示例#1
0
def setplot(plotdata=None):
#--------------------------
    
    """ 
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of clawpack.visclaw.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    """ 

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()


    plotdata.clearfigures()  # clear any old figures,axes,items data
    
    print("**** Python plotting tools not yet implemented in 3d")
    print("**** No frame plots will be generated.")

    #-----------------------------------------
    # Figures for gauges
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='q', figno=300, \
                    type='each_gauge')
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = 'auto'
    plotaxes.ylimits = 'auto'
    plotaxes.title = 'q'

    # Plot q as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 0
    plotitem.plotstyle = 'b-'


    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via clawpack.visclaw.frametools.printframes:

    plotdata.printfigs = False               # print figures
    plotdata.print_format = 'png'            # file format
    plotdata.print_framenos = []             # list of frames to print
    plotdata.print_fignos = []               # list of figures to print
    plotdata.html = False                    # create html files of plots?
    plotdata.html_homelink = '../README.html'   # pointer for top of index
    plotdata.html_movie = 'JSAnimation'      # new style, or "4.x" for old style
    plotdata.latex = False                   # create latex file of plots?
    plotdata.latex_figsperline = 2           # layout of plots
    plotdata.latex_framesperline = 1         # layout of plots
    plotdata.latex_makepdf = False           # also run pdflatex?
    plotdata.parallel = True                 # make multiple frame png's at once

    return plotdata
示例#2
0
def setplot(plotdata=None):
#--------------------------
    
    """ 
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of clawpack.visclaw.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    """ 

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()


    plotdata.clearfigures()  # clear any old figures,axes,items data
    
    print("**** Python plotting tools not yet implemented in 3d")
    print("**** No plots will be generated.")

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via clawpack.visclaw.frametools.printframes:

    plotdata.printfigs = False               # print figures
    plotdata.print_format = 'png'            # file format
    plotdata.print_framenos = []             # list of frames to print
    plotdata.print_fignos = []               # list of figures to print
    plotdata.html = False                    # create html files of plots?
    plotdata.html_homelink = '../README.html'   # pointer for top of index
    plotdata.html_movie = 'JSAnimation'      # new style, or "4.x" for old style
    plotdata.latex = False                   # create latex file of plots?
    plotdata.latex_figsperline = 2           # layout of plots
    plotdata.latex_framesperline = 1         # layout of plots
    plotdata.latex_makepdf = False           # also run pdflatex?
    plotdata.parallel = True                 # make multiple frame png's at once

    return plotdata
示例#3
0
def setplot(plotdata=None):
    """"""

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    # clear any old figures,axes,items data
    plotdata.clearfigures()
    plotdata.format = 'binary'

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    surge_data = geodata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir, 'surge.data'))
    friction_data = geodata.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir, 'friction.data'))

    # Load storm track
    track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track'))

    # Set afteraxes function
    def surge_afteraxes(cd):
        surgeplot.surge_afteraxes(cd,
                                  track,
                                  plot_direction=False,
                                  kwargs={"markersize": 4})

    # Color limits
    surface_limits = [physics.sea_level - 5.0, physics.sea_level + 5.0]
    surface_ticks = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]
    surface_labels = [str(value) for value in surface_ticks]
    speed_limits = [0.0, 3.0]
    speed_ticks = [0, 1, 2, 3]
    speed_labels = [str(value) for value in speed_ticks]
    wind_limits = [0, 66]
    pressure_limits = [909, 1013]
    friction_bounds = [0.01, 0.04]

    def add_custom_colorbar_ticks_to_axes(axes,
                                          item_name,
                                          ticks,
                                          tick_labels=None):
        """Adjust colorbar ticks and labels"""
        axes.plotitem_dict[item_name].colorbar_ticks = ticks
        axes.plotitem_dict[item_name].colorbar_tick_labels = tick_labels

    def gulf_after_axes(cd):
        # plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96)
        surge_afteraxes(cd)

    def latex_after_axes(cd):
        # plt.subplot_adjust()
        surge_afteraxes(cd)

    def friction_after_axes(cd):
        # plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96)
        plt.title(r"Manning's $n$ Coefficient")
        # surge_afteraxes(cd)

    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    regions = {
        "Coast": {
            "xlimits": (clawdata.lower[0], clawdata.upper[0]),
            "ylimits": (clawdata.lower[1], clawdata.upper[1]),
            "figsize": (8, 7.5)
        },
        "Zhapo Station": {
            "xlimits": (111.71666667, 111.91666667),
            "ylimits": (21.48333333, 21.68333333),
            "figsize": (6, 6)
        },
        "Landfall": {
            "xlimits": (112.26, 112.86),
            "ylimits": (21.3, 21.7),
            "figsize": (6, 4)
        },
        "Quarry Bay": {
            "xlimits": (114.11333333, 114.31333333),
            "ylimits": (22.19111111, 22.39111111),
            "figsize": (6, 6)
        }
    }

    for (name, region_dict) in regions.items():

        # Surface Figure
        plotfigure = plotdata.new_plotfigure(name="Surface - %s" % name)
        plotfigure.kwargs = {"figsize": region_dict['figsize']}
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = "Surface"
        plotaxes.xlimits = region_dict["xlimits"]
        plotaxes.ylimits = region_dict["ylimits"]
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
        surgeplot.add_land(plotaxes)
        plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
        plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10
        add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks,
                                          surface_labels)

        # Speed Figure
        plotfigure = plotdata.new_plotfigure(name="Currents - %s" % name)
        plotfigure.kwargs = {"figsize": region_dict['figsize']}
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = "Currents"
        plotaxes.xlimits = region_dict["xlimits"]
        plotaxes.ylimits = region_dict["ylimits"]
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_speed(plotaxes, bounds=speed_limits)
        surgeplot.add_land(plotaxes)
        plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0] * 10
        plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10
        add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks,
                                          speed_labels)

    #  Hurricane Forcing fields
    #
    # Pressure field
    plotfigure = plotdata.new_plotfigure(name='Pressure')
    plotfigure.show = surge_data.pressure_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Coast']['xlimits']
    plotaxes.ylimits = regions['Coast']['ylimits']
    plotaxes.title = "Pressure Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    surgeplot.add_pressure(plotaxes, bounds=pressure_limits)
    surgeplot.add_land(plotaxes)

    # Wind field
    plotfigure = plotdata.new_plotfigure(name='Wind Speed')
    plotfigure.show = surge_data.wind_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Coast']['xlimits']
    plotaxes.ylimits = regions['Coast']['ylimits']
    plotaxes.title = "Wind Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    surgeplot.add_wind(plotaxes, bounds=wind_limits)
    surgeplot.add_land(plotaxes)

    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Gauge Surfaces',
                                         figno=300,
                                         type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [-2.25, 0.75]
    #plotaxes.xlabel = "Days from landfall"
    #plotaxes.ylabel = "Surface (m)"
    plotaxes.ylimits = [-1, 4]
    plotaxes.title = 'Surface'

    def gauge_afteraxes(cd):

        axes = plt.gca()
        surgeplot.plot_landfall_gauge(cd.gaugesoln, axes)

        # Fix up plot - in particular fix time labels
        axes.set_title('Station %s' % cd.gaugeno)
        axes.set_xlabel('Days relative to landfall')
        axes.set_ylabel('Surface (m)')
        axes.set_xlim([-2.25, 0.75])
        axes.set_ylim([-1, 4])
        axes.set_xticks([-2.25, -1.25, -0.25, 0.75])
        axes.set_xticklabels([r"$-2.25$", r"$-1.25$", r"$-0.25$", r"$0.75$"])
        axes.grid(True)

    plotaxes.afteraxes = gauge_afteraxes

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')

    #plotitem.plot_var = 3
    #plotitem.plotstyle = 'b-'

    #
    #  Gauge Location Plot
    #
    def gauge_location_afteraxes(cd):
        #plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.92)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata,
                                        gaugenos='all',
                                        format_string='ko',
                                        add_labels=True)

    plotfigure = plotdata.new_plotfigure(name="Gauge Locations")
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge Locations'
    plotaxes.scaled = True
    plotaxes.xlimits = [111.0, 115.0]
    plotaxes.ylimits = [21.0, 22.5]
    plotaxes.afteraxes = gauge_location_afteraxes
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    # -----------------------------------------
    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_gaugenos = [1, 2]  # list of gauges to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?
    plotdata.parallel = True  # parallel plotting

    return plotdata
示例#4
0
def setplot(plotdata=None):
    #--------------------------
    """ 
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    """

    from clawpack.visclaw import colormaps, geoplot
    from numpy import linspace

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    plotdata.clearfigures()  # clear any old figures,axes,items data

    def speed(current_data):
        from numpy import ma, where, sqrt, log10
        drytol = 1e-3
        q = current_data.q
        h = q[0, :, :]
        hu = q[1, :, :]
        hv = q[2, :, :]
        u = where(h > 0.0, hu / h, 0.)
        v = where(h > 0.0, hv / h, 0.)
        speed = sqrt(u**2 + v**2)
        return speed

    def stress(current_data):
        from numpy import ma, where, sqrt, log10
        q = current_data.q
        h = q[0, :, :]
        hu = q[1, :, :]
        hv = q[2, :, :]
        u = where(h > 0.0, hu / h, 0.)
        v = where(h > 0.0, hv / h, 0.)
        speed = np.sqrt(u**2 + v**2)  #Speed calc, same as above
        n = 0.06  #Manning's n
        g = 9.8  #gravity
        cf = where(
            h > 0.0, (g * n**2) / (h**(1. / 3)), 0.
        )  #calculate friction coefficient, DONT FORGET THE F*****G PERIOD YOU IDIOT (mike)
        stress = 1000 * cf * (speed**2)
        return stress

    # def erodibilityratio(current_data): # ratio of impelling forces (dimensionless shear stress T) to resisting forces (critical shear stress Tc)
    #     from numpy import ma, where, sqrt, log10
    #     q=current_data.q
    #             h=q[0,:,:]
    #     hu=q[1,:,:]
    #     hv=q[2,:,:]
    #     u = where(h>0.0, hu/h, 0.)
    #     v = where(h>0.0, hv/h, 0.)
    #     speed = sqrt(u**2 +v**2) #Speed calc, same as above
    #     n = 0.06 #Manning's n
    #     g = 9.8 #gravity

    # def dsp(current_data): # dsp = depth slope product
    #     from numpy import ma, where, sqrt, log10
    #     q = current_data.q
    #     h=q[0,:,:]
    #     g = 9.8 # gravity
    #     dsp = 1000*g*h*0.02 # using a bulk channel gradient of 0.02-- will need to figure out how to make a localized measurement of this
    #     return dsp

    # def froude(current_data):
    #     from numpy import ma, where, sqrt, log10
    #     drytol = 1e-3
    #     q = current_data.q
    #     h=q[0,:,:]
    #     hu=q[1,:,:]
    #     hv=q[2,:,:]
    #     u = where(h>0.0, hu/h, 0.)
    #     v = where(h>0.0, hv/h, 0.)
    #     g = 9.8
    #     speed = np.sqrt(u**2 +v**2)
    #     froude = speed/((g*h)**(1.2))
    #     return froude

    # def blocksize(current_data):
    #     from numpy import ma, where, sqrt, log10
    #     q = current_data.q
    #     h=q[0,:,:]
    #     hu=q[1,:,:]
    #     hv=q[2,:,:]
    #     u = where(h>0.0, hu/h, 0.)
    #     v = where(h>0.0, hv/h, 0.)
    #     speed = np.sqrt(u**2 +v**2) #Speed calc, same as above
    #     n = 0.04 #Manning's n
    #     g = 9.8 #gravity idiot
    #     cf = where(h>0.0, (g*n**2)/(h**(1./3)), 0.)
    #     stress = 1000*cf*(speed**2)
    #     tc = 0.15*((0.02)**(1./4)) #need to choose a slope here, sooooo 0.02
    #     blocksize = stress/(tc*g*1700)
    #     return blocksize

#####-----------------------------------------
# Lake (depth)
#-----------------------------------------
#
    plotfigure = plotdata.new_plotfigure(name='lake_depth', figno=1)
    plotfigure.show = True
    plotfigure.kwargs = {'figsize': [15, 15]}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes('Depth')
    #plotaxes.title = 'Water Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = [93.0, 95.6]
    plotaxes.ylimits = [28.0, 30.0]

    # Water
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    #plotitem.plot_var = geoplot.surface
    plotitem.plot_var = geoplot.depth  #variable to plot
    plotitem.pcolor_cmap = geoplot.custom_river
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 200
    plotitem.add_colorbar = True  #turn off for making movies
    plotitem.amr_celledges_show = [0]
    plotitem.amr_patchedges_show = [0]

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.land
    #plotitem.pcolor_cmap = geoplot.blank
    plotitem.pcolor_cmap = geoplot.bw_colormap
    plotitem.pcolor_cmin = 2000.0
    plotitem.pcolor_cmax = 6000.0
    #plotitem.add_colorbar = True    #turn off for making movies
    plotitem.amr_celledges_show = [0]

    #plotaxes.afteraxes = addgauges

    #####-----------------------------------------
    # Lake (speed)
    #-----------------------------------------
    #
    plotfigure = plotdata.new_plotfigure(name='lake_speed', figno=2)
    plotfigure.show = True
    plotfigure.kwargs = {'figsize': [15, 15]}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes('Speed')
    #plotaxes.title = 'Water Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = [93, 94.96]
    plotaxes.ylimits = [28.96, 29.77]

    # speed
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    #plotitem.plot_var = geoplot.surface
    plotitem.plot_var = speed
    plotitem.pcolor_cmap = geoplot.custom_river
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 80
    plotitem.add_colorbar = True  #turn off for making movies
    plotitem.amr_celledges_show = [0]
    plotitem.amr_patchedges_show = [0]

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.land
    #plotitem.pcolor_cmap = geoplot.blank
    plotitem.pcolor_cmap = geoplot.bw_colormap
    plotitem.pcolor_cmin = 2000.0
    plotitem.pcolor_cmax = 6000.0
    #plotitem.add_colorbar = True    #turn off for making movies
    plotitem.amr_celledges_show = [0]

    #plotaxes.afteraxes = addgauges

    #####-----------------------------------------
    # Lake (stress)
    #-----------------------------------------
    #
    plotfigure = plotdata.new_plotfigure(name='lake_stress', figno=3)
    plotfigure.show = True
    plotfigure.kwargs = {'figsize': [15, 15]}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes('Stress')
    #plotaxes.title = 'Water Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = [93, 94.96]
    plotaxes.ylimits = [28.96, 29.77]
    # stress
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    #plotitem.plot_var = geoplot.surface
    plotitem.plot_var = stress
    plotitem.pcolor_cmap = geoplot.custom_river
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 2500  #make this reasonable max stress
    plotitem.add_colorbar = True  #turn off for making movies
    plotitem.amr_celledges_show = [0]
    plotitem.amr_patchedges_show = [0]

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.land
    #plotitem.pcolor_cmap = geoplot.blank
    plotitem.pcolor_cmap = geoplot.bw_colormap
    plotitem.pcolor_cmin = 2000.0
    plotitem.pcolor_cmax = 6000.0
    #plotitem.add_colorbar = True    #turn off for making movies
    plotitem.amr_celledges_show = [0]

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    #plotdata.print_framenos = np.arange(0,5,1)       # list of frames to print
    #plotdata.print_framenos = [9]       #frame is a timestep, so this is the way
    #plotdata.print_gaugenos = [1,2,3,4]          # list of gauges to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = False  # create html files of plots?
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.latex = False  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?
    plotdata.parallel = True  # make multiple frame png's at once

    return plotdata
示例#5
0
def setplot(plotdata=None):
#--------------------------
    
    """ 
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    """ 


    from clawpack.visclaw import colormaps, geoplot
    from numpy import linspace

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()


    plotdata.clearfigures()  # clear any old figures,axes,items data
    plotdata.format = 'ascii'    # 'ascii' or 'binary' to match setrun.py


    # To plot gauge locations on pcolor or contour plot, use this as
    # an afteraxis function:

    def addgauges(current_data):
        from clawpack.visclaw import gaugetools
        gaugetools.plot_gauge_locations(current_data.plotdata, \
             gaugenos='all', format_string='ko', add_labels=True)
    

