contour') plotitem.plot_var = geoplot.land plotitem.contour_nlevels = 40 plotitem.contour_min = 0.0 plotitem.contour_max = 100.0 plotitem.amr_contour_colors = ['g'] # color on each level plotitem.amr_patch_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee'] plotitem.amr_celledges_show = 0 plotitem.amr_patchedges_show = 0 plotitem.show = True # ======================================================================== # Grid Cells # ======================================================================== # Figure for grid cells plotfigure = plotdata.new_plotfigure(name='cells', figno=2) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.title = 'Grid patches' plotaxes.scaled = True # Set up for item on these axes: plotitem = plotaxes.new_plotitem(plot_type='2d_patch') plotitem.amr_patch_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee'] plotitem.amr_celledges_show = [0, 0, 0] plotitem.amr_patchedges_show = [1, 1, 1] # ======================================================================== # Vorticity Plot # ======================================================================== # plotfigure = plotdata.new_plotfigure(name='vorticity',figno=17) # plotfigure.show = False # plotaxes = plotfigure.new_plotaxes() # plotaxes.title = "Vorticity" # plotaxes.scaled = True # plotaxes.xlimits = xlimits # plotaxes.ylimits = ylimits # plotaxes.afteraxes = pcolor_afteraxes # # # Vorticity # plotitem = plotaxes.new_plotitem(plot_type='2d_imshow') # plotitem.plot_var = 9 # plotitem.imshow_cmap = plt.get_cmap('PRGn') # # plotitem.pcolor_cmap = plt.get_cmap('PuBu') # # plotitem.pcolor_cmin = 0.0 # # plotitem.pcolor_cmax = 6.0 # plotitem.imshow_cmin = -1.e-2 # plotitem.imshow_cmax = 1.e-2 # plotitem.add_colorbar = True # plotitem.amr_celledges_show = [0,0,0] # plotitem.amr_patchedges_show = [1] # # # Land # plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') # plotitem.plot_var = geoplot.land # plotitem.pcolor_cmap = geoplot.land_colors # plotitem.pcolor_cmin = 0.0 # plotitem.pcolor_cmax = 80.0 # plotitem.add_colorbar = False # plotitem.amr_celledges_show = [0,0,0] # ======================================================================== # Figures for gauges # Top plotfigure = plotdata.new_plotfigure(name='Surface & topo', type='each_gauge', figno=301) plotfigure.show = True plotfigure.clf_each_gauge = True plotfigure.kwargs = {'figsize': (14, 4)} # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.axescmd = 'subplot(1, 2, 1)' plotaxes.xlimits = [0.0, 1.0] plotaxes.ylimits = top_surface_limits plotaxes.title = 'Top Surface' # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 6 plotitem.plotstyle = 'b-' # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.axescmd = 'subplot(1, 2, 2)' plotaxes.xlimits = [0.0, 1.0] plotaxes.ylimits = internal_surface_limits plotaxes.title = 'Bottom Surface' # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 7 plotitem.plotstyle = 'b-' # ========================================================================= # Other plots # Gauge Locations - Enable to see where gauges are located def locations_afteraxes(current_data, gaugenos='all'): gaugetools.plot_gauge_locations(current_data.plotdata, gaugenos=gaugenos, format_string='kx', add_labels=True) pcolor_afteraxes(current_data) plotfigure = plotdata.new_plotfigure(name='Gauge Locations') plotfigure.show = False plotfigure.kwargs = {'figsize': (14, 4)} # Top surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Top Surface' plotaxes.axescmd = 'subplot(1, 2, 1)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = locations_afteraxes ml_plot.add_surface_elevation(plotaxes, 1, bounds=top_surface_limits) ml_plot.add_land(plotaxes, 1) # Bottom surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Internal Surface' plotaxes.axescmd = 'subplot(1, 2, 2)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = locations_afteraxes ml_plot.add_surface_elevation(plotaxes, 2, bounds=internal_surface_limits) ml_plot.add_land(plotaxes, 2) # ----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.latex = False # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata
def setplot(plotdata=None): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of clawpack.visclaw.data.ClawPlotData. Output: a modified version of plotdata. """ from clawpack.visclaw import colormaps if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() plotdata.clearfigures() # clear any old figures,axes,items data # Figure for pressure # ------------------- plotfigure = plotdata.new_plotfigure(name='Pressure', figno=0) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = 'auto' plotaxes.ylimits = 'auto' plotaxes.title = 'Pressure' plotaxes.scaled = True # so aspect ratio is 1 plotaxes.afteraxes = addgauges # Set up for item on these axes: plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = 0 plotitem.pcolor_cmap = colormaps.blue_yellow_red plotitem.add_colorbar = True plotitem.show = True # show on plot? plotitem.pcolor_cmin = -2.0 plotitem.pcolor_cmax = 2.0 plotitem.amr_patchedges_show = [1,1,1] plotitem.amr_celledges_show = [1,0,0] # Figure for scatter plot # ----------------------- plotfigure = plotdata.new_plotfigure(name='scatter', figno=3) plotfigure.show = (qref_dir is not None) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [0,1.5] plotaxes.ylimits = [-2.,4.] plotaxes.title = 'Scatter plot' # Set up for item on these axes: scatter of 2d data plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data') def p_vs_r(current_data): # Return radius of each grid cell and p value in the cell from pylab import sqrt x = current_data.x y = current_data.y r = sqrt(x**2 + y**2) q = current_data.q p = q[0,:,:] return r,p plotitem.map_2d_to_1d = p_vs_r plotitem.plot_var = 0 plotitem.plotstyle = 'o' plotitem.color = 'b' plotitem.show = True # show on plot? # Set up for item on these axes: 1d reference solution plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.outdir = qref_dir plotitem.plot_var = 0 plotitem.plotstyle = '-' plotitem.color = 'r' plotitem.kwargs = {'linewidth': 2} plotitem.show = True # show on plot? plotaxes.afteraxes = "import pylab; pylab.legend(('2d data', '1d reference solution'))" #----------------------------------------- # Figures for gauges #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='q', figno=300, \ type='each_gauge') plotfigure.clf_each_gauge = True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = 'auto' plotaxes.ylimits = 'auto' plotaxes.title = 'Pressure' plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 0 plotitem.plotstyle = 'b-' # Parameters used only when creating html and/or latex hardcopy # e.g., via clawpack.visclaw.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.html_movie = 'JSAnimation' # new style, or "4.x" for old style plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata
def setplot(plotdata=None): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. """ from clawpack.visclaw import colormaps, geoplot from numpy import linspace if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() plotdata.clearfigures() # clear any old figures,axes,items data plotdata.format = 'binary' def timeformat(t): from numpy import mod hours = int(t / 3600.) tmin = mod(t, 3600.) min = int(tmin / 60.) sec = int(mod(tmin, 60.)) timestr = '%s:%s:%s' % (hours, str(min).zfill(2), str(sec).zfill(2)) return timestr def title_hours(current_data): from pylab import title t = current_data.t timestr = timeformat(t) title('%s after earthquake' % timestr) #----------------------------------------- # Figure for surface #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='Domain and transects', figno=0) plotfigure.kwargs = {'figsize': (11, 7)} plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes('pcolor') #plotaxes.axescmd = 'axes([.1,.4,.8,.5])' plotaxes.axescmd = 'axes([.1,.1,.4,.8])' plotaxes.title = 'Surface' #plotaxes.xlimits = [-122.4, -122.16] #plotaxes.ylimits = [47.4, 47.8] x1_tr1 = -122.29 x2_tr1 = -122.215 y1_tr1 = 47.57 y2_tr1 = 47.705 x1_tr2 = -122.21 x2_tr2 = -122.265 y1_tr2 = 47.4925 y2_tr2 = 47.545 def