    #-----------------------------------------
    # Figure for surface
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='Surface', figno=0)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes('pcolor')
    plotaxes.title = 'Surface'
    plotaxes.scaled = True

    def fixup(current_data):
        import pylab
        addgauges(current_data)
        t = current_data.t
        t = t / 3600.  # hours
        pylab.title('Surface at %4.2f hours' % t, fontsize=20)
        pylab.xticks(fontsize=15)
        pylab.yticks(fontsize=15)
    plotaxes.afteraxes = fixup

    # Water
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    #plotitem.plot_var = geoplot.surface
    plotitem.plot_var = geoplot.surface_or_depth
    plotitem.pcolor_cmap = geoplot.tsunami_colormap
    plotitem.pcolor_cmin = -0.2
    plotitem.pcolor_cmax = 0.2
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0,0,0]
    plotitem.patchedges_show = 1

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.land
    plotitem.pcolor_cmap = geoplot.land_colors
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 100.0
    plotitem.add_colorbar = False
    plotitem.amr_celledges_show = [1,1,0]
    plotitem.patchedges_show = 1
    plotaxes.xlimits = [-120,-60]
    plotaxes.ylimits = [-60,0]

    # add contour lines of bathy if desired:
    plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
    plotitem.show = False
    plotitem.plot_var = geoplot.topo
    plotitem.contour_levels = linspace(-3000,-3000,1)
    plotitem.amr_contour_colors = ['y']  # color on each level
    plotitem.kwargs = {'linestyles':'solid','linewidths':2}
    plotitem.amr_contour_show = [1,0,0]  
    plotitem.celledges_show = 0
    plotitem.patchedges_show = 0


    #-----------------------------------------
    # Figures for gauges
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='Surface at gauges', figno=300, \
                    type='each_gauge')
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = 'auto'
    plotaxes.ylimits = 'auto'
    plotaxes.title = 'Surface'

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    # Plot topo as green curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.show = False

    def gaugetopo(current_data):
        q = current_data.q
        h = q[0,:]
        eta = q[3,:]
        topo = eta - h
        return topo
        
    plotitem.plot_var = gaugetopo
    plotitem.plotstyle = 'g-'

    def add_zeroline(current_data):
        from pylab import plot, legend, xticks, floor, axis, xlabel
        t = current_data.t 
        gaugeno = current_data.gaugeno

        if gaugeno == 32412:
            try:
                plot(TG32412[:,0], TG32412[:,1], 'r')
                legend(['GeoClaw','Obs'],loc='lower right')
            except: pass
            axis((0,t.max(),-0.3,0.3))

        plot(t, 0*t, 'k')
        n = int(floor(t.max()/3600.) + 2)
        xticks([3600*i for i in range(n)], ['%i' % i for i in range(n)])
        xlabel('time (hours)')

    plotaxes.afteraxes = add_zeroline



    #-----------------------------------------
    
    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True                # print figures
    plotdata.print_format = 'png'            # file format
    plotdata.print_framenos = 'all'          # list of frames to print
    plotdata.print_gaugenos = 'all'          # list of gauges to print
    plotdata.print_fignos = 'all'            # list of figures to print
    plotdata.html = True                     # create html files of plots?
    plotdata.html_homelink = '../README.html'   # pointer for top of index
    plotdata.latex = True                    # create latex file of plots?
    plotdata.latex_figsperline = 2           # layout of plots
    plotdata.latex_framesperline = 1         # layout of plots
    plotdata.latex_makepdf = False           # also run pdflatex?
    plotdata.parallel = True                 # make multiple frame png's at once

    return plotdata
示例#6
0
def setplot(plotdata=None):
#--------------------------
    
    """ 
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of clawpack.visclaw.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    """ 


    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()


    from clawpack.visclaw import colormaps

    plotdata.clearfigures()  # clear any old figures,axes,items data
    
    plotdata.format = "ascii"

    # Figure for pcolor plot
    plotfigure = plotdata.new_plotfigure(name='q[0]', figno=0)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = 'auto'
    plotaxes.ylimits = 'auto'
    plotaxes.title = 'q[0]'
    plotaxes.scaled = True
    plotaxes.afteraxes = addgauges

    # Set up for item on these axes:
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = 0
    plotitem.pcolor_cmap = colormaps.red_yellow_blue
    plotitem.pcolor_cmin = -1.
    plotitem.pcolor_cmax = 1.
    plotitem.add_colorbar = True
    plotitem.celledges_show = 0
    plotitem.patchedges_show = 0
    plotitem.MappedGrid = True
    plotitem.mapc2p = mapc2p
    plotitem.show = True       # show on plot?
    
    # Figure for contour plot
    plotfigure = plotdata.new_plotfigure(name='contour', figno=1)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = 'auto'
    plotaxes.ylimits = 'auto'
    plotaxes.title = 'q[0]'
    plotaxes.scaled = True

    # Set up for item on these axes:
    plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
    plotitem.plot_var = 0
    plotitem.contour_levels = np.linspace(-0.9, 0.9, 10)
    plotitem.amr_contour_colors = ['k','b']
    plotitem.patchedges_show = 1
    plotitem.MappedGrid = True
    plotitem.mapc2p = mapc2p
    plotitem.show = True       # show on plot?
    
    # Figure for grids
    plotfigure = plotdata.new_plotfigure(name='grids', figno=2)
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = 'auto'
    plotaxes.ylimits = 'auto'
    plotaxes.title = 'grids'
    plotaxes.scaled = True

    # Set up for item on these axes:
    plotitem = plotaxes.new_plotitem(plot_type='2d_patch')
    plotitem.MappedGrid = True
    plotitem.mapc2p = mapc2p
    plotitem.amr_celledges_show = [1,1,0]
    plotitem.amr_patchedges_show = [1]

    #-----------------------------------------
    # Figures for gauges
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='q', figno=300, \
                    type='each_gauge')
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = 'auto'
    plotaxes.ylimits = 'auto'
    plotaxes.title = 'q'

    # Plot q as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 0
    plotitem.plotstyle = 'b-'


    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via clawpack.visclaw.frametools.printframes:

    plotdata.printfigs = True                # print figures
    plotdata.print_format = 'png'            # file format
    plotdata.print_framenos = 'all'          # list of frames to print
    plotdata.print_fignos = 'all'            # list of figures to print
    plotdata.html = True                     # create html files of plots?
    plotdata.html_homelink = '../README.html'   # pointer for top of index
    plotdata.html_movie = 'JSAnimation'      # new style, or "4.x" for old style
    plotdata.latex = True                    # create latex file of plots?
    plotdata.latex_figsperline = 2           # layout of plots
    plotdata.latex_framesperline = 1         # layout of plots
    plotdata.latex_makepdf = False           # also run pdflatex?
    plotdata.parallel = True                 # make multiple frame png's at once

    return plotdata
示例#7
0
def setplot(plotdata=None):
    """"""

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    # clear any old figures,axes,items data
    plotdata.clearfigures()
    plotdata.format = 'ascii'

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    surge_data = geodata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir, 'surge.data'))
    friction_data = geodata.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir, 'friction.data'))

    # Load storm track
    track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track'))

    # Calculate landfall time
    # Landfall for Ike in Houston was September 13th, at 7 UTC
    landfall_dt = datetime.datetime(2008, 9, 13, 7) - \
                  datetime.datetime(2008, 1, 1,  0)
    landfall = landfall_dt.days * 24.0 * 60**2 + landfall_dt.seconds

    # Set afteraxes function
    def surge_afteraxes(cd):
        surgeplot.surge_afteraxes(cd, track, landfall, plot_direction=False,
                                  kwargs={"markersize": 4})

    # Color limits
    surface_limits = [-5.0, 5.0]
    speed_limits = [0.0, 3.0]
    wind_limits = [0, 64]
    pressure_limits = [935, 1013]
    friction_bounds = [0.01, 0.04]

    def gulf_after_axes(cd):
        # plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96)
        surge_afteraxes(cd)

    def latex_after_axes(cd):
        # plt.subplot_adjust()
        surge_afteraxes(cd)

    def friction_after_axes(cd):
        # plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96)
        plt.title(r"Manning's $n$ Coefficient")
        # surge_afteraxes(cd)

    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    regions = {"Gulf": {"xlimits": (clawdata.lower[0], clawdata.upper[0]),
                        "ylimits": (clawdata.lower[1], clawdata.upper[1]),
                        "figsize": (6.4, 4.8)},
               "LaTex Shelf": {"xlimits": (-97.5, -88.5),
                               "ylimits": (27.5, 30.5),
                               "figsize": (8, 2.7)}}

    for (name, region_dict) in regions.iteritems():

        # Surface Figure
        plotfigure = plotdata.new_plotfigure(name="Surface - %s" % name)
        plotfigure.kwargs = {"figsize": region_dict['figsize']}
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = "Surface"
        plotaxes.xlimits = region_dict["xlimits"]
        plotaxes.ylimits = region_dict["ylimits"]
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
        surgeplot.add_land(plotaxes)
        plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
        plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

        # Speed Figure
        plotfigure = plotdata.new_plotfigure(name="Currents - %s" % name)
        plotfigure.kwargs = {"figsize": region_dict['figsize']}
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = "Currents"
        plotaxes.xlimits = region_dict["xlimits"]
        plotaxes.ylimits = region_dict["ylimits"]
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_speed(plotaxes, bounds=speed_limits)
        surgeplot.add_land(plotaxes)
        plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0] * 10
        plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10
    #
    # Friction field
    #
    plotfigure = plotdata.new_plotfigure(name='Friction')
    plotfigure.show = friction_data.variable_friction and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Gulf']['xlimits']
    plotaxes.ylimits = regions['Gulf']['ylimits']
    # plotaxes.title = "Manning's N Coefficient"
    plotaxes.afteraxes = friction_after_axes
    plotaxes.scaled = True

    surgeplot.add_friction(plotaxes, bounds=friction_bounds, shrink=0.9)
    plotaxes.plotitem_dict['friction'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['friction'].colorbar_label = "$n$"

    #
    #  Hurricane Forcing fields
    #
    # Pressure field
    plotfigure = plotdata.new_plotfigure(name='Pressure')
    plotfigure.show = surge_data.pressure_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Gulf']['xlimits']
    plotaxes.ylimits = regions['Gulf']['ylimits']
    plotaxes.title = "Pressure Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    surgeplot.add_pressure(plotaxes, bounds=pressure_limits)
    surgeplot.add_land(plotaxes)

    # Wind field
    plotfigure = plotdata.new_plotfigure(name='Wind Speed')
    plotfigure.show = surge_data.wind_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Gulf']['xlimits']
    plotaxes.ylimits = regions['Gulf']['ylimits']
    plotaxes.title = "Wind Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    surgeplot.add_wind(plotaxes, bounds=wind_limits)
    surgeplot.add_land(plotaxes)

    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Gauge Surfaces', figno=300,
                                         type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [-2, 1]
    # plotaxes.xlabel = "Days from landfall"
    # plotaxes.ylabel = "Surface (m)"
    plotaxes.ylimits = [-1, 5]
    plotaxes.title = 'Surface'

    def gauge_afteraxes(cd):

        axes = plt.gca()
        surgeplot.plot_landfall_gauge(cd.gaugesoln, axes, landfall=landfall)

        # Fix up plot - in particular fix time labels
        axes.set_title('Station %s' % cd.gaugeno)
        axes.set_xlabel('Days relative to landfall')
        axes.set_ylabel('Surface (m)')
        axes.set_xlim([-2, 1])
        axes.set_ylim([-1, 5])
        axes.set_xticks([-2, -1, 0, 1])
        axes.set_xticklabels([r"$-2$", r"$-1$", r"$0$", r"$1$"])
        axes.grid(True)
    plotaxes.afteraxes = gauge_afteraxes

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    #
    #  Gauge Location Plot
    #
    def gauge_location_afteraxes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata, gaugenos='all',
                                        format_string='ko', add_labels=True)

    plotfigure = plotdata.new_plotfigure(name="Gauge Locations")
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge Locations'
    plotaxes.scaled = True
    plotaxes.xlimits = [-95.5, -94]
    plotaxes.ylimits = [29.0, 30.0]
    plotaxes.afteraxes = gauge_location_afteraxes
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    # -----------------------------------------
    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True                # print figures
    plotdata.print_format = 'png'            # file format
    plotdata.print_framenos = 'all'          # list of frames to print
    plotdata.print_gaugenos = [1, 2, 3, 4]   # list of gauges to print
    plotdata.print_fignos = 'all'            # list of figures to print
    plotdata.html = True                     # create html files of plots?
    plotdata.latex = True                    # create latex file of plots?
    plotdata.latex_figsperline = 2           # layout of plots
    plotdata.latex_framesperline = 1         # layout of plots
    plotdata.latex_makepdf = False           # also run pdflatex?
    plotdata.parallel = True                 # parallel plotting

    return plotdata
示例#8
0
def setplot(plotdata=None):
    # --------------------------

    """ 
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    """

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData

        plotdata = ClawPlotData()

    from clawpack.visclaw import colormaps, geoplot

    plotdata.clearfigures()  # clear any old figures,axes,items data

    plotdata.format = "ascii"  # Format of output
    # plotdata.format = 'netcdf'

    def set_drytol(current_data):
        # The drytol parameter is used in masking land and water and
        # affects what color map is used for cells with small water depth h.
        # The cell will be plotted as dry if h < drytol.
        # The best value to use often depends on the application and can
        # be set here (measured in meters):
        current_data.user["drytol"] = 1.0e-2

    plotdata.beforeframe = set_drytol

    # To plot gauge locations on pcolor or contour plot, use this as
    # an afteraxis function:

    def addgauges(current_data):
        from clawpack.visclaw import gaugetools

        gaugetools.plot_gauge_locations(current_data.plotdata, gaugenos="all", format_string="ko", add_labels=True)

    # -----------------------------------------
    # Figure for pcolor plot
    # -----------------------------------------
    plotfigure = plotdata.new_plotfigure(name="pcolor", figno=0)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes("pcolor")
    plotaxes.title = "Surface"
    plotaxes.scaled = True

    # Water
    plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor")
    # plotitem.plot_var = geoplot.surface
    plotitem.plot_var = geoplot.surface_or_depth
    plotitem.pcolor_cmap = geoplot.tsunami_colormap
    plotitem.pcolor_cmin = -0.9
    plotitem.pcolor_cmax = 0.9
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [1, 1, 0]
    plotitem.amr_patchedges_show = [1]

    # Land
    plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor")
    plotitem.plot_var = geoplot.land
    plotitem.pcolor_cmap = geoplot.land_colors
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 100.0
    plotitem.add_colorbar = False
    plotitem.amr_celledges_show = [1, 1, 0]
    plotaxes.xlimits = [-100, 100]
    plotaxes.ylimits = [-100, 100]

    # -----------------------------------------
    # Figure for zoom
    # -----------------------------------------
    plotfigure = plotdata.new_plotfigure(name="Zoom", figno=10)
    # plotfigure.show = False
    plotfigure.kwargs = {"figsize": [12, 7]}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes("diag zoom")
    plotaxes.axescmd = "axes([0.0,0.1,0.6,0.6])"
    plotaxes.title = "On diagonal"
    plotaxes.scaled = True
    plotaxes.xlimits = [55, 66]
    plotaxes.ylimits = [55, 66]
    plotaxes.afteraxes = addgauges

    # Water
    plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor")
    # plotitem.plot_var = geoplot.surface
    plotitem.plot_var = geoplot.surface_or_depth
    plotitem.pcolor_cmap = geoplot.tsunami_colormap
    plotitem.pcolor_cmin = -0.9
    plotitem.pcolor_cmax = 0.9
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [1, 1, 0]
    plotitem.amr_patchedges_show = [1]

    # Land
    plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor")
    plotitem.plot_var = geoplot.land
    plotitem.pcolor_cmap = geoplot.land_colors
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 100.0
    plotitem.add_colorbar = False
    plotitem.amr_celledges_show = [1, 1, 0]

    # Add contour lines of bathymetry:
    plotitem = plotaxes.new_plotitem(plot_type="2d_contour")
    plotitem.plot_var = geoplot.topo
    from numpy import arange, linspace

    plotitem.contour_levels = arange(-10.0, 0.0, 1.0)
    plotitem.amr_contour_colors = ["k"]  # color on each level
    plotitem.kwargs = {"linestyles": "solid"}
    plotitem.amr_contour_show = [0, 0, 1]  # show contours only on finest level
    plotitem.celledges_show = 0
    plotitem.patchedges_show = 0
    plotitem.show = True

    # Add contour lines of topography:
    plotitem = plotaxes.new_plotitem(plot_type="2d_contour")
    plotitem.plot_var = geoplot.topo
    from numpy import arange, linspace

    plotitem.contour_levels = arange(0.0, 11.0, 1.0)
    plotitem.amr_contour_colors = ["g"]  # color on each level
    plotitem.kwargs = {"linestyles": "solid"}
    plotitem.amr_contour_show = [0, 0, 1]  # show contours only on finest level
    plotitem.celledges_show = 0
    plotitem.patchedges_show = 0
    plotitem.show = True

    # Add dashed contour line for shoreline
    plotitem = plotaxes.new_plotitem(plot_type="2d_contour")
    plotitem.plot_var = geoplot.topo
    plotitem.contour_levels = [0.0]
    plotitem.amr_contour_colors = ["k"]  # color on each level
    plotitem.kwargs = {"linestyles": "dashed"}
    plotitem.amr_contour_show = [0, 0, 1]  # show contours only on finest level
    plotitem.celledges_show = 0
    plotitem.patchedges_show = 0
    plotitem.show = True

    # -----------------------------------------
    # Figure for zoom near axis
    # -----------------------------------------
    # plotfigure = plotdata.new_plotfigure(name='Zoom2', figno=11)
    # now included in same figure as zoom on diagonal

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes("x zoom")
    plotaxes.show = True
    plotaxes.axescmd = "axes([0.5,0.1,0.6,0.6])"
    plotaxes.title = "On x-axis"
    plotaxes.scaled = True
    plotaxes.xlimits = [82, 93]
    plotaxes.ylimits = [-5, 6]
    plotaxes.afteraxes = addgauges

    # Water
    plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor")
    # plotitem.plot_var = geoplot.surface
    plotitem.plot_var = geoplot.surface_or_depth
    plotitem.pcolor_cmap = geoplot.tsunami_colormap
    plotitem.pcolor_cmin = -0.9
    plotitem.pcolor_cmax = 0.9
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [1, 1, 0]
    plotitem.amr_patchedges_show = [1]

    # Land
    plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor")
    plotitem.plot_var = geoplot.land
    plotitem.pcolor_cmap = geoplot.land_colors
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 100.0
    plotitem.add_colorbar = False
    plotitem.amr_celledges_show = [1, 1, 0]

    # Add contour lines of bathymetry:
    plotitem = plotaxes.new_plotitem(plot_type="2d_contour")
    plotitem.plot_var = geoplot.topo
    from numpy import arange, linspace

    plotitem.contour_levels = arange(-10.0, 0.0, 1.0)
    plotitem.amr_contour_colors = ["k"]  # color on each level
    plotitem.kwargs = {"linestyles": "solid"}
    plotitem.amr_contour_show = [0, 0, 1]  # show contours only on finest level
    plotitem.celledges_show = 0
    plotitem.patchedges_show = 0
    plotitem.show = True

    # Add contour lines of topography:
    plotitem = plotaxes.new_plotitem(plot_type="2d_contour")
    plotitem.plot_var = geoplot.topo
    from numpy import arange, linspace

    plotitem.contour_levels = arange(0.0, 11.0, 1.0)
    plotitem.amr_contour_colors = ["g"]  # color on each level
    plotitem.kwargs = {"linestyles": "solid"}
    plotitem.amr_contour_show = [0, 0, 1]  # show contours only on finest level
    plotitem.celledges_show = 0
    plotitem.patchedges_show = 0
    plotitem.show = True

    # Add dashed contour line for shoreline
    plotitem = plotaxes.new_plotitem(plot_type="2d_contour")
    plotitem.plot_var = geoplot.topo
    plotitem.contour_levels = [0.0]
    plotitem.amr_contour_colors = ["k"]  # color on each level
    plotitem.kwargs = {"linestyles": "dashed"}
    plotitem.amr_contour_show = [0, 0, 1]  # show contours only on finest level
    plotitem.celledges_show = 0
    plotitem.patchedges_show = 0
    plotitem.show = True

    # -----------------------------------------
    # Figures for gauges
    # -----------------------------------------
    plotfigure = plotdata.new_plotfigure(name="Surface & topo", figno=300, type="each_gauge")

    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = "auto"
    plotaxes.ylimits = [-2.0, 2.0]
    plotaxes.title = "Surface"

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type="1d_plot")
    plotitem.plot_var = 3
    plotitem.plotstyle = "b-"

    # Plot topo as green curve:
    plotitem = plotaxes.new_plotitem(plot_type="1d_plot")

    def gaugetopo(current_data):
        q = current_data.q
        h = q[0, :]
        eta = q[3, :]
        topo = eta - h
        return topo

    plotitem.plot_var = gaugetopo
    plotitem.plotstyle = "g-"

    def add_zeroline(current_data):
        from pylab import plot, legend

        t = current_data.t
        legend(("surface", "topography"), loc="lower left")
        plot(t, 0 * t, "k")

    plotaxes.afteraxes = add_zeroline

    # -----------------------------------------
    # Figure for patches alone
    # -----------------------------------------
    plotfigure = plotdata.new_plotfigure(name="patches", figno=2)
    plotfigure.show = False

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [0, 1]
    plotaxes.ylimits = [0, 1]
    plotaxes.title = "patches"
    plotaxes.scaled = True

    # Set up for item on these axes:
    plotitem = plotaxes.new_plotitem(plot_type="2d_patch")
    plotitem.amr_patch_bgcolor = ["#ffeeee", "#eeeeff", "#eeffee"]
    plotitem.amr_celledges_show = [1, 1, 0]
    plotitem.amr_patchedges_show = [1]

    # -----------------------------------------
    # Scatter plot of surface for radially symmetric
    # -----------------------------------------
    plotfigure = plotdata.new_plotfigure(name="Scatter", figno=200)
    plotfigure.show = False
    # Note: will not look very good unless more of domain is refined

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [0.0, 100.0]
    plotaxes.ylimits = [-1.5, 2.0]
    plotaxes.title = "Scatter plot of surface"

    # Set up for item on these axes:
    plotitem = plotaxes.new_plotitem(plot_type="1d_from_2d_data")
    plotitem.plot_var = geoplot.surface

    def q_vs_radius(current_data):
        from numpy import sqrt

        x = current_data.x
        y = current_data.y
        r = sqrt(x ** 2 + y ** 2)
        q = current_data.var
        return r, q

    plotitem.map_2d_to_1d = q_vs_radius
    plotitem.plotstyle = "o"
    plotitem.amr_color = ["b", "r", "g"]
    plotaxes.afteraxes = "import pylab; pylab.legend(['Level 1','Level 2'])"

    # -----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = "png"  # file format
    plotdata.print_framenos = "all"  # list of frames to print
    plotdata.print_gaugenos = [4, 5, 104, 105]  # list of gauges to print
    plotdata.print_fignos = "all"  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.html_homelink = "../README.html"  # pointer for top of index
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?
    plotdata.parallel = True  # make multiple frame png's at once

    return plotdata
示例#9
0
def setplot(plotdata=None):
    #--------------------------
    """
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.

    """

    from clawpack.visclaw import colormaps, geoplot
    from numpy import linspace

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    plotdata.clearfigures()  # clear any old figures,axes,items data
    plotdata.format = 'binary'

    def timeformat(t):
        from numpy import mod
        hours = int(t / 3600.)
        tmin = mod(t, 3600.)
        min = int(tmin / 60.)
        sec = int(mod(tmin, 60.))
        timestr = '%s:%s:%s' % (hours, str(min).zfill(2), str(sec).zfill(2))
        return timestr

    def title_hours(current_data):
        from pylab import title
        t = current_data.t
        timestr = timeformat(t)
        title('%s after earthquake' % timestr)

    #-----------------------------------------
    # Figure for surface
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='Computational domain', figno=0)
    plotfigure.kwargs = {'figsize': (8, 7)}
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes('pcolor')
    plotaxes.title = 'Surface'
    plotaxes.scaled = True

    def fixup(current_data):
        import pylab
        #addgauges(current_data)
        t = current_data.t
        t = t / 60.  # minutes
        pylab.title('Surface at %4.2f minutes' % t, fontsize=10)
        #pylab.xticks(fontsize=15)
        #pylab.yticks(fontsize=15)

    #plotaxes.afteraxes = fixup

    def aa(current_data):
        from pylab import ticklabel_format, xticks, gca, cos, pi, savefig
        gca().set_aspect(1. / cos(48 * pi / 180.))
        title_hours(current_data)
        ticklabel_format(useOffset=False)
        xticks(rotation=20)

    def aa_topo(current_data):
        from pylab import contour, plot
        aa(current_data)
        #addgauges(current_data)
        #contour(topo.X, topo.Y, topo.Z, [0], colors='k')

    def aa_topo_nogauges(current_data):
        from pylab import contour, plot
        aa(current_data)
        #addgauges(current_data)
        #contour(topo.X, topo.Y, topo.Z, [0], colors='k')

    #plotaxes.afteraxes = aa_topo
    plotaxes.afteraxes = aa_topo_nogauges

    ## Limits below never used for AK, CSZ_L1 or SFL
    #plotaxes.xlimits = [-129.16,-122.16]
    #plotaxes.ylimits = [46.0,51.0]

    # Water
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    #plotitem.plot_var = geoplot.surface
    plotitem.plot_var = geoplot.surface_or_depth
    plotitem.pcolor_cmap = geoplot.tsunami_colormap
    plotitem.pcolor_cmin = cmin
    plotitem.pcolor_cmax = cmax
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [0, 0, 0, 0]
    plotitem.amr_data_show = [1, 1, 1, 1, 1, 0, 0]

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.land
    plotitem.pcolor_cmap = geoplot.land_colors
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = cmax_land
    plotitem.add_colorbar = False
    plotitem.amr_celledges_show = [0]
    plotitem.amr_patchedges_show = [0, 0, 0, 0]
    plotitem.amr_data_show = [1, 1, 1, 1, 1, 0, 0]

    # add contour lines of bathy if desired:
    plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
    plotitem.show = False
    plotitem.plot_var = geoplot.topo
    plotitem.contour_levels = linspace(-3000, -3000, 1)
    plotitem.amr_contour_colors = ['y']  # color on each level
    plotitem.kwargs = {'linestyles': 'solid', 'linewidths': 2}
    plotitem.amr_contour_show = [1, 0, 0]
    plotitem.celledges_show = 0
    plotitem.patchedges_show = 0

    #-----------------------------------------
    # Figure for fgmax area
    #-----------------------------------------
    x1, x2, y1, y2 = [-122.54, -122.4, 47.9, 48.04]

    plotfigure = plotdata.new_plotfigure(name="fgmax area", figno=11)
    plotfigure.show = True
    plotfigure.kwargs = {'figsize': (6, 7)}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.scaled = False

    plotaxes.xlimits = [x1 - 0.01, x2 + 0.01]
    plotaxes.ylimits = [y1 - 0.01, y2 + 0.01]

    plotaxes.afteraxes = aa_topo

    # Water
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    #plotitem.plot_var = geoplot.surface
    plotitem.plot_var = geoplot.surface_or_depth
    plotitem.pcolor_cmap = geoplot.tsunami_colormap
    plotitem.pcolor_cmin = cmin
    plotitem.pcolor_cmax = cmax
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.patchedges_show = 0

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.land
    plotitem.pcolor_cmap = geoplot.land_colors
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = cmax_land
    plotitem.add_colorbar = False
    plotitem.amr_celledges_show = [0]
    plotitem.patchedges_show = 0

    #-----------------------------------------
    # Figures for gauges
    #-----------------------------------------

    time_scale = 1. / 3600.
    time_label = 'hours'

    plotfigure = plotdata.new_plotfigure(name='gauge depth', figno=300, \
                    type='each_gauge')

    #plotfigure.clf_each_gauge = False

    def setglimits_depth(current_data):
        from pylab import xlim, ylim, title, argmax, show, array, ylabel
        gaugeno = current_data.gaugeno
        q = current_data.q
        depth = q[0, :]
        t = current_data.t
        g = current_data.plotdata.getgauge(gaugeno)
        level = g.level
        maxlevel = max(level)

        #find first occurrence of the max of levels used by
        #this gauge and set the limits based on that time
        argmax_level = argmax(level)
        xlim(time_scale * array(t[argmax_level], t[-1]))
        ylabel('meters')
        min_depth = depth[argmax_level:].min()
        max_depth = depth[argmax_level:].max()
        ylim(min_depth - 0.5, max_depth + 0.5)
        title('Gauge %i : Flow Depth (h)\n' % gaugeno + \
              'max(h) = %7.3f,    max(level) = %i' %(max_depth,maxlevel))
        #show()

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.time_scale = time_scale
    plotaxes.time_label = time_label

    # Plot depth as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 0
    plotitem.plotstyle = 'b-'

    ## Set the limits and the title in the function below
    plotaxes.afteraxes = setglimits_depth

    plotfigure = plotdata.new_plotfigure(name='gauge surface eta', figno=301, \
                    type='each_gauge')

    #plotfigure.clf_each_gauge = False

    def setglimits_eta(current_data):
        from pylab import xlim, ylim, title, argmax, show, array, ylabel
        gaugeno = current_data.gaugeno
        q = current_data.q
        eta = q[3, :]
        t = current_data.t
        g = current_data.plotdata.getgauge(gaugeno)
        level = g.level
        maxlevel = max(level)

        #find first occurrence of the max of levels used by
        #this gauge and set the limits based on that time
        argmax_level = argmax(level)  #first occurrence of it
        xlim(time_scale * array(t[argmax_level], t[-1]))
        ylabel('meters')
        min_eta = eta[argmax_level:].min()
        max_eta = eta[argmax_level:].max()
        ylim(min_eta - 0.5, max_eta + 0.5)
        title('Gauge %i : Surface Elevation (eta)\n' % gaugeno + \
              'max(eta) = %7.3f,    max(level) = %i' %(max_eta,maxlevel))
        #show()

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.time_scale = time_scale
    plotaxes.time_label = time_label

    # Plot surface (eta) as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    ## Set the limits and the title in the function below
    plotaxes.afteraxes = setglimits_eta

    plotfigure = plotdata.new_plotfigure(name='speed', figno=302, \
                    type='each_gauge')

    #plotfigure.clf_each_gauge = False

    def speed(current_data):
        from numpy import sqrt, maximum, where
        q = current_data.q
        h = q[0, :]
        hu = q[1, :]
        hv = q[2, :]
        s = sqrt(hu**2 + hv**2) / maximum(h, 0.001)
        s = where(h > 0.001, s, 0.0)
        return s

    def setglimits_speed(current_data):
        from pylab import xlim, ylim, title, argmax, show, array, ylabel
        gaugeno = current_data.gaugeno
        s = speed(current_data)
        t = current_data.t
        g = current_data.plotdata.getgauge(gaugeno)
        level = g.level
        maxlevel = max(level)

        #find first occurrence of the max of levels used by
        #this gauge and set the limits based on that time
        argmax_level = argmax(level)  #first occurrence of it
        xlim(time_scale * array(t[argmax_level], t[-1]))
        ylabel('meters/sec')
        min_speed = s[argmax_level:].min()
        max_speed = s[argmax_level:].max()
        ylim(min_speed - 0.5, max_speed + 0.5)
        title('Gauge %i : Speed (s)\n' % gaugeno + \
              'max(s) = %7.3f,    max(level) = %i' %(max_speed,maxlevel))
        #show()

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.time_scale = time_scale
    plotaxes.time_label = time_label