aa_transects(current_data): from pylab import ticklabel_format, xticks, plot, text, gca, cos, pi title_hours(current_data) ticklabel_format(useOffset=False) xticks(rotation=20) plot([x1_tr1, x2_tr1], [y1_tr1, y2_tr1], 'w') plot([x1_tr2, x2_tr2], [y1_tr2, y2_tr2], 'w') text(x2_tr1 - 0.01, y2_tr1 + 0.005, 'Transect 1', color='w', fontsize=8) text(x1_tr2 - 0.01, y1_tr2 - 0.008, 'Transect 2', color='w', fontsize=8) gca().set_aspect(1. / cos(48 * pi / 180.)) #addgauges(current_data) plotaxes.afteraxes = aa_transects # Water plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') #plotitem.plot_var = geoplot.surface plotitem.plot_var = surface_or_depth_lake plotitem.pcolor_cmap = geoplot.tsunami_colormap plotitem.pcolor_cmin = cmin plotitem.pcolor_cmax = cmax plotitem.add_colorbar = True plotitem.amr_celledges_show = [0, 0, 0] plotitem.amr_patchedges_show = [0, 0, 0, 0] plotitem.amr_data_show = [1, 1, 1, 1, 1, 0, 0] # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.land plotitem.pcolor_cmap = geoplot.land_colors plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = cmax_land plotitem.add_colorbar = False plotitem.amr_celledges_show = [0] plotitem.amr_patchedges_show = [0, 0, 0, 0] plotitem.amr_data_show = [1, 1, 1, 1, 1, 0, 0] # add contour lines of bathy if desired: plotitem = plotaxes.new_plotitem(plot_type='2d_contour') #plotitem.show = False plotitem.plot_var = geoplot.topo plotitem.contour_levels = [sea_level] plotitem.amr_contour_colors = ['g'] # color on each level plotitem.kwargs = {'linestyles': 'solid', 'linewidths': 0.5} plotitem.amr_contour_show = [0, 1, 0, 0] # only on finest level plotitem.celledges_show = 0 plotitem.patchedges_show = 0 #----------------------------------------- # Plots along transect: #----------------------------------------- eta1 = lambda q: q[3, :, :] B1 = lambda q: q[3, :, :] - q[0, :, :] def plot_xsec(current_data): import matplotlib.pyplot as plt import numpy import gridtools from clawpack.pyclaw import Solution framesoln = current_data.framesoln topo_color = [.8, 1, .8] water_color = [.5, .5, 1] plt.figure(0) # Transect 1: plt.axes([.55, .5, .4, .3]) xout = numpy.linspace(x1_tr1, x2_tr1, 1000) yout = numpy.linspace(y1_tr1, y2_tr1, 1000) eta = gridtools.grid_output_2d(framesoln, eta1, xout, yout) topo = gridtools.grid_output_2d(framesoln, B1, xout, yout) eta = numpy.where(eta > topo, eta, numpy.nan) plt.fill_between(yout, eta, topo, color=water_color) plt.fill_between(yout, topo, -10000, color=topo_color) plt.plot(yout, eta, 'b') plt.plot(yout, topo, 'g') plt.plot(yout, sea_level + 0 * topo, 'k--') #plt.xlim(47.5,47.8) plt.ylim(ylim_transects) plt.ylabel('meters') plt.grid(True) timestr = timeformat(framesoln.t) plt.title('Elevation on Transect 1') # Transect 2: plt.axes([.55, .1, .4, .3]) xout = numpy.linspace(x1_tr2, x2_tr2, 1000) yout = numpy.linspace(y1_tr2, y2_tr2, 1000) eta = gridtools.grid_output_2d(framesoln, eta1, xout, yout) topo = gridtools.grid_output_2d(framesoln, B1, xout, yout) eta = numpy.where(eta > topo, eta, numpy.nan) topo_color = [.8, 1, .8] water_color = [.5, .5, 1] plt.fill_between(yout, eta, topo, color=water_color) plt.fill_between(yout, topo, -10000, color=topo_color) plt.plot(yout, eta, 'b') plt.plot(yout, topo, 'g') plt.plot(yout, sea_level + 0 * topo, 'k--') #plt.xlim(47.5,47.8) plt.ylim(ylim_transects) plt.ylabel('meters') plt.grid(True) timestr = timeformat(framesoln.t) plt.title('Elevation on Transect 2') plotdata.afterframe = plot_xsec #----------------------------------------- # Figure for zoomed area #----------------------------------------- # To use, set the limits as desired and set `plotfigure.show = True` x1, x2, y1, y2 = [-122.23, -122.2, 47.69, 47.71] plotfigure = plotdata.new_plotfigure(name="zoomed area", figno=11) plotfigure.show = False plotfigure.kwargs = {'figsize': (8, 7)} # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.scaled = False plotaxes.xlimits = [x1, x2] plotaxes.ylimits = [y1, y2] def aa(current_data): from pylab import ticklabel_format, xticks, gca, cos, pi