    # Plot speed (s) as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = speed
    plotitem.plotstyle = 'b-'

    ## Set the limits and the title in the function below
    plotaxes.afteraxes = setglimits_speed

    #-----------------------------------------
    # Figures for fgmax plots
    #-----------------------------------------
    # Note: You need to move fgmax png files into _plots/_other_figures after
    # creating them, e.g., by running the process_fgmax notebook or script.
    # The lines below just create links to these figures from _PlotIndex.html

    otherfigure = plotdata.new_otherfigure(
        name='max depth', fname='_other_figures/h_onshore.png')

    otherfigure = plotdata.new_otherfigure(name='max speed',
                                           fname='_other_figures/speed.png')

    # add additional lines for any other figures you want added to the index.

    # Plots of timing (CPU and wall time):

    def make_timing_plots(plotdata):
        import os
        from clawpack.visclaw import plot_timing_stats
        try:
            timing_plotdir = plotdata.plotdir + '/_timing_figures'
            os.system('mkdir -p %s' % timing_plotdir)
            units = {
                'comptime': 'hours',
                'simtime': 'hours',
                'cell': 'billions'
            }
            plot_timing_stats.make_plots(outdir=plotdata.outdir,
                                         make_pngs=True,
                                         plotdir=timing_plotdir,
                                         units=units)
            os.system('cp %s/timing.* %s' % (plotdata.outdir, timing_plotdir))
        except:
            print('*** Error making timing plots')

    # create a link to this webpage from _PlotIndex.html:
    otherfigure = plotdata.new_otherfigure(name='timing',
                                           fname='_timing_figures/timing.html')
    otherfigure.makefig = make_timing_plots

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_gaugenos = 'all'  # list of gauges to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?
    plotdata.parallel = True  # make multiple frame png's at once

    return plotdata
示例#10
0
def setplot(plotdata=None):
#--------------------------

    r"""Setplot function for surge plotting"""
    
    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()


    plotdata.clearfigures()  # clear any old figures,axes,items data
    plotdata.format = 'binary'

    fig_num_counter = surgeplot.figure_counter()

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir,'claw.data'))
    amrdata = amrclaw.AmrclawInputData(clawdata)
    amrdata.read(os.path.join(plotdata.outdir,'amr.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir,'geoclaw.data'))
    surge_data = geodata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir,'surge.data'))
    friction_data = geodata.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir,'friction.data'))

    # Load storm track
    track = surgeplot.track_data(os.path.join(plotdata.outdir,'fort.track'))

    # Calculate landfall time, off by a day, maybe leap year issue?
    landfall_dt = datetime.datetime(2008,9,13,7) - datetime.datetime(2008,1,1,0)
    landfall = (landfall_dt.days - 1.0) * 24.0 * 60**2 + landfall_dt.seconds

    # Set afteraxes function
    surge_afteraxes = lambda cd: surgeplot.surge_afteraxes(cd,
                                        track, landfall, plot_direction=False)

    # Color limits
    surface_range = 5.0
    speed_range = 3.0
    eta = physics.sea_level
    if not isinstance(eta,list):
        eta = [eta]
    surface_limits = [eta[0]-surface_range,eta[0]+surface_range]
    # surface_contours = numpy.linspace(-surface_range, surface_range,11)
    surface_contours = [-5,-4.5,-4,-3.5,-3,-2.5,-2,-1.5,-1,-0.5,0.5,1,1.5,2,2.5,3,3.5,4,4.5,5]
    surface_ticks = [-5,-4,-3,-2,-1,0,1,2,3,4,5]
    surface_labels = [str(value) for value in surface_ticks]
    speed_limits = [0.0,speed_range]
    speed_contours = numpy.linspace(0.0,speed_range,13)
    speed_ticks = [0,1,2,3]
    speed_labels = [str(value) for value in speed_ticks]
    
    wind_limits = [0,64]
    # wind_limits = [-0.002,0.002]
    pressure_limits = [935,1013]
    friction_bounds = [0.01,0.04]
    # vorticity_limits = [-1.e-2,1.e-2]

    # def pcolor_afteraxes(current_data):
    #     surge_afteraxes(current_data)
    #     surge.plot.gauge_locations(current_data,gaugenos=[6])
    
    def contour_afteraxes(current_data):
        surge_afteraxes(current_data)

    def add_custom_colorbar_ticks_to_axes(axes, item_name, ticks, tick_labels=None):
        axes.plotitem_dict[item_name].colorbar_ticks = ticks
        axes.plotitem_dict[item_name].colorbar_tick_labels = tick_labels

    # ==========================================================================
    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    # ==========================================================================

    # ========================================================================
    #  Entire Gulf
    # ========================================================================
    gulf_xlimits = [clawdata.lower[0],clawdata.upper[0]]
    gulf_ylimits = [clawdata.lower[1],clawdata.upper[1]]
    gulf_shrink = 0.9
    def gulf_after_axes(cd):
        plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96)
        surge_afteraxes(cd)
    #
    #  Surface
    #
    plotfigure = plotdata.new_plotfigure(name='Surface - Entire Domain', 
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.afteraxes = gulf_after_axes

    surgeplot.add_surface_elevation(plotaxes, plot_type='contourf',
                                               contours=surface_contours,
                                               shrink=gulf_shrink)
    surgeplot.add_land(plotaxes,topo_min=-10.0,topo_max=5.0)
    # surge.plot.add_bathy_contours(plotaxes)
    if article:
        plotaxes.plotitem_dict['surface'].add_colorbar = False
    else:
        add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks, surface_labels)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [1,1,1,1,1,1,1,1]

    #
    #  Water Speed
    #
    plotfigure = plotdata.new_plotfigure(name='Currents - Entire Domain',  
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents'
    plotaxes.scaled = True
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.afteraxes = gulf_after_axes

    # Speed
    surgeplot.add_speed(plotaxes, plot_type='contourf',
                                   contours=speed_contours,
                                   shrink=gulf_shrink)
    if article:
        plotaxes.plotitem_dict['speed'].add_colorbar = False
    else:
        add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks, speed_labels)

    # Land
    surgeplot.add_land(plotaxes)
    surgeplot.add_bathy_contours(plotaxes)

    #
    # Friction field
    #
    plotfigure = plotdata.new_plotfigure(name='Friction',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = friction_data.variable_friction and True

    def friction_after_axes(cd):
        plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96)
        plt.title(r"Manning's $n$ Coefficient")
        # surge_afteraxes(cd)

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    # plotaxes.title = "Manning's N Coefficient"
    plotaxes.afteraxes = friction_after_axes
    plotaxes.scaled = True

    surgeplot.add_friction(plotaxes,bounds=friction_bounds,shrink=0.9)
    plotaxes.plotitem_dict['friction'].amr_patchedges_show = [0,0,0,0,0,0,0]
    plotaxes.plotitem_dict['friction'].colorbar_label = "$n$"


    # ========================================================================
    #  LaTex Shelf
    # ========================================================================
    latex_xlimits = [-97.5,-88.5]
    latex_ylimits = [27.5,30.5]
    latex_shrink = 1.0
    def latex_after_axes(cd):
        if article:
            plt.subplots_adjust(left=0.07, bottom=0.14, right=1.0, top=0.86)
        else:
            plt.subplots_adjust(right=1.0)
        surge_afteraxes(cd)

    #
    # Surface
    #
    plotfigure = plotdata.new_plotfigure(name='Surface - LaTex Shelf', 
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True
    if article:
        plotfigure.kwargs = {'figsize':(8,2.7), 'facecolor':'none'}
    else:
        plotfigure.kwargs = {'figsize':(9,2.7), 'facecolor':'none'}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = latex_xlimits
    plotaxes.ylimits = latex_ylimits
    plotaxes.afteraxes = latex_after_axes
    surgeplot.add_surface_elevation(plotaxes, plot_type='contourf',
                                               contours=surface_contours,
                                               shrink=latex_shrink)

    if article:
        plotaxes.plotitem_dict['surface'].add_colorbar = False
        # plotaxes.afteraxes = lambda cd: article_latex_after_axes(cd, landfall)
    else:
        add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', [-5,-2.5,0,2.5,5.0], 
                                    ["-5.0","-2.5"," 0"," 2.5"," 5.0"])
    # plotaxes.plotitem_dict['surface'].contour_cmap = plt.get_cmap('OrRd')
    # surge.plot.add_surface_elevation(plotaxes,plot_type='contour')
    surgeplot.add_land(plotaxes)
    # plotaxes.plotitem_dict['surface'].amr_patchedges_show = [1,1,1,0,0,0,0]
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0,0,0,0,0,0,0]
    # plotaxes.plotitem_dict['land'].amr_patchedges_show = [1,1,1,0,0,0,0]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0,0,0,0,0,0,0]

    # Plot using jet and 0.0 to 5.0 to match figgen generated ADCIRC results
    # plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0
    # plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0
    # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet')

    #
    # Water Speed
    #
    plotfigure = plotdata.new_plotfigure(name='Currents - LaTex Shelf',  
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True
    if article:
        plotfigure.kwargs = {'figsize':(8,2.7), 'facecolor':'none'}
    else:
        plotfigure.kwargs = {'figsize':(9,2.7), 'facecolor':'none'}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents'
    plotaxes.scaled = True
    plotaxes.xlimits = latex_xlimits
    plotaxes.ylimits = latex_ylimits
    plotaxes.afteraxes = latex_after_axes
    surgeplot.add_speed(plotaxes, plot_type='contourf',
                                   contours=speed_contours,
                                   shrink=latex_shrink)

    if article:
        plotaxes.plotitem_dict['speed'].add_colorbar = False
    else:
        add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks, speed_labels)
    # surge.plot.add_surface_elevation(plotaxes,plot_type='contour')
    surgeplot.add_land(plotaxes)
    # plotaxes.plotitem_dict['speed'].amr_patchedges_show = [1,1,0,0,0,0,0]
    # plotaxes.plotitem_dict['land'].amr_patchedges_show = [1,1,1,0,0,0,0]
    plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0,0,0,0,0,0,0]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0,0,0,0,0,0,0]



    # ========================================================================
    #  Houston/Galveston
    # ========================================================================
    houston_xlimits = [-(95.0 + 26.0 / 60.0), -(94.0 + 25.0 / 60.0)]
    houston_ylimits = [29.1, 29.0 + 55.0 / 60.0]
    houston_shrink = 0.9
    def houston_after_axes(cd):
        if article:
            plt.subplots_adjust(left=0.05, bottom=0.07, right=0.99, top=0.92)
        else:
            plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        # surge.plot.gauge_locations(cd)
    
    #
    # Surface Elevations
    #
    plotfigure = plotdata.new_plotfigure(name='Surface - Houston/Galveston',  
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True
    # if article:
    #     plotfigure.kwargs['figsize'] = 

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = houston_xlimits
    plotaxes.ylimits = houston_ylimits
    plotaxes.afteraxes = houston_after_axes
    surgeplot.add_surface_elevation(plotaxes, plot_type='contourf',
                                               contours=surface_contours,
                                               shrink=houston_shrink)
    
    if article:
        plotaxes.plotitem_dict['surface'].add_colorbar = False
    else:
        add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks, surface_labels)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0,0,0,0,0,0,0]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0,0,0,0,0,0,0]
    # surge.plot.add_bathy_contours(plotaxes)

    # Plot using jet and 0.0 to 5.0 to match figgen generated ADCIRC results
    # plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0
    # plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0
    # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet')

    #
    # Water Speed
    #
    plotfigure = plotdata.new_plotfigure(name='Currents - Houston/Galveston',  
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents'
    plotaxes.scaled = True
    plotaxes.xlimits = houston_xlimits
    plotaxes.ylimits = houston_ylimits
    plotaxes.afteraxes = houston_after_axes
    surgeplot.add_speed(plotaxes, plot_type='contourf',
                                   contours=speed_contours,
                                   shrink=houston_shrink)
    
    if article:
        plotaxes.plotitem_dict['speed'].add_colorbar = False
    else:
        add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks, speed_labels)
    surgeplot.add_land(plotaxes)
    # surge.plot.add_bathy_contours(plotaxes)
    # plotaxes.plotitem_dict['speed'].amr_patchedges_show = [1,1,1,1,1,1,1,1]
    # plotaxes.plotitem_dict['land'].amr_patchedges_show = [1,1,1,1,1,1,1,1]
    plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0,0,0,0,0,0,0]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0,0,0,0,0,0,0]

    # ==========================
    #  Hurricane Forcing fields
    # ==========================
    
    # Pressure field
    plotfigure = plotdata.new_plotfigure(name='Pressure',  
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = surge_data.pressure_forcing and True
    
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.title = "Pressure Field"
    plotaxes.afteraxes = gulf_after_axes
    plotaxes.scaled = True
    surgeplot.add_pressure(plotaxes, bounds=pressure_limits, shrink=gulf_shrink)
    surgeplot.add_land(plotaxes)

    # Wind field
    plotfigure = plotdata.new_plotfigure(name='Wind Speed', 
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = surge_data.wind_forcing and True
    
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.title = "Wind Field"
    plotaxes.afteraxes = gulf_after_axes
    plotaxes.scaled = True
    surgeplot.add_wind(plotaxes, bounds=wind_limits, plot_type='pcolor',
                                  shrink=gulf_shrink)
    surgeplot.add_land(plotaxes)

    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \
                    type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True
    # plotfigure.kwargs['figsize'] = (16,10)

    def gauge_after_axes(cd):

        if cd.gaugeno in [1,2,3,4]:
            axes = plt.gca()
            # # Add Kennedy gauge data
            # kennedy_gauge = kennedy_gauges[gauge_name_trans[cd.gaugeno]]
            # axes.plot(kennedy_gauge['t'] - seconds2days(date2seconds(gauge_landfall[0])), 
            #          kennedy_gauge['mean_water'] + kennedy_gauge['depth'], 'k-', 
            #          label='Gauge Data')

            # Add GeoClaw gauge data
            geoclaw_gauge = cd.gaugesoln
            axes.plot(seconds2days(geoclaw_gauge.t - date2seconds(gauge_landfall[1])),
                  geoclaw_gauge.q[3,:] + gauge_surface_offset[0], 'b--', 
                  label="GeoClaw")

            # Add ADCIRC gauge data
            # ADCIRC_gauge = ADCIRC_gauges[kennedy_gauge['gauge_no']]
            # axes.plot(seconds2days(ADCIRC_gauge[:,0] - gauge_landfall[2]), 
            #          ADCIRC_gauge[:,1] + gauge_surface_offset[1], 'r-.', label="ADCIRC")

            # Fix up plot
            axes.set_title('Station %s' % cd.gaugeno)
            axes.set_xlabel('Days relative to landfall')
            axes.set_ylabel('Surface (m)')
            axes.set_xlim([-2,1])
            axes.set_ylim([-1,5])
            axes.set_xticks([-2,-1,0,1])
            axes.set_xticklabels([r"$-2$",r"$-1$",r"$0$",r"$1$"])
            axes.grid(True)
            axes.legend()

            plt.hold(False)

        # surge.plot.gauge_afteraxes(cd)


    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [-2,1]
    # plotaxes.xlabel = "Days from landfall"
    # plotaxes.ylabel = "Surface (m)"
    plotaxes.ylimits = [-1,5]
    plotaxes.title = 'Surface'
    plotaxes.afteraxes = gauge_after_axes

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    # =====================
    #  Gauge Location Plot
    # =====================
    gauge_xlimits = [-95.5, -94]
    gauge_ylimits = [29.0, 30.0]
    gauge_location_shrink = 0.75
    def gauge_after_axes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        surgeplot.gauge_locations(cd, gaugenos=[1, 2, 3, 4])
        plt.title("Gauge Locations")

    plotfigure = plotdata.new_plotfigure(name='Gauge Locations',  
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = gauge_xlimits
    plotaxes.ylimits = gauge_ylimits
    plotaxes.afteraxes = gauge_after_axes
    surgeplot.add_surface_elevation(plotaxes, plot_type='contourf',
                                               contours=surface_contours,
                                               shrink=gauge_location_shrink)
    # surge.plot.add_surface_elevation(plotaxes, plot_type="contourf")
    add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks, surface_labels)
    surgeplot.add_land(plotaxes)
    # plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0,0,0,0,0,0,0]
    # plotaxes.plotitem_dict['surface'].add_colorbar = False
    # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet')
    # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('gist_yarg')
    # plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0
    # plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0,0,0,0,0,0,0]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0,0,0,0,0,0,0]
    