title_hours(current_data) ticklabel_format(useOffset=False) xticks(rotation=20) gca().set_aspect(1. / cos(48 * pi / 180.)) plotaxes.afteraxes = aa # Water plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') #plotitem.plot_var = geoplot.surface plotitem.plot_var = surface_or_depth_lake plotitem.pcolor_cmap = geoplot.tsunami_colormap plotitem.pcolor_cmin = cmin plotitem.pcolor_cmax = cmax plotitem.add_colorbar = True plotitem.amr_celledges_show = [0, 0, 0] plotitem.patchedges_show = 0 # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.land plotitem.pcolor_cmap = geoplot.land_colors plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = cmax_land plotitem.add_colorbar = False plotitem.amr_celledges_show = [0] plotitem.patchedges_show = 0 #----------------------------------------- # Figures for gauges #----------------------------------------- time_scale = 1. / 3600. time_label = 'hours' plotfigure = plotdata.new_plotfigure(name='gauge depth', figno=300, \ type='each_gauge') #plotfigure.clf_each_gauge = False def setglimits_depth(current_data): from pylab import xlim, ylim, title, argmax, show, array, ylabel gaugeno = current_data.gaugeno q = current_data.q depth = q[0, :] t = current_data.t g = current_data.plotdata.getgauge(gaugeno) level = g.level maxlevel = max(level) #find first occurrence of the max of levels used by #this gauge and set the limits based on that time argmax_level = argmax(level) xlim(time_scale * array(t[argmax_level], t[-1])) ylabel('meters') min_depth = depth[argmax_level:].min() max_depth = depth[argmax_level:].max() ylim(min_depth - 0.5, max_depth + 0.5) title('Gauge %i : Flow Depth (h)\n' % gaugeno + \ 'max(h) = %7.3f, max(level) = %i' %(max_depth,maxlevel)) #show() # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.time_scale = time_scale plotaxes.time_label = time_label # Plot depth as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 0 plotitem.plotstyle = 'b-' ## Set the limits and the title in the function below plotaxes.afteraxes = setglimits_depth plotfigure = plotdata.new_plotfigure(name='gauge surface eta', figno=301, \ type='each_gauge') #plotfigure.clf_each_gauge = False def setglimits_eta(current_data): from pylab import xlim, ylim, title, argmax, show, array, ylabel gaugeno = current_data.gaugeno q = current_data.q eta = q[3, :] t = current_data.t g = current_data.plotdata.getgauge(gaugeno) level = g.level maxlevel = max(level) #find first occurrence of the max of levels used by #this gauge and set the limits based on that time argmax_level = argmax(level) #first occurrence of it xlim(time_scale * array(t[argmax_level], t[-1])) ylabel('meters') min_eta = eta[argmax_level:].min() max_eta = eta[argmax_level:].max() ylim(min_eta - 0.5, max_eta + 0.5) title('Gauge %i : Surface Elevation (eta)\n' % gaugeno + \ 'max(eta) = %7.3f, max(level) = %i' %(max_eta,maxlevel)) #show() # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.time_scale = time_scale plotaxes.time_label = time_label # Plot surface (eta) as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 3 plotitem.plotstyle = 'b-' ## Set the limits and the title in the function below plotaxes.afteraxes = setglimits_eta plotfigure = plotdata.new_plotfigure(name='speed', figno=302, \ type='each_gauge') #plotfigure.clf_each_gauge = False def speed(current_data): from numpy import sqrt, maximum, where q = current_data.q h = q[0, :] hu = q[1, :] hv = q[2, :] s = sqrt(hu**2 + hv**2) / maximum(h, 0.001) s = where(h > 0.001, s, 0.0) return s def setglimits_speed(current_data): from pylab import xlim, ylim, title, argmax, show, array, ylabel gaugeno = current_data.gaugeno s = speed(current_data) t = current_data.t g = current_data.plotdata.getgauge(gaugeno) level = g.level maxlevel = max(level) #find first occurrence of the max of levels used by #this gauge and set the limits based on that time argmax_level = argmax(level) #first occurrence of it xlim(time_scale * array(t[argmax_level], t[-1])) ylabel('meters/sec') min_speed = s[argmax_level:].min() max_speed = s[argmax_level:].max() ylim(min_speed - 0.5, max_speed + 0.5) title('Gauge %i : Speed (s)\n' % gaugeno + \ 'max(s) = %7.3f, max(level) = %i' %(max_speed,maxlevel)) #show() # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.time_scale = time_scale plotaxes.time_label = time_label # Plot speed (s) as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = speed plotitem.plotstyle = 'b-' ## Set the limits and the title in the function below plotaxes.afteraxes = setglimits_speed #----------------------------------------- # Figures for fgmax plots #----------------------------------------- # Note: need to move fgmax png files into _plots after creating with # python run_process_fgmax.py # This just creates the links to these figures... if 0: ### Putting them in _other_figures with the proper name as a link ### Can run process fgmax either before or after setplot now. otherfigure = plotdata.new_otherfigure(name='max depth', fname='_other_figures/%s_%s_h_onshore.png' \ % (params.loc,params.event)) otherfigure = plotdata.new_otherfigure(name='max depth on GE image', fname='_other_figures/%s_%s_h_onshore_GE.png' \ % (params.loc,params.event)) otherfigure = plotdata.new_otherfigure(name='max speed', fname='_other_figures/%s_%s_speed.png' \ % (params.loc,params.event)) # Plots of timing (CPU and wall time): def make_timing_plots(plotdata): import os from clawpack.visclaw import plot_timing_stats try: timing_plotdir = plotdata.plotdir + '/_timing_figures' os.system('mkdir -p %s' % timing_plotdir) units = { 'comptime': 'hours', 'simtime': 'hours', 'cell': 'billions' } plot_timing_stats.make_plots(outdir=plotdata.outdir, make_pngs=True, plotdir=timing_plotdir, units=units) os.system('cp %s/timing.* %s' % (plotdata.outdir, timing_plotdir)) except: print('*** Error making timing plots') otherfigure = plotdata.new_otherfigure(name='timing', fname='_timing_figures/timing.html') otherfigure.makefig = make_timing_plots #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = 'all' # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata
def setplot(plotdata=None): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. """ from clawpack.visclaw import colormaps, geoplot if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() plotdata.clearfigures() # clear any old figures,axes,items data def set_drytol(current_data): # The drytol parameter is used in masking land and water and # affects what color map is used for cells with small water depth h. # The cell will be plotted as dry if h < drytol. # The best value to use often depends on the application and can # be set here (measured in meters): current_data.user["drytol"] = 1.e-3 plotdata.beforeframe = set_drytol #----------------------------------------- # Figure for pcolor plot #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='pcolor', figno=0) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes('pcolor') plotaxes.title = 'Surface' plotaxes.scaled = True # Water plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.surface plotitem.pcolor_cmap = geoplot.tsunami_colormap plotitem.pcolor_cmin = -0.1 plotitem.pcolor_cmax = 0.1 plotitem.add_colorbar = True plotitem.amr_celledges_show = [0,0,0] plotitem.patchedges_show = 1 # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.land plotitem.pcolor_cmap = geoplot.land_colors plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 100.0 plotitem.add_colorbar = False plotitem.amr_celledges_show = [0,0,0] plotitem.patchedges_show = 1 plotaxes.xlimits = [-2,2] plotaxes.ylimits = [-2,2] # Add contour lines of bathymetry: plotitem = plotaxes.new_plotitem(plot_type='2d_contour') plotitem.plot_var = geoplot.topo from numpy import arange, linspace plotitem.contour_levels = linspace(-.1, 0.5, 20) plotitem.amr_contour_colors = ['k'] # color on each level plotitem.kwargs = {'linestyles':'solid'} plotitem.amr_contour_show = [1] plotitem.celledges_show = 0 plotitem.patchedges_show = 0 plotitem.show = True #----------------------------------------- # Figure for cross section #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='cross-section', figno=1) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [-2,2] plotaxes.ylimits = [-0.15,0.3] plotaxes.title = 'Cross section at y=0' def plot_topo_xsec(current_data): from pylab import plot, cos,sin,where,legend,nan t = current_data.t x = linspace(-2,2,201) y = 0. B = h0*(x**2 + y**2)/a**2 - h0 eta1 = sigma*h0/a**2 * (2.