    # ==============================================================
    #  Debugging Plots, only really work if using interactive plots
    # ==============================================================
    #
    # Water Velocity Components
    #
    plotfigure = plotdata.new_plotfigure(name='Velocity Components - Entire Domain',  
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = False

    # X-Component
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = "subplot(121)"
    plotaxes.title = 'Velocity, X-Component'
    plotaxes.scaled = True
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.afteraxes = gulf_after_axes

    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = surgeplot.water_u
    plotitem.pcolor_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'})
    plotitem.pcolor_cmin = -speed_limits[1]
    plotitem.pcolor_cmax = speed_limits[1]
    plotitem.colorbar_shrink = gulf_shrink
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0,0,0]
    plotitem.amr_patchedges_show = [1,1,1]

    surgeplot.add_land(plotaxes)

    # Y-Component
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = "subplot(122)"
    plotaxes.title = 'Velocity, Y-Component'
    plotaxes.scaled = True
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.afteraxes = gulf_after_axes

    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = surgeplot.water_v
    plotitem.pcolor_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'})
    plotitem.pcolor_cmin = -speed_limits[1]
    plotitem.pcolor_cmax = speed_limits[1]
    plotitem.colorbar_shrink = gulf_shrink
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0,0,0]
    plotitem.amr_patchedges_show = [1,1,1]
    surgeplot.add_land(plotaxes)

    # 
    # Depth
    # 
    plotfigure = plotdata.new_plotfigure(name='Depth - Entire Domain', 
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = False

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'depth'
    plotaxes.scaled = True
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.afteraxes = gulf_after_axes

    plotitem = plotaxes.new_plotitem(plot_type='2d_imshow')
    plotitem.plot_var = 0
    plotitem.imshow_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'})
    plotitem.imshow_cmin = 0
    plotitem.imshow_cmax = 100
    plotitem.colorbar_shrink = gulf_shrink
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0,0,0]
    plotitem.amr_patchedges_show = [1,1,1,1,1,1,1,1,1]
    
    # Surge field
    plotfigure = plotdata.new_plotfigure(name='Surge Field', 
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = ((surge_data.wind_forcing or surge_data.pressure_forcing) 
                        and False)
    
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.title = "Storm Surge Source Term S"
    plotaxes.afteraxes = gulf_after_axes
    plotaxes.scaled = True
    
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = surgeplot.pressure_field + 1
    plotitem.pcolor_cmap = plt.get_cmap('PuBu')
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 1e-3
    plotitem.add_colorbar = True
    plotitem.colorbar_shrink = gulf_shrink
    plotitem.colorbar_label = "Source Strength"
    plotitem.amr_celledges_show = [0,0,0]
    plotitem.amr_patchedges_show = [1,1,1,1,1,0,0]
    surgeplot.add_land(plotaxes)

    plotfigure = plotdata.new_plotfigure(name='Friction/Coriolis Source', 
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = False
    
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.title = "Friction/Coriolis Source"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = surgeplot.pressure_field + 2
    plotitem.pcolor_cmap = plt.get_cmap('PuBu')
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 1e-3
    plotitem.add_colorbar = True
    plotitem.colorbar_shrink = gulf_shrink
    plotitem.colorbar_label = "Source Strength"
    plotitem.amr_celledges_show = [0,0,0]
    plotitem.amr_patchedges_show = [1,1,1,1,1,0,0]
    surgeplot.add_land(plotaxes)

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    if article:
        plotdata.printfigs = True                # print figures
        plotdata.print_format = 'png'            # file format
        plotdata.print_framenos = [54,60,66,72,78,84]            # list of frames to print
        plotdata.print_gaugenos = [1,2,3,4]          # list of gauges to print
        plotdata.print_fignos = [4,5,6,7,10,3,300]            # list of figures to print
        plotdata.html = True                     # create html files of plots?
        plotdata.html_homelink = '../README.html'   # pointer for top of index
        plotdata.latex = False                    # create latex file of plots?
        plotdata.latex_figsperline = 2           # layout of plots
        plotdata.latex_framesperline = 1         # layout of plots
        plotdata.latex_makepdf = False           # also run pdflatex?

    else:
        plotdata.printfigs = True                # print figures
        plotdata.print_format = 'png'            # file format
        plotdata.print_framenos = 'all'            # list of frames to print
        plotdata.print_gaugenos = [1,2,3,4]          # list of gauges to print
        plotdata.print_fignos = 'all'            # list of figures to print
        plotdata.html = True                     # create html files of plots?
        plotdata.html_homelink = '../README.html'   # pointer for top of index
        plotdata.latex = True                    # create latex file of plots?
        plotdata.latex_figsperline = 2           # layout of plots
        plotdata.latex_framesperline = 1         # layout of plots
        plotdata.latex_makepdf = False           # also run pdflatex?
    plotdata.parallel = True                 # make multiple frame png's at once

    return plotdata
示例#11
0
def setplot(plotdata=None):

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    plotdata.clearfigures()

    mapc2p, mx_edge, xp_edge = make_mapc2p(fname_celledges)

    def mapc2p_km(xc):
        x_m = mapc2p(xc)
        x_km = x_m / 1000.  # convert to km
        return x_km

    def fixticks1(current_data):
        from pylab import ticklabel_format, grid
        ticklabel_format(useOffset=False)
        grid(True)

    def fixticks(current_data):
        from pylab import ticklabel_format, plot,grid,ones,sqrt, \
            legend,title,ylabel,text
        ticklabel_format(useOffset=False)

        # to plot max elevation over entire computation:
        #if xmax is not None:
        #    plot(xmax, etamax, 'r')

        #grid(True)
        hl = 3200.
        hr = 200.
        greens = (hl / hr)**(0.25)
        print('greens = ', greens)
        #plot(current_data.x, greens*ones(current_data.x.shape),'g--')
        plot(xlimits, [greens, greens], 'g--', label='$C_g$, Greens Law')
        ctrans = 2 * sqrt(hl) / (sqrt(hl) + sqrt(hr))
        crefl = (sqrt(hl) - sqrt(hr)) / (sqrt(hl) + sqrt(hr))
        print('ctrans = ', ctrans)
        plot(xlimits, [ctrans, ctrans],
             'r--',
             label='$C_T$, Transmission coefficient')
        legend(loc='upper left')
        title('')
        ylabel('meters', fontsize=14)

        if current_data.frameno == 0:
            text(-80, -0.4, '$\longrightarrow$', fontsize=20)
            text(-80, -0.6, 'Incident')
        h = current_data.q[0, :]
        mx2 = int(round(len(h) / 2.))
        etamax2 = (h[:mx2] - hl).max()
        print('mx2 = %i, etamax2 = %g' % (mx2, etamax2))

    plotfigure = plotdata.new_plotfigure(name='domain', figno=0)
    plotfigure.kwargs = {'figsize': (7, 6.5)}
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = 'axes([.1,.4,.8,.5])'  #'subplot(211)'
    plotaxes.xlimits = xlimits
    #plotaxes.xlimits = [-100e3,-20e3]
    plotaxes.ylimits = [-1, 3]
    plotaxes.title = 'Surface displacement'
    plotaxes.afteraxes = fixticks

    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = geoplot.surface
    plotitem.color = 'b'
    plotitem.MappedGrid = True
    plotitem.mapc2p = mapc2p_km

    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.show = False
    plotitem.plot_var = geoplot.topo
    plotitem.color = 'k'
    plotitem.MappedGrid = True
    plotitem.mapc2p = mapc2p_km

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.show = False
    plotaxes.axescmd = 'subplot(312)'
    plotaxes.xlimits = xlimits
    #plotaxes.xlimits = [-100e3,-20e3]
    #plotaxes.ylimits = [-1000, 1000]
    #plotaxes.title = 'Full depth'
    plotaxes.title = 'momentum'
    plotaxes.afteraxes = fixticks1
    plotitem.MappedGrid = True
    plotitem.mapc2p = mapc2p_km

    plotitem = plotaxes.new_plotitem(plot_type='1d_fill_between')
    plotitem.show = False
    plotitem.plot_var = geoplot.surface
    plotitem.plot_var2 = geoplot.topo
    plotitem.color = 'b'
    plotitem.MappedGrid = True
    plotitem.mapc2p = mapc2p_km

    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.show = False
    plotitem.plot_var = geoplot.topo
    plotitem.color = 'k'
    plotitem.MappedGrid = True
    plotitem.mapc2p = mapc2p_km

    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 1
    plotitem.color = 'k'
    plotitem.MappedGrid = True
    plotitem.mapc2p = mapc2p_km

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = 'axes([.1,.1,.8,.2])'  #'subplot(212)'
    plotaxes.xlimits = xlimits

    #plotaxes.xlimits = [-100e3,-20e3]
    #plotaxes.ylimits = [-1000, 1000]
    #plotaxes.title = 'Full depth'
    #plotaxes.title = 'topography'

    def fix_topo_plot(current_data):
        from pylab import title, xlabel
        title('')
        xlabel('kilometers', fontsize=14)

    plotaxes.afteraxes = fix_topo_plot

    plotitem.MappedGrid = True
    plotitem.mapc2p = mapc2p_km

    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    #plotitem.show = False
    plotitem.plot_var = geoplot.topo
    plotitem.color = 'k'
    plotitem.MappedGrid = True
    plotitem.mapc2p = mapc2p_km

    #----------

    plotfigure = plotdata.new_plotfigure(name='shore', figno=1)
    #plotfigure.kwargs = {'figsize':(9,11)}
    plotfigure.show = False

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = 'subplot(211)'
    plotaxes.xlimits = [0, 80e3]
    plotaxes.ylimits = [-4, 4]
    plotaxes.title = 'Zoom on shelf'

    plotaxes.afteraxes = fixticks

    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = geoplot.surface
    #plotitem = plotaxes.new_plotitem(plot_type='1d_fill_between')
    #plotitem.plot_var = geoplot.surface
    #plotitem.plot_var2 = geoplot.topo
    plotitem.color = 'b'
    plotitem.MappedGrid = True
    plotitem.mapc2p = mapc2p_km

    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = geoplot.topo
    plotitem.color = 'k'
    plotitem.MappedGrid = True
    plotitem.mapc2p = mapc2p_km
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = 'subplot(212)'
    #plotaxes.xlimits = [-2000,2000]
    plotaxes.xlimits = [-1000, 1000]
    #plotaxes.ylimits = [-10,40]
    plotaxes.ylimits = [-20, 60]
    plotaxes.title = 'Zoom around shore'

    plotaxes.afteraxes = fixticks

    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.show = False
    plotitem.plot_var = geoplot.surface

    plotitem = plotaxes.new_plotitem(plot_type='1d_fill_between')
    plotitem.plot_var = geoplot.surface
    plotitem.plot_var2 = geoplot.topo
    plotitem.color = 'b'
    plotitem.MappedGrid = True
    plotitem.mapc2p = mapc2p_km

    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = geoplot.topo
    plotitem.color = 'k'
    plotitem.MappedGrid = True
    plotitem.mapc2p = mapc2p_km

    plotdata.printfigs = True  # Whether to output figures
    plotdata.print_format = 'png'  # What type of output format
    plotdata.print_framenos = 'all'  # Which frames to output
    plotdata.print_fignos = 'all'  # Which figures to print
    plotdata.html = True  # Whether to create HTML files
    plotdata.latex = False  # Whether to make LaTeX output
    plotdata.parallel = True

    return plotdata
示例#12
0
def setplot(plotdata=None):
    #--------------------------
    """ 
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    """

    from clawpack.visclaw import colormaps, geoplot
    from numpy import linspace

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    plotdata.clearfigures()  # clear any old figures,axes,items data
    plotdata.format = 'binary'  # 'binary' for adjoint

    # To plot gauge locations on pcolor or contour plot, use this as
    # an afteraxis function:

    def addgauges(current_data):
        from clawpack.visclaw import gaugetools
        gaugetools.plot_gauge_locations(current_data.plotdata, \
             gaugenos='all', format_string='ko', add_labels=True)

    def timeformat(t):
        from numpy import mod
        hours = int(t / 3600.)
        tmin = mod(t, 3600.)
        min = int(tmin / 60.)
        sec = int(mod(tmin, 60.))
        timestr = '%s:%s:%s' % (hours, str(min).zfill(2), str(sec).zfill(2))
        return timestr

    def title_hours(current_data):
        from pylab import title
        t = current_data.t
        timestr = timeformat(t)
        title('Adjoint time %s before time of interest' % timestr)

    #-----------------------------------------
    # Figure for surface
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='Surface', figno=0)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes('pcolor')
    plotaxes.title = 'Adjoint'
    plotaxes.scaled = True

    plotaxes.afteraxes = title_hours

    # Water
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    #plotitem.plot_var = geoplot.surface
    plotitem.plot_var = geoplot.surface_or_depth
    plotitem.pcolor_cmap = geoplot.tsunami_colormap
    plotitem.pcolor_cmin = -0.0005
    plotitem.pcolor_cmax = 0.0005
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [0, 1, 0]

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.land
    plotitem.pcolor_cmap = geoplot.land_colors
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 100.0
    plotitem.add_colorbar = False
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.patchedges_show = 0
    plotaxes.xlimits = [-120, -60]
    plotaxes.ylimits = [-60, 0]

    # add contour lines of bathy if desired:
    plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
    plotitem.show = False
    plotitem.plot_var = geoplot.topo
    plotitem.contour_levels = linspace(-3000, -3000, 1)
    plotitem.amr_contour_colors = ['y']  # color on each level
    plotitem.kwargs = {'linestyles': 'solid', 'linewidths': 2}
    plotitem.amr_contour_show = [1, 0, 0]
    plotitem.celledges_show = 0
    plotitem.patchedges_show = 0

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_gaugenos = 'all'  # list of gauges to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?
    plotdata.parallel = True  # make multiple frame png's at once

    return plotdata
示例#13
0
def setplot(plotdata=None):
    """"""

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    # clear any old figures,axes,items data
    plotdata.clearfigures()
    plotdata.format = 'ascii'

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    surge_data = geodata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir, 'surge.data'))
    friction_data = geodata.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir, 'friction.data'))

    # Load storm track
    track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track'))

    # Set afteraxes function
    def surge_afteraxes(cd):
        surgeplot.surge_afteraxes(cd,
                                  track,
                                  plot_direction=False,
                                  kwargs={"markersize": 4})

    # Color limits
    surface_limits = [-5.0, 5.0]
    speed_limits = [0.0, 3.0]
    wind_limits = [0, 64]
    pressure_limits = [935, 1013]
    friction_bounds = [0.01, 0.04]

    def friction_after_axes(cd):
        plt.title(r"Manning's $n$ Coefficient")

    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    regions = {
        "Gulf": {
            "xlimits": (clawdata.lower[0], clawdata.upper[0]),
            "ylimits": (clawdata.lower[1], clawdata.upper[1]),
            "figsize": (6.4, 4.8)
        },
        "LaTex Shelf": {
            "xlimits": (-90.5, -85.5),
            "ylimits": (22.5, 24.0),
            "figsize": (8, 2.7)
        }
    }

    for (name, region_dict) in regions.items():

        # Surface Figure
        plotfigure = plotdata.new_plotfigure(name="Surface - %s" % name)
        plotfigure.kwargs = {"figsize": region_dict['figsize']}
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = "Surface"
        plotaxes.xlimits = region_dict["xlimits"]
        plotaxes.ylimits = region_dict["ylimits"]
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
        surgeplot.add_land(plotaxes)
        plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
        plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

        # Speed Figure
        plotfigure = plotdata.new_plotfigure(name="Currents - %s" % name)
        plotfigure.kwargs = {"figsize": region_dict['figsize']}
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = "Currents"
        plotaxes.xlimits = region_dict["xlimits"]
        plotaxes.ylimits = region_dict["ylimits"]
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_speed(plotaxes, bounds=speed_limits)
        surgeplot.add_land(plotaxes)
        plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0] * 10
        plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10
    #
    # Friction field
    #
    plotfigure = plotdata.new_plotfigure(name='Friction')
    plotfigure.show = friction_data.variable_friction and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Gulf']['xlimits']
    plotaxes.ylimits = regions['Gulf']['ylimits']
    # plotaxes.title = "Manning's N Coefficient"
    plotaxes.afteraxes = friction_after_axes
    plotaxes.scaled = True

    surgeplot.add_friction(plotaxes, bounds=friction_bounds, shrink=0.9)
    plotaxes.plotitem_dict['friction'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['friction'].colorbar_label = "$n$"

    #
    #  Hurricane Forcing fields
    #
    # Pressure field
    plotfigure = plotdata.new_plotfigure(name='Pressure')
    plotfigure.show = surge_data.pressure_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Gulf']['xlimits']
    plotaxes.ylimits = regions['Gulf']['ylimits']
    plotaxes.title = "Pressure Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    surgeplot.add_pressure(plotaxes, bounds=pressure_limits)
    surgeplot.add_land(plotaxes)

    # Wind field
    plotfigure = plotdata.new_plotfigure(name='Wind Speed')
    plotfigure.show = surge_data.wind_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Gulf']['xlimits']
    plotaxes.ylimits = regions['Gulf']['ylimits']
    plotaxes.title = "Wind Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    surgeplot.add_wind(plotaxes, bounds=wind_limits)
    surgeplot.add_land(plotaxes)

    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Gauge Surfaces',
                                         figno=300,
                                         type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [-2, 1]
    # plotaxes.xlabel = "Days from landfall"
    # plotaxes.ylabel = "Surface (m)"
    plotaxes.ylimits = [-1, 5]
    plotaxes.title = 'Surface'

    def gauge_afteraxes(cd):

        axes = plt.gca()
        surgeplot.plot_landfall_gauge(cd.gaugesoln, axes)

        # Fix up plot - in particular fix time labels
        axes.set_title('Station %s' % cd.gaugeno)
        axes.set_xlabel('Days relative to landfall')
        axes.set_ylabel('Surface (m)')
        axes.set_xlim([-2, 1])
        axes.set_ylim([-1, 5])
        axes.set_xticks([-2, -1, 0, 1])
        axes.set_xticklabels([r"$-2$", r"$-1$", r"$0$", r"$1$"])
        axes.grid(True)

    plotaxes.afteraxes = gauge_afteraxes

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')

    # plotitem.plot_var = 3
    # plotitem.plotstyle = 'b-'

    #
    #  Gauge Location Plot
    #
    def gauge_location_afteraxes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata,
                                        gaugenos='all',
                                        format_string='ko',
                                        add_labels=True)

    plotfigure = plotdata.new_plotfigure(name="Gauge Locations")
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge Locations'
    plotaxes.scaled = True
    plotaxes.xlimits = [-95.5, -94]
    plotaxes.ylimits = [29.0, 30.0]
    plotaxes.afteraxes = gauge_location_afteraxes
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    # -----------------------------------------
    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_gaugenos = [1, 2, 3, 4]  # list of gauges to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?
    plotdata.parallel = True  # parallel plotting

    return plotdata
示例#14
0
def setplot(plotdata=None):
    #--------------------------
    """ 
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of clawpack.visclaw.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    """

    from clawpack.visclaw import colormaps

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    plotdata.clearfigures()  # clear any old figures,axes,items data

    # Figure for density - pcolor
    plotfigure = plotdata.new_plotfigure(name='Density', figno=0)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [0, 1]
    plotaxes.ylimits = [0, 1]
    plotaxes.title = 'Density'
    plotaxes.scaled = True
    plotaxes.afteraxes = addgauges

    # Set up for item on these axes:
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = 0
    #plotitem.pcolor_cmap = colormaps.yellow_red_blue
    plotitem.pcolor_cmin = 0.
    plotitem.pcolor_cmax = 2.
    plotitem.add_colorbar = True
    plotitem.amr_patchedges_show = [0]
    plotitem.amr_celledges_show = [0]

    # Figure for density - Schlieren
    plotfigure = plotdata.new_plotfigure(name='Schlieren', figno=1)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [0, 1]
    plotaxes.ylimits = [0, 1]
    plotaxes.title = 'Density'
    plotaxes.scaled = True  # so aspect ratio is 1

    # Set up for item on these axes:
    plotitem = plotaxes.new_plotitem(plot_type='2d_schlieren')
    plotitem.schlieren_cmin = 0.0
    plotitem.schlieren_cmax = 1.0
    plotitem.plot_var = 0
    plotitem.add_colorbar = False

    # Figure for grid cells
    plotfigure = plotdata.new_plotfigure(name='cells', figno=2)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [0, 1]
    plotaxes.ylimits = [0, 1]
    plotaxes.title = 'Grid patches'
    plotaxes.scaled = True

    # Set up for item on these axes:
    plotitem = plotaxes.new_plotitem(plot_type='2d_patch')
    plotitem.amr_patch_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee']
    plotitem.amr_celledges_show = [1, 0]
    plotitem.amr_patchedges_show = [1]

    #-----------------------------------------
    # Figures for gauges
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='q', figno=300, \
                    type='each_gauge')
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [0, 1]
    plotaxes.ylimits = [0, 1]
    plotaxes.title = 'Density'

    # Plot q as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 0
    plotitem.plotstyle = 'b-'

    #-----------------------------------------
    # Plots of timing (CPU and wall time):

    def make_timing_plots(plotdata):
        from clawpack.visclaw import plot_timing_stats
        import os, sys
        try:
            timing_plotdir = plotdata.plotdir + '/_timing_figures'
            os.system('mkdir -p %s' % timing_plotdir)
            # adjust units for plots based on problem:
            units = {
                'comptime': 'seconds',
                'simtime': 'dimensionless',
                'cell': 'millions'
            }
            plot_timing_stats.make_plots(outdir=plotdata.outdir,
                                         make_pngs=True,
                                         plotdir=timing_plotdir,
                                         units=units)
        except:
            print('*** Error making timing plots')

    otherfigure = plotdata.new_otherfigure(name='timing plots',
                                           fname='_timing_figures/timing.html')
    otherfigure.makefig = make_timing_plots

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via clawpack.visclaw.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.html_movie = 'JSAnimation'  # new style, or "4.x" for old style
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?
    plotdata.parallel = True  # make multiple frame png's at once

    return plotdata
示例#15
0
def setplot(plotdata=None):
    #--------------------------
    """ 
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    """

    from clawpack.visclaw import colormaps, geoplot
    from numpy import linspace

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    plotdata.clearfigures()  # clear any old figures,axes,items data
    plotdata.format = 'ascii'  # 'ascii', 'binary', 'netcdf'

    # To plot gauge locations on pcolor or contour plot, use this as
    # an afteraxis function:

    def addgauges(current_data):
        from clawpack.visclaw import gaugetools
        gaugetools.plot_gauge_locations(current_data.plotdata, \
             gaugenos='all', format_string='ko', add_labels=True)

    # To add title with time format hours:minutes:seconds...

    def title_hours(current_data):
        from pylab import title, mod
        t = current_data.t
        hours = int(t / 3600.)
        tmin = mod(t, 3600.)
        min = int(tmin / 60.)
        tsec = mod(tmin, 60.)
        sec = int(mod(tmin, 60.))
        timestr = '%s:%s:%s' % (hours, str(min).zfill(2), str(sec).zfill(2))
        title('%s after earthquake' % timestr)

    #-----------------------------------------
    # Figure for surface
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='Surface', figno=0)
    plotfigure.kwargs = {'figsize': (12, 6)}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes('pcolor')
    plotaxes.axescmd = 'subplot(121)'
    plotaxes.title = 'Surface'
    plotaxes.scaled = True

    def fixup(current_data):
        addgauges(current_data)
        title_hours(current_data)

    plotaxes.afteraxes = fixup

    # Water
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.surface_or_depth
    plotitem.pcolor_cmap = geoplot.tsunami_colormap
    plotitem.pcolor_cmin = -0.2
    plotitem.pcolor_cmax = 0.2
    plotitem.add_colorbar = False
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.patchedges_show = 1

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.land
    plotitem.pcolor_cmap = geoplot.land_colors
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 100.0
    plotitem.add_colorbar = False
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.patchedges_show = 0
    plotaxes.xlimits = [-120, -60]
    plotaxes.ylimits = [-60, 0]

    # add contour lines of bathy if desired:
    plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
    plotitem.show = False
    plotitem.plot_var = geoplot.topo
    plotitem.contour_levels = linspace(-3000, -3000, 1)
    plotitem.amr_contour_colors = ['y']  # color on each level
    plotitem.kwargs = {'linestyles': 'solid', 'linewidths': 2}
    plotitem.amr_contour_show = [1, 0, 0]
    plotitem.celledges_show = 0
    plotitem.patchedges_show = 0

    #-----------------------------------------
    # Figure for adjoint flagging
    #-----------------------------------------

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes('adjoint')
    plotaxes.axescmd = 'subplot(122)'
    plotaxes.scaled = True
    plotaxes.title = 'Adjoint flag'

    def fixup(current_data):
        from pylab import title
        addgauges(current_data)
        title('Adjoint flagging indicator')

    plotaxes.afteraxes = fixup

    def masked_inner_product(current_data):
        from numpy import ma
        aux = current_data.aux
        tol = 1e-15
        soln = ma.masked_where(aux[3, :, :] < tol, aux[3, :, :])
        return soln

    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = masked_inner_product
    plotitem.pcolor_cmap = colormaps.white_red
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 0.0005
    #plotitem.pcolor_cmax = 0.00001 # use for adjoint-error flagging

    plotitem.add_colorbar = False  # doesn't work when adjoint all masked
    plotitem.colorbar_shrink = 0.75
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_data_show = [1, 1,
                              0]  # inner product not computed on finest level
    plotitem.patchedges_show = 0

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.land
    plotitem.pcolor_cmap = geoplot.land_colors
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 100.0
    plotitem.add_colorbar = False
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.patchedges_show = 0
    plotaxes.xlimits = [-120, -60]
    plotaxes.ylimits = [-60, 0]

    #-----------------------------------------
    # Figures for gauges
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='Surface at gauges', figno=300, \
                    type='each_gauge')
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = 'auto'
    plotaxes.ylimits = 'auto'
    plotaxes.title = 'Surface'

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    # Plot topo as green curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.show = False

    def gaugetopo(current_data):
        q = current_data.q
        h = q[0, :]
        eta = q[3, :]
        topo = eta - h
        return topo

    plotitem.plot_var = gaugetopo
    plotitem.plotstyle = 'g-'

    def add_zeroline(current_data):
        from pylab import plot, legend, xticks, floor, axis, xlabel
        t = current_data.t
        gaugeno = current_data.gaugeno

        if gaugeno == 32412:
            try:
                plot(TG32412[:, 0], TG32412[:, 1], 'r')
                legend(['GeoClaw', 'Obs'], loc='lower right')
            except:
                pass
            axis((0, t.max(), -0.3, 0.3))

        plot(t, 0 * t, 'k')
        n = int(floor(t.max() / 3600.) + 2)
        xticks([3600 * i for i in range(n)], ['%i' % i for i in range(n)])
        xlabel('time (hours)')

    plotaxes.afteraxes = add_zeroline

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_gaugenos = 'all'  # list of gauges to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?
    plotdata.parallel = True  # make multiple frame png's at once

    return plotdata
示例#16
0
def setplot(plotdata=None):
#--------------------------
    
    """ 
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    """ 

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()


    plotdata.clearfigures()  # clear any old figures,axes,items data

    

    # Figure for q[0]
    plotfigure = plotdata.new_plotfigure(name='q[0]', figno=0)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [0,1.5]
    plotaxes.ylimits = [-2.,4.]
    plotaxes.title = 'q[0]'

    # Set up for item on these axes:
    plotitem = plotaxes.new_plotitem(plot_type='1d')
    plotitem.plot_var = 0
    plotitem.plotstyle = '-'
    plotitem.color = 'b'
    plotitem.show = True       # show on plot?
    

    # Figure for q[1]
    plotfigure = plotdata.new_plotfigure(name='q[1]', figno=1)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = 'auto'
    plotaxes.ylimits = 'auto'
    plotaxes.title = 'q[1]'

    # Set up for item on these axes:
    plotitem = plotaxes.new_plotitem(plot_type='1d')
    plotitem.plot_var = 1
    plotitem.plotstyle = '-'
    plotitem.color = 'b'
    plotitem.show = True       # show on plot?
    

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True                # print figures
    plotdata.print_format = 'png'            # file format
    plotdata.print_framenos = 'all'          # list of frames to print
    plotdata.print_fignos = 'all'            # list of figures to print
    plotdata.html = True                     # create html files of plots?
    plotdata.html_homelink = '../README.html'   # pointer for top of index
    plotdata.latex = True                    # create latex file of plots?
    plotdata.latex_figsperline = 2           # layout of plots
    plotdata.latex_framesperline = 1         # layout of plots
    plotdata.latex_makepdf = False           # also run pdflatex?
    plotdata.parallel = True                 # make multiple frame png's at once

    return plotdata
示例#17
0
def setplot(plotdata=None, bathy_location=0.15, bathy_angle=0.0,
            bathy_left=-1.0, bathy_right=-0.2):
    """Setup the plotting data objects.

    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.

    returns plotdata object

    """

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    multilayer_data = clawpack.geoclaw.data.MultilayerData()
    multilayer_data.read(os.path.join(plotdata.outdir, 'multilayer.data'))

    def transform_c2p(x, y, x0, y0, theta):
        return ((x+x0)*np.cos(theta) - (y+y0)*np.sin(theta),
                (x+x0)*np.sin(theta) + (y+y0)*np.cos(theta))

    def transform_p2c(x, y, x0, y0, theta):
        return (x*np.cos(theta) + y*np.sin(theta) - x0,
                -x*np.sin(theta) + y*np.cos(theta) - y0)

    # Setup bathymetry reference lines
    with open(os.path.join(plotdata.outdir, "bathy_geometry.data"), 'r') \
            as bathy_geometry_file:
        bathy_location = float(bathy_geometry_file.readline())
        bathy_angle = float(bathy_geometry_file.readline())
    x = [0.0, 0.0]
    y = [0.0, 1.0]
    x1, y1 = transform_c2p(x[0], y[0], bathy_location, 0.0, bathy_angle)
    x2, y2 = transform_c2p(x[1], y[1], bathy_location, 0.0, bathy_angle)

    if abs(x1 - x2) < 10**-3:
        x = [x1, x1]
        y = [clawdata.lower[1], clawdata.upper[1]]
    else:
        m = (y1 - y2) / (x1 - x2)
        x[0] = (clawdata.lower[1] - y1) / m + x1
        y[0] = clawdata.lower[1]
        x[1] = (clawdata.upper[1] - y1) / m + x1
        y[1] = clawdata.upper[1]
    ref_lines = [((x[0], y[0]), (x[1], y[1]))]

    plotdata.clearfigures()
    plotdata.save_frames = False

    # ========================================================================
    #  Generic helper functions
    def pcolor_afteraxes(current_data):
        bathy_ref_lines(current_data)

    def contour_afteraxes(current_data):
        axes = plt.gca()
        pos = -80.0 * (23e3 / 180) + 500e3 - 5e3
        axes.plot([pos, pos], [-300e3, 300e3], 'b',
                  [pos-5e3, pos-5e3], [-300e3, 300e3], 'y')
        wind_contours(current_data)
        bathy_ref_lines(current_data)

    def profile_afteraxes(current_data):
        pass

    def bathy_ref_lines(current_data):
        axes = plt.gca()
        for ref_line in ref_lines:
            x1 = ref_line[0][0]
            y1 = ref_line[0][1]
            x2 = ref_line[1][0]
            y2 = ref_line[1][1]
            axes.plot([x1, x2], [y1, y2], 'y--', linewidth=1)

    # ========================================================================
    # Axis limits

    xlimits = [-0.5, 0.5]
    ylimits = [-0.5, 0.5]
    eta = [multilayer_data.eta[0], multilayer_data.eta[1]]
    top_surface_limits = [eta[0] - 0.03, eta[0] + 0.03]
    internal_surface_limits = [eta[1] - 0.015, eta[1] + 0.015]
    top_speed_limits = [0.0, 0.1]
    internal_speed_limits = [0.0, 0.03]

    # ========================================================================
    #  Surface Elevations
    plotfigure = plotdata.new_plotfigure(name='Surface')
    plotfigure.show = True
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Top surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Top Surface'
    plotaxes.axescmd = 'subplot(1, 2, 1)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes
    ml_plot.add_surface_elevation(plotaxes,1,bounds=top_surface_limits)
    # ml_plot.add_surface_elevation(plotaxes,1,bounds=[-0.06,0.06])
    # ml_plot.add_surface_elevation(plotaxes,1)
    ml_plot.add_land(plotaxes, 1)
    
    # Bottom surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Internal Surface'
    plotaxes.axescmd = 'subplot(1,2,2)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes
    # ml_plot.add_surface_elevation(plotaxes,2,bounds=[-300-0.5,-300+0.5])
    ml_plot.add_surface_elevation(plotaxes,2,bounds=internal_surface_limits)
    # ml_plot.add_surface_elevation(plotaxes,2)
    ml_plot.add_land(plotaxes, 2)
    
    # ========================================================================
    #  Depths
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Depths', figno=42)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize':(14,4)}
    
    # Top surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Top Layer Depth'
    plotaxes.axescmd = 'subplot(1,2,1)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes
    ml_plot.add_layer_depth(plotaxes,1,bounds=[-0.1,1.1])
    ml_plot.add_land(plotaxes, 1)
    
    # Bottom surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Bottom Layer Depth'
    plotaxes.axescmd = 'subplot(1,2,2)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes
    ml_plot.add_layer_depth(plotaxes,2,bounds=[-0.1,0.7])
    ml_plot.add_land(plotaxes, 2)
    
    # ========================================================================
    #  Water Speed
    plotfigure = plotdata.new_plotfigure(name='speed')
    plotfigure.show = True
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Top layer speed
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents - Top Layer'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(1, 2, 1)'
    plotaxes.afteraxes = pcolor_afteraxes
    ml_plot.add_speed(plotaxes, 1, bounds=top_speed_limits)
    ml_plot.add_land(plotaxes, 1)

    # Bottom layer speed
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents - Bottom Layer'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(1,2,2)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_speed(plotaxes,2,bounds=[0.0,1e-10])
    ml_plot.add_speed(plotaxes,2,bounds=internal_speed_limits)
    # add_speed(plotaxes,2)
    ml_plot.add_land(plotaxes, 2)
    
    # Individual components
    plotfigure = plotdata.new_plotfigure(name='speed_components',figno=401)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize':(14,14)}
    
    # Top layer
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "X-Velocity - Top Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,1)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_x_velocity(plotaxes,1,bounds=[-1e-10,1e-10])
    ml_plot.add_x_velocity(plotaxes,1)
    ml_plot.add_land(plotaxes, 1)
    
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Y-Velocity - Top Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,2)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_y_velocity(plotaxes,1,bounds=[-0.000125,0.000125])
    ml_plot.add_y_velocity(plotaxes,1)
    ml_plot.add_land(plotaxes, 1)
    
    # Bottom layer
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "X-Velocity - Bottom Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,3)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_x_velocity(plotaxes,2,bounds=[-1e-10,1e-10])
    ml_plot.add_x_velocity(plotaxes,2)
    ml_plot.add_land(plotaxes, 2)
    
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Y-Velocity - Bottom Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,4)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_y_velocity(plotaxes,2,bounds=[-0.8e-6,.8e-6])
    ml_plot.add_y_velocity(plotaxes,2)

    ml_plot.add_land(plotaxes, 2)
    # ========================================================================
    #  Profile Plots
    #  Note that these are not currently plotted by default - set
    # `plotfigure.show = True` is you want this to be plotted
    plotfigure = plotdata.new_plotfigure(name='profile')
    plotfigure.show = False

    # Top surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = [-1.1, 0.1]
    plotaxes.title = "Profile of depth"
    plotaxes.afteraxes = profile_afteraxes

    slice_index = 30

    # Internal surface
    def bathy_profile(current_data):
        return current_data.x[:, slice_index], b(current_data)[:, slice_index]

    def lower_surface(current_data):
        if multilayer_data.init_type == 2:
            return current_data.x[:, slice_index],    \
                    eta2(current_data)[:, slice_index]
        elif multilayer_data.init_type == 6:
            return current_data.y[slice_index, :],    \
                    eta2(current_data)[slice_index, :]

    def upper_surface(current_data):
        if multilayer_data.init_type == 2:
            return current_data.x[:, slice_index],    \
                    eta1(current_data)[:, slice_index]
        elif multilayer_data.init_type == 6:
            return current_data.y[slice_index, :],    \
                    eta1(current_data)[slice_index, :]

    def top_speed(current_data):
        if multilayer_data.init_type == 2:
            return current_data.x[:, slice_index],    \
                    water_u1(current_data)[:, slice_index]
        elif multilayer_data.init_type == 6:
            return current_data.y[slice_index, :],    \
                    water_u1(current_data)[slice_index, :]

    def bottom_speed(current_data):
        if multilayer_data.init_type == 2:
            return current_data.x[:, slice_index],    \
                    water_u2(current_data)[:, slice_index]
        elif multilayer_data.init_type == 6:
            return current_data.y[slice_index, :],    \
                    water_u2(current_data)[slice_index, :]

    # Bathy
    plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data')
    plotitem.map_2d_to_1d = bathy_profile
    plotitem.plot_var = 0
    plotitem.amr_plotstyle = ['-', '+', 'x']
    plotitem.color = 'k'
    plotitem.show = True

    # Internal Interface
    plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data')
    plotitem.map_2d_to_1d = lower_surface
    plotitem.plot_var = 7
    plotitem.amr_plotstyle = ['-', '+', 'x']
    plotitem.color = 'b'
    plotitem.show = True

    # Upper Interface
    plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data')
    plotitem.map_2d_to_1d = upper_surface
    plotitem.plot_var = 6
    plotitem.amr_plotstyle = ['-', '+', 'x']
    plotitem.color = (0.2, 0.8, 1.0)
    plotitem.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Y-Velocity'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes
    
    # Water
    # plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    # # plotitem.plot_var = geoplot.surface
    # plotitem.plot_var = water_v
    # plotitem.pcolor_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'})
    # # plotitem.pcolor_cmin = -1.e-10
    # # plotitem.pcolor_cmax = 1.e-10
    # # plotitem.pcolor_cmin = -2.5 # -3.0
    # # plotitem.pcolor_cmax = 2.5 # 3.0
    # plotitem.add_colorbar = True
    # plotitem.amr_celledges_show = [0,0,0]
    # plotitem.amr_patchedges_show = [1,1,1]

    # Land
    ml_plot.add_land(plotaxes, 1)
    
    # ========================================================================
    #  Contour plot for surface
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='contour_surface',figno=15)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize':(14,4)}
    
    # Set up for axes in this figure:
    
    # Top Surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Top Surface'
    plotaxes.axescmd = 'subplot(1,2,1)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = contour_afteraxes
    ml_plot.add_surface_elevation(plotaxes,plot_type='contour',surface=1,bounds=[-2.5,-1.5,-0.5,0.5,1.5,2.5])
    ml_plot.add_land(plotaxes, 1, plot_type='contour')
    
    # Internal Surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Internal Surface'
    plotaxes.axescmd = 'subplot(1,2,2)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = contour_afteraxes
    ml_plot.add_surface_elevation(plotaxes,plot_type='contour',surface=2,bounds=[-2.5,-1.5,-0.5,0.5,1.5,2.5])
    ml_plot.add_land(plotaxes, 2, plot_type='contour')
    
    # ========================================================================
    #  Contour plot for speed
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='contour_speed',figno=16)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize':(14,4)}
    
    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Current'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = contour_afteraxes
    
    # Surface
    plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
    plotitem.plot_var = ml_plot.water_speed_depth_ave
    plotitem.kwargs = {'linewidths':1}
    # plotitem.contour_levels = [1.0,2.0,3.0,4.0,5.0,6.0]
    plotitem.contour_levels = [0.5,1.5,3,4.5,6.0]
    plotitem.amr_contour_show = [1,1,1]
    plotitem.amr_celledges_show = [0,0,0]
    plotitem.amr_patchedges_show = [1,1,1]
    plotitem.amr_contour_colors = 'k'
    # plotitem.amr_contour_colors = ['r','k','b']  # color on each level
    # plotitem.amr_grid_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee']
    plotitem.show = True 
    
    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
    plotitem.plot_var = geoplot.land
    plotitem.contour_nlevels = 40
    plotitem.contour_min = 0.0
    plotitem.contour_max = 100.0
    plotitem.amr_contour_colors = ['g']  # color on each level
    plotitem.amr_patch_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee']
    plotitem.amr_celledges_show = 0
    plotitem.amr_patchedges_show = 0
    plotitem.show = True

    # ========================================================================
    #  Grid Cells
    # ========================================================================
    
    # Figure for grid cells
    plotfigure = plotdata.new_plotfigure(name='cells', figno=2)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.title = 'Grid patches'
    plotaxes.scaled = True

    # Set up for item on these axes:
    plotitem = plotaxes.new_plotitem(plot_type='2d_patch')
    plotitem.amr_patch_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee']
    plotitem.amr_celledges_show = [0,0,0]
    plotitem.amr_patchedges_show = [1,1,1]
    
    # ========================================================================
    #  Vorticity Plot
    # ========================================================================
    # plotfigure = plotdata.new_plotfigure(name='vorticity',figno=17)
    # plotfigure.show = False
    # plotaxes = plotfigure.new_plotaxes()
    # plotaxes.title = "Vorticity"
    # plotaxes.scaled = True
    # plotaxes.xlimits = xlimits
    # plotaxes.ylimits = ylimits
    # plotaxes.afteraxes = pcolor_afteraxes
    # 
    # # Vorticity
    # plotitem = plotaxes.new_plotitem(plot_type='2d_imshow')
    # plotitem.plot_var = 9
    # plotitem.imshow_cmap = plt.get_cmap('PRGn')
    # # plotitem.pcolor_cmap = plt.get_cmap('PuBu')
    # # plotitem.pcolor_cmin = 0.0
    # # plotitem.pcolor_cmax = 6.0
    # plotitem.imshow_cmin = -1.e-2
    # plotitem.imshow_cmax = 1.e-2
    # plotitem.add_colorbar = True
    # plotitem.amr_celledges_show = [0,0,0]
    # plotitem.amr_patchedges_show = [1]
    # 
    # # Land
    # plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    # plotitem.plot_var = geoplot.land
    # plotitem.pcolor_cmap = geoplot.land_colors
    # plotitem.pcolor_cmin = 0.0
    # plotitem.pcolor_cmax = 80.0
    # plotitem.add_colorbar = False
    # plotitem.amr_celledges_show = [0,0,0]

    # ========================================================================
    #  Figures for gauges

    # Top
    plotfigure = plotdata.new_plotfigure(name='Surface & topo',
                                         type='each_gauge',
                                         figno=301)
    plotfigure.show = True
    plotfigure.clf_each_gauge = True
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = 'subplot(1, 2, 1)'
    plotaxes.xlimits = [0.0, 1.0]
    plotaxes.ylimits = top_surface_limits
    plotaxes.title = 'Top Surface'

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 6
    plotitem.plotstyle = 'b-'

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = 'subplot(1, 2, 2)'
    plotaxes.xlimits = [0.0, 1.0]
    plotaxes.ylimits = internal_surface_limits
    plotaxes.title = 'Bottom Surface'

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 7
    plotitem.plotstyle = 'b-'

    # =========================================================================
    #  Other plots

    # Gauge Locations - Enable to see where gauges are located
    def locations_afteraxes(current_data, gaugenos='all'):
        gaugetools.plot_gauge_locations(current_data.plotdata,
                                        gaugenos=gaugenos,
                                        format_string='kx',
                                        add_labels=True)
        pcolor_afteraxes(current_data)

    plotfigure = plotdata.new_plotfigure(name='Gauge Locations')
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Top surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Top Surface'
    plotaxes.axescmd = 'subplot(1, 2, 1)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = locations_afteraxes
    ml_plot.add_surface_elevation(plotaxes, 1, bounds=top_surface_limits)
    ml_plot.add_land(plotaxes, 1)

    # Bottom surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Internal Surface'
    plotaxes.axescmd = 'subplot(1, 2, 2)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = locations_afteraxes
    ml_plot.add_surface_elevation(plotaxes, 2, bounds=internal_surface_limits)
    ml_plot.add_land(plotaxes, 2)

    # -----------------------------------------
    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True               # print figures
    plotdata.print_format = 'png'           # file format
    plotdata.print_framenos = 'all'         # list of frames to print
    plotdata.print_fignos = 'all'           # list of figures to print
    plotdata.html = True                    # create html files of plots?
    plotdata.latex = False                  # create latex file of plots?
    plotdata.latex_figsperline = 2          # layout of plots
    plotdata.latex_framesperline = 1        # layout of plots
    plotdata.latex_makepdf = False          # also run pdflatex?
    plotdata.parallel = True                # make multiple frame png's at once

    return plotdata
示例#18
0
def setplot(plotdata=None):
    #--------------------------
    """ 
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    """

    from clawpack.visclaw import colormaps, geoplot

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    plotdata.clearfigures()  # clear any old figures,axes,items data

    def set_drytol(current_data):
        # The drytol parameter is used in masking land and water and
        # affects what color map is used for cells with small water depth h.
        # The cell will be plotted as dry if h < drytol.
        # The best value to use often depends on the application and can
        # be set here (measured in meters):
        current_data.user["drytol"] = 1.e-3

    plotdata.beforeframe = set_drytol

    #-----------------------------------------
    # Figure for pcolor plot
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='pcolor', figno=0)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes('pcolor')
    plotaxes.title = 'Surface'
    plotaxes.scaled = True

    # Water
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.surface
    plotitem.pcolor_cmap = geoplot.tsunami_colormap
    plotitem.pcolor_cmin = -0.1
    plotitem.pcolor_cmax = 0.1
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.patchedges_show = 1

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.land
    plotitem.pcolor_cmap = geoplot.land_colors
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 100.0
    plotitem.add_colorbar = False
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.patchedges_show = 1
    plotaxes.xlimits = [-2, 2]
    plotaxes.ylimits = [-2, 2]

    # Add contour lines of bathymetry:
    plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
    plotitem.plot_var = geoplot.topo
    from numpy import arange, linspace
    plotitem.contour_levels = linspace(-.1, 0.5, 20)
    plotitem.amr_contour_colors = ['k']  # color on each level
    plotitem.kwargs = {'linestyles': 'solid'}
    plotitem.amr_contour_show = [1]
    plotitem.celledges_show = 0
    plotitem.patchedges_show = 0
    plotitem.show = True

    #-----------------------------------------
    # Figure for cross section
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='cross-section', figno=1)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [-2, 2]
    plotaxes.ylimits = [-0.15, 0.3]
    plotaxes.title = 'Cross section at y=0'

    def plot_topo_xsec(current_data):
        from pylab import plot, cos, sin, where, legend, nan
        t = current_data.t

        x = linspace(-2, 2, 201)
        y = 0.
        B = h0 * (x**2 + y**2) / a**2 - h0
        eta1 = sigma * h0 / a**2 * (2. * x * cos(omega * t) +
                                    2. * y * sin(omega * t) - sigma)
        etatrue = where(eta1 > B, eta1, nan)
        plot(x, etatrue, 'r', label="true solution", linewidth=2)
        plot(x, B, 'g', label="bathymetry")
        ## plot([0],[-1],'kx',label="Level 1")  # shouldn't show up in plots,
        ## plot([0],[-1],'bo',label="Level 2")  # but will produced desired legend
        plot([0], [-1], 'bo', label="Computed")  ## need to fix plotstyle
        legend()

    plotaxes.afteraxes = plot_topo_xsec

    plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data')

    def xsec(current_data):
        # Return x value and surface eta at this point, along y=0
        from pylab import where, ravel
        x = current_data.x
        y = ravel(current_data.y)
        dy = current_data.dy
        q = current_data.q

        ij = where((y <= dy / 2.) & (y > -dy / 2.))
        x_slice = ravel(x)[ij]
        eta_slice = ravel(q[3, :, :])[ij]
        return x_slice, eta_slice

    plotitem.map_2d_to_1d = xsec
    plotitem.plotstyle = 'kx'  ## need to be able to set amr_plotstyle
    plotitem.kwargs = {'markersize': 3}
    plotitem.amr_show = [1]  # plot on all levels

    #-----------------------------------------
    # Figure for grids alone
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='grids', figno=2)
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [-2, 2]
    plotaxes.ylimits = [-2, 2]
    plotaxes.title = 'grids'
    plotaxes.scaled = True

    # Set up for item on these axes:
    plotitem = plotaxes.new_plotitem(plot_type='2d_patch')
    plotitem.amr_patch_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee']
    plotitem.amr_celledges_show = [1, 1, 0]
    plotitem.amr_patchedges_show = [1]

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_gaugenos = []  # list of gauges to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?
    plotdata.parallel = True  # make multiple frame png's at once

    return plotdata
示例#19
0
def setplot(plotdata=None):
#--------------------------
    
    """ 
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    """ 

    import os

    import numpy as np
    import matplotlib.pyplot as plt

    from clawpack.visclaw import geoplot, gaugetools, colormaps

    import clawpack.clawutil.data as clawutil
    import clawpack.amrclaw.data as amrclaw
    import clawpack.geoclaw.data

    import clawpack.geoclaw.multilayer.plot as ml_plot

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    from numpy import linspace



    plotdata.clearfigures()  # clear any old figures,axes,items data
    plotdata.save_frames = False

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir,'claw.data'))
    amrdata = amrclaw.AmrclawInputData(clawdata)
    amrdata.read(os.path.join(plotdata.outdir,'amr.data'))
    geodata = clawpack.geoclaw.data.GeoClawData()
    geodata.read(os.path.join(plotdata.outdir,'geoclaw.data'))
    multilayer_data = clawpack.geoclaw.data.MultilayerData()
    multilayer_data.read(os.path.join(plotdata.outdir,'multilayer.data'))

    # To plot gauge locations on pcolor or contour plot, use this as
    # an afteraxis function:

    def addgauges(current_data):
        from clawpack.visclaw import gaugetools
        gaugetools.plot_gauge_locations(current_data.plotdata, \
             gaugenos='all', format_string='ko', add_labels=True)

    # ========================================================================
    #  Generic helper functions
    # ========================================================================
    def pcolor_afteraxes(current_data):
        # bathy_ref_lines(current_data)
        gauge_locations(current_data)
        
    def contour_afteraxes(current_data):
        # gauge_locations(current_data)
        # m_to_km_labels()
        plt.hold(True)
        pos = -80.0 * (23e3 / 180) + 500e3 - 5e3
        plt.plot([pos,pos],[-300e3,300e3],'b',[pos-5e3,pos-5e3],[-300e3,300e3],'y')
        plt.hold(False)
        wind_contours(current_data)
        bathy_ref_lines(current_data)
        
    def profile_afteraxes(current_data):
        pass
        
    def gauge_locations(current_data,gaugenos='all'):
        plt.hold(True)
        gaugetools.plot_gauge_locations(current_data.plotdata, \
             gaugenos=gaugenos, format_string='kx', add_labels=True)
        plt.hold(False)
    
    # ========================================================================
    # Axis limits
    # xlimits = [amrdata.xlower,amrdata.xupper]
    xlimits = [-100.0, 100.0]

    # ylimits = [amrdata.ylower,amrdata.yupper]
    ylimits = [-100.0, 100.0]
    
    eta = [multilayer_data.eta[0],multilayer_data.eta[1]]

    top_surface_limits = [eta[0]-10,eta[0]+10]
    internal_surface_limits = [eta[1]-5,eta[1]+5]
    depth_limits = [0.0, 0.4]
    top_speed_limits = [0.0,0.1]
    internal_speed_limits = [0.0,0.03]
    

    # ========================================================================
    #  Surface Elevations
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Surface', figno=0)
    plotfigure.show = True
    plotfigure.kwargs = {'figsize':(14,4)}
    
    # Top surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Top Surface'
    plotaxes.axescmd = 'subplot(1,2,1)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    ml_plot.add_inundation(plotaxes, 1, bounds=depth_limits)
    ml_plot.add_surface_elevation(plotaxes,1,bounds=top_surface_limits)
    ml_plot.add_land(plotaxes, 1)
    
    # Bottom surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Internal Surface'
    plotaxes.axescmd = 'subplot(1,2,2)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    ml_plot.add_inundation(plotaxes, 2, bounds=depth_limits)
    ml_plot.add_surface_elevation(plotaxes,2,bounds=internal_surface_limits)
    ml_plot.add_colorbar = True
    ml_plot.add_land(plotaxes, 2)


    # ========================================================================
    # Figure for cross section
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='cross-section', figno=4)
    plotfigure.show = True
    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.title = 'Cross section at y=0'
    ml_plot.add_cross_section(plotaxes, 1)
    ml_plot.add_cross_section(plotaxes, 2)
    ml_plot.add_land_cross_section(plotaxes)


    # ========================================================================
    #  Water Speed
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='speed', figno=1)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize':(14,4)}

    # Top layer speed
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents - Top Layer'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(1,2,1)'
    ml_plot.add_speed(plotaxes,1,bounds=top_speed_limits)
    ml_plot.add_land(plotaxes, 1)
    
    # Bottom layer speed
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents - Bottom Layer'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(1,2,2)'
    ml_plot.add_speed(plotaxes,2,bounds=internal_speed_limits)
    ml_plot.add_land(plotaxes, 2)
    
    # Individual components
    plotfigure = plotdata.new_plotfigure(name='speed_components',figno=401)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize':(14,14)}
    
    # Top layer
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "X-Velocity - Top Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,1)'
    ml_plot.add_x_velocity(plotaxes,1)
    ml_plot.add_land(plotaxes, 1)
    
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Y-Velocity - Top Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,2)'
    ml_plot.add_y_velocity(plotaxes,1)
    ml_plot.add_land(plotaxes, 1)
    
    # Bottom layer
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "X-Velocity - Bottom Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,3)'
    ml_plot.add_x_velocity(plotaxes,2)
    ml_plot.add_land(plotaxes, 2)
    
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Y-Velocity - Bottom Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,4)'
    ml_plot.add_y_velocity(plotaxes,2)
    ml_plot.add_land(plotaxes, 2)


    #-----------------------------------------
    # Figures for gauges
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='Surface at gauges', figno=300, \
                    type='each_gauge')
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = 'auto'
    plotaxes.ylimits = 'auto'
    plotaxes.title = 'Surface'

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    # Plot topo as green curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.show = False

    def gaugetopo(current_data):
        q = current_data.q
        h = q[0,:]
        eta = q[3,:]
        topo = eta - h
        return topo
        
    plotitem.plot_var = gaugetopo
    plotitem.plotstyle = 'g-'

    def add_zeroline(current_data):
        from pylab import plot, legend, xticks, floor, axis, xlabel
        t = current_data.t 
        gaugeno = current_data.gaugeno

        if gaugeno == 32412:
            try:
                plot(TG32412[:,0], TG32412[:,1], 'r')
                legend(['GeoClaw','Obs'],loc='lower right')
            except: pass
            axis((0,t.max(),-0.3,0.3))

        plot(t, 0*t, 'k')
        n = int(floor(t.max()/3600.) + 2)
        xticks([3600*i for i in range(n)], ['%i' % i for i in range(n)])
        xlabel('time (hours)')


    #-----------------------------------------
    
    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True                # print figures
    plotdata.print_format = 'png'            # file format
    plotdata.print_framenos = 'all'          # list of frames to print
    plotdata.print_gaugenos = 'all'          # list of gauges to print
    plotdata.print_fignos = 'all'            # list of figures to print
    plotdata.html = True                     # create html files of plots?
    plotdata.html_homelink = '../README.html'   # pointer for top of index
    plotdata.latex = True                    # create latex file of plots?
    plotdata.latex_figsperline = 2           # layout of plots
    plotdata.latex_framesperline = 1         # layout of plots
    plotdata.latex_makepdf = False           # also run pdflatex?
    plotdata.parallel = True                 # make multiple frame png's at once

    return plotdata
示例#20
0
def setplot(plotdata=None,
            bathy_location=0.15,
            bathy_angle=0.0,
            bathy_left=-1.0,
            bathy_right=-0.2):
    """Setup the plotting data objects.

    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.

    returns plotdata object

    """

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    multilayer_data = clawpack.geoclaw.data.MultilayerData()
    multilayer_data.read(os.path.join(plotdata.outdir, 'multilayer.data'))

    def transform_c2p(x, y, x0, y0, theta):
        return ((x + x0) * np.cos(theta) - (y + y0) * np.sin(theta),
                (x + x0) * np.sin(theta) + (y + y0) * np.cos(theta))

    def transform_p2c(x, y, x0, y0, theta):
        return (x * np.cos(theta) + y * np.sin(theta) - x0,
                -x * np.sin(theta) + y * np.cos(theta) - y0)

    # Setup bathymetry reference lines
    with open(os.path.join(plotdata.outdir, "bathy_geometry.data"), 'r') \
            as bathy_geometry_file:
        bathy_location = float(bathy_geometry_file.readline())
        bathy_angle = float(bathy_geometry_file.readline())
    x = [0.0, 0.0]
    y = [0.0, 1.0]
    x1, y1 = transform_c2p(x[0], y[0], bathy_location, 0.0, bathy_angle)
    x2, y2 = transform_c2p(x[1], y[1], bathy_location, 0.0, bathy_angle)

    if abs(x1 - x2) < 10**-3:
        x = [x1, x1]
        y = [clawdata.lower[1], clawdata.upper[1]]
    else:
        m = (y1 - y2) / (x1 - x2)
        x[0] = (clawdata.lower[1] - y1) / m + x1
        y[0] = clawdata.lower[1]
        x[1] = (clawdata.upper[1] - y1) / m + x1
        y[1] = clawdata.upper[1]
    ref_lines = [((x[0], y[0]), (x[1], y[1]))]

    plotdata.clearfigures()
    plotdata.save_frames = False

    # ========================================================================
    #  Generic helper functions
    def pcolor_afteraxes(current_data):
        bathy_ref_lines(current_data)

    def contour_afteraxes(current_data):
        axes = plt.gca()
        pos = -80.0 * (23e3 / 180) + 500e3 - 5e3
        axes.plot([pos, pos], [-300e3, 300e3], 'b', [pos - 5e3, pos - 5e3],
                  [-300e3, 300e3], 'y')
        wind_contours(current_data)
        bathy_ref_lines(current_data)

    def profile_afteraxes(current_data):
        pass

    def bathy_ref_lines(current_data):
        axes = plt.gca()
        for ref_line in ref_lines:
            x1 = ref_line[0][0]
            y1 = ref_line[0][1]
            x2 = ref_line[1][0]
            y2 = ref_line[1][1]
            axes.plot([x1, x2], [y1, y2], 'y--', linewidth=1)

    # ========================================================================
    # Axis limits

    xlimits = [-0.5, 0.5]
    ylimits = [-0.5, 0.5]
    eta = [multilayer_data.eta[0], multilayer_data.eta[1]]
    top_surface_limits = [eta[0] - 0.03, eta[0] + 0.03]
    internal_surface_limits = [eta[1] - 0.015, eta[1] + 0.015]
    top_speed_limits = [0.0, 0.1]
    internal_speed_limits = [0.0, 0.03]

    # ========================================================================
    #  Surface Elevations
    plotfigure = plotdata.new_plotfigure(name='Surface')
    plotfigure.show = True
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Top surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Top Surface'
    plotaxes.axescmd = 'subplot(1, 2, 1)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes
    ml_plot.add_surface_elevation(plotaxes, 1, bounds=top_surface_limits)
    # ml_plot.add_surface_elevation(plotaxes,1,bounds=[-0.06,0.06])
    # ml_plot.add_surface_elevation(plotaxes,1)
    ml_plot.add_land(plotaxes, 1)

    # Bottom surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Internal Surface'
    plotaxes.axescmd = 'subplot(1,2,2)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes
    # ml_plot.add_surface_elevation(plotaxes,2,bounds=[-300-0.5,-300+0.5])
    ml_plot.add_surface_elevation(plotaxes, 2, bounds=internal_surface_limits)
    # ml_plot.add_surface_elevation(plotaxes,2)
    ml_plot.add_land(plotaxes, 2)

    # ========================================================================
    #  Depths
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Depths', figno=42)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Top surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Top Layer Depth'
    plotaxes.axescmd = 'subplot(1,2,1)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes
    ml_plot.add_layer_depth(plotaxes, 1, bounds=[-0.1, 1.1])
    ml_plot.add_land(plotaxes, 1)

    # Bottom surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Bottom Layer Depth'
    plotaxes.axescmd = 'subplot(1,2,2)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes
    ml_plot.add_layer_depth(plotaxes, 2, bounds=[-0.1, 0.7])
    ml_plot.add_land(plotaxes, 2)

    # ========================================================================
    #  Water Speed
    plotfigure = plotdata.new_plotfigure(name='speed')
    plotfigure.show = True
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Top layer speed
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents - Top Layer'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(1, 2, 1)'
    plotaxes.afteraxes = pcolor_afteraxes
    ml_plot.add_speed(plotaxes, 1, bounds=top_speed_limits)
    ml_plot.add_land(plotaxes, 1)

    # Bottom layer speed
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents - Bottom Layer'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(1,2,2)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_speed(plotaxes,2,bounds=[0.0,1e-10])
    ml_plot.add_speed(plotaxes, 2, bounds=internal_speed_limits)
    # add_speed(plotaxes,2)
    ml_plot.add_land(plotaxes, 2)

    # Individual components
    plotfigure = plotdata.new_plotfigure(name='speed_components', figno=401)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': (14, 14)}

    # Top layer
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "X-Velocity - Top Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,1)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_x_velocity(plotaxes,1,bounds=[-1e-10,1e-10])
    ml_plot.add_x_velocity(plotaxes, 1)
    ml_plot.add_land(plotaxes, 1)

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Y-Velocity - Top Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,2)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_y_velocity(plotaxes,1,bounds=[-0.000125,0.000125])
    ml_plot.add_y_velocity(plotaxes, 1)
    ml_plot.add_land(plotaxes, 1)

    # Bottom layer
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "X-Velocity - Bottom Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,3)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_x_velocity(plotaxes,2,bounds=[-1e-10,1e-10])
    ml_plot.add_x_velocity(plotaxes, 2)
    ml_plot.add_land(plotaxes, 2)

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Y-Velocity - Bottom Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,4)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_y_velocity(plotaxes,2,bounds=[-0.8e-6,.8e-6])
    ml_plot.add_y_velocity(plotaxes, 2)

    ml_plot.add_land(plotaxes, 2)
    # ========================================================================
    #  Profile Plots
    #  Note that these are not currently plotted by default - set
    # `plotfigure.show = True` is you want this to be plotted
    plotfigure = plotdata.new_plotfigure(name='profile')
    plotfigure.show = False

    # Top surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = [-1.1, 0.1]
    plotaxes.title = "Profile of depth"
    plotaxes.afteraxes = profile_afteraxes

    slice_index = 30

    # Internal surface
    def bathy_profile(current_data):
        return current_data.x[:, slice_index], b(current_data)[:, slice_index]

    def lower_surface(current_data):
        if multilayer_data.init_type == 2:
            return current_data.x[:, slice_index],    \
                    eta2(current_data)[:, slice_index]
        elif multilayer_data.init_type == 6:
            return current_data.y[slice_index, :],    \
                    eta2(current_data)[slice_index, :]

    def upper_surface(current_data):
        if multilayer_data.init_type == 2:
            return current_data.x[:, slice_index],    \
                    eta1(current_data)[:, slice_index]
        elif multilayer_data.init_type == 6:
            return current_data