*x*cos(omega*t) + 2.*y*sin(omega*t) -sigma) etatrue = where(eta1>B, eta1, nan) plot(x, etatrue, 'r', label="true solution", linewidth=2) plot(x, B, 'g', label="bathymetry") ## plot([0],[-1],'kx',label="Level 1") # shouldn't show up in plots, ## plot([0],[-1],'bo',label="Level 2") # but will produced desired legend plot([0],[-1],'bo',label="Computed") ## need to fix plotstyle legend() plotaxes.afteraxes = plot_topo_xsec plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data') def xsec(current_data): # Return x value and surface eta at this point, along y=0 from pylab import find,ravel x = current_data.x y = current_data.y dy = current_data.dy q = current_data.q ij = find((y <= dy/2.) & (y > -dy/2.)) x_slice = ravel(x)[ij] eta_slice = ravel(q[3,:,:])[ij] return x_slice, eta_slice plotitem.map_2d_to_1d = xsec plotitem.plotstyle = 'kx' ## need to be able to set amr_plotstyle plotitem.kwargs = {'markersize':3} plotitem.amr_show = [1] # plot on all levels #----------------------------------------- # Figure for grids alone #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='grids', figno=2) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [-2,2] plotaxes.ylimits = [-2,2] plotaxes.title = 'grids' plotaxes.scaled = True # Set up for item on these axes: plotitem = plotaxes.new_plotitem(plot_type='2d_patch') plotitem.amr_patch_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee'] plotitem.amr_celledges_show = [1,1,0] plotitem.amr_patchedges_show = [1] #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = [] # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata
def setplot(plotdata=None): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. """ from clawpack.visclaw import colormaps, geoplot from numpy import linspace import math if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() plotdata.clearfigures() # clear any old figures,axes,items data def speed(current_data): from numpy import ma, where, sqrt, log10 drytol = 1e-3 q = current_data.q h = q[0, :, :] hu = q[1, :, :] hv = q[2, :, :] u = where(h > 0.0, hu / h, 0.) v = where(h > 0.0, hv / h, 0.) speed = sqrt(u**2 + v**2) return speed def stress(current_data): from numpy import ma, where, sqrt, log10 q = current_data.q h = q[0, :, :] hu = q[1, :, :] hv = q[2, :, :] u = where(h > 0.0, hu / h, 0.) v = where(h > 0.0, hv / h, 0.) speed = np.sqrt(u**2 + v**2) #Speed calc, same as above n = 0.06 #Manning's n g = 9.8 #gravity cf = where( h > 0.0, (g * n**2) / (h**(1. / 3)), 0. ) #calculate friction coefficient, DONT FORGET THE F*****G PERIOD YOU IDIOT (mike) stress = 1000 * cf * (speed**2) return stress #####----------------------------------------- # Gorge depth #----------------------------------------- # plotfigure = plotdata.new_plotfigure(name='Gorgetesting_depth', figno=21) plotfigure.show = False plotfigure.kwargs = {'figsize': [15, 15]} # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes('Depth') #plotaxes.title = 'Water Surface' plotaxes.scaled = True plotaxes.xlimits = [95.0, 95.45] plotaxes.ylimits = [29.5, 30.0] # Water plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') #plotitem.plot_var = geoplot.surface plotitem.plot_var = geoplot.depth #variable to plot plotitem.pcolor_cmap = geoplot.custom_river plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 300 plotitem.add_colorbar = True #turn off for making movies plotitem.amr_celledges_show = [0] plotitem.amr_patchedges_show = [0] # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.land #plotitem.pcolor_cmap = geoplot.blank plotitem.pcolor_cmap = geoplot.bw_colormap plotitem.pcolor_cmin = 2000.0 plotitem.pcolor_cmax = 6000.0 #plotitem.add_colorbar = True #turn off for making movies plotitem.amr_celledges_show = [0] #plotaxes.afteraxes = addgauges #####----------------------------------------- # Gorge speed #----------------------------------------- # plotfigure = plotdata.new_plotfigure(name='Gorgetesting_speed', figno=22) plotfigure.show = False plotfigure.kwargs = {'figsize': [15, 15]} # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes('Speed') #plotaxes.title = 'Water Surface' plotaxes.scaled = True plotaxes.xlimits = [95.0, 95.45] plotaxes.ylimits = [29.5, 30.0] # speed plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') #plotitem.plot_var = geoplot.surface plotitem.plot_var = speed plotitem.pcolor_cmap = geoplot.custom_river plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 80 plotitem.add_colorbar = True #turn off for making movies plotitem.amr_celledges_show = [0] plotitem.amr_patchedges_show = [0] # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.land #plotitem.pcolor_cmap = geoplot.blank plotitem.pcolor_cmap = geoplot.bw_colormap plotitem.pcolor_cmin = 2000.0 plotitem.pcolor_cmax = 6000.0 #plotitem.add_colorbar = True #turn off for making movies plotitem.amr_celledges_show = [0] #plotaxes.afteraxes = addgauges #####----------------------------------------- # Gorge stress #----------------------------------------- # plotfigure = plotdata.new_plotfigure(name='Gorgetesting_stress', figno=23) plotfigure.show = False plotfigure.kwargs = {'figsize': [15, 15]} # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes('Stress') #plotaxes.title = 'Water Surface' plotaxes.scaled = True plotaxes.xlimits = [95.0, 95.45] plotaxes.ylimits = [29.5, 30.0] # stress plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') #plotitem.plot_var = geoplot.surface plotitem.plot_var = stress plotitem.pcolor_cmap = geoplot.custom_river plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 30000 #make this reasonable max stress plotitem.add_colorbar = True #turn off for making movies plotitem.amr_celledges_show = [0] plotitem.amr_patchedges_show = [0] # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.land #plotitem.pcolor_cmap = geoplot.blank plotitem.pcolor_cmap = geoplot.bw_colormap plotitem.pcolor_cmin = 2000.0 plotitem.pcolor_cmax = 6000.0 #plotitem.add_colorbar = True #turn off for making movies plotitem.amr_celledges_show = [0] #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format #plotdata.print_framenos = np.arange(0,5,1) # list of frames to print #plotdata.print_framenos = [1,2,3,4,5] #frame is a timestep, so this is the way #plotdata.print_gaugenos = [1,2,3,4] # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = False # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = False # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata
def setplot(plotdata=None): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of clawpack.visclaw.data.ClawPlotData. Output: a modified version of plotdata. """ from clawpack.visclaw import colormaps if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() plotdata.clearfigures() # clear any old figures,axes,items data # Figure for density - pcolor plotfigure = plotdata.new_plotfigure(name='Density', figno=0) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [0,1] plotaxes.ylimits = [0,1] plotaxes.title = 'Density' plotaxes.scaled = True plotaxes.afteraxes = addgauges # Set up for item on these axes: plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = 0 #plotitem.pcolor_cmap = colormaps.yellow_red_blue plotitem.pcolor_cmin = 0. plotitem.pcolor_cmax = 2. plotitem.add_colorbar = True plotitem.amr_patchedges_show = [0] plotitem.amr_celledges_show = [0] # Figure for density - Schlieren plotfigure = plotdata.new_plotfigure(name='Schlieren', figno=1) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [0,1] plotaxes.ylimits = [0,1] plotaxes.title = 'Density' plotaxes.scaled = True # so aspect ratio is 1 # Set up for item on these axes: plotitem = plotaxes.new_plotitem(plot_type='2d_schlieren') plotitem.schlieren_cmin = 0.0 plotitem.schlieren_cmax = 1.0 plotitem.plot_var = 0 plotitem.add_colorbar = False # Figure for grid cells plotfigure = plotdata.new_plotfigure(name='cells', figno=2) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [0,1] plotaxes.ylimits = [0,1] plotaxes.title = 'Grid patches' plotaxes.scaled = True # Set up for item on these axes: plotitem = plotaxes.new_plotitem(plot_type='2d_patch') plotitem.amr_patch_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee'] plotitem.amr_celledges_show = [1,0] plotitem.amr_patchedges_show = [1] #----------------------------------------- # Figures for gauges #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='q', figno=300, \ type='each_gauge') plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [0,1] plotaxes.ylimits = [0,1] plotaxes.title = 'Density' # Plot q as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 0 plotitem.plotstyle = 'b-' # Parameters used only when creating html and/or latex hardcopy # e.g., via clawpack.visclaw.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.html_movie = 'JSAnimation' # new style, or "4.x" for old style plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata
def setplot(plotdata=None): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. """ from clawpack.visclaw import colormaps, geoplot from bay import Bay mobile = Bay('bay.info') if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() plotdata.clearfigures() # clear any old figures,axes,items data def set_drytol(current_data): # The drytol parameter is used in masking land and water and # affects what color map is used for cells with small water depth h. # The cell will be plotted as dry if h < drytol. # The best value to use often depends on the application and can # be set here (measured in meters): current_data.user["drytol"] = 1.e-3 plotdata.beforeframe = set_drytol #----------------------------------------- # Figure for pcolor plot #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='pcolor', figno=0) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes('pcolor') plotaxes.title = 'Surface' plotaxes.scaled = True # Water plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.surface plotitem.pcolor_cmap = geoplot.tsunami_colormap plotitem.pcolor_cmin = -0.5 plotitem.pcolor_cmax = 0.5 plotitem.add_colorbar = True plotitem.amr_celledges_show = [0, 0, 0] plotitem.patchedges_show = 1 # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.land plotitem.pcolor_cmap = geoplot.land_colors plotitem.pcolor_cmin = mobile.z0 plotitem.pcolor_cmax = mobile.z_r plotitem.add_colorbar = False plotitem.amr_celledges_show = [0, 0, 0] plotitem.patchedges_show = 1 plotaxes.xlimits = [mobile.x_o1, mobile.x_o2] plotaxes.ylimits = [mobile.y0, mobile.y_r] # Add contour lines of bathymetry: plotitem = plotaxes.new_plotitem(plot_type='2d_contour') plotitem.plot_var = geoplot.topo from numpy import arange, linspace plotitem.contour_levels = linspace(mobile.z0, mobile.z_r, 10) plotitem.amr_contour_colors = ['k'] # color on each level plotitem.kwargs = {'linestyles': 'solid'} plotitem.amr_contour_show = [1] plotitem.celledges_show = 0 plotitem.patchedges_show = 0 plotitem.show = True #----------------------------------------- # Figures for gauges #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=1, type='each_gauge') plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = 'auto' plotaxes.ylimits = [-1.5, 1.5] plotaxes.title = 'Surface' # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 3 plotitem.plotstyle = 'b-' # Plot topo as green curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') def gaugetopo(current_data): q = current_data.q h = q[0, :] eta = q[3, :] topo = eta - h return topo plotitem.plot_var = gaugetopo plotitem.plotstyle = 'g-' def add_zeroline(current_data): from pylab import plot, legend t = current_data.t legend(('surface', 'topography'), loc='lower left') plot(t, 0 * t, 'k') plotaxes.afteraxes = add_zeroline #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = 'all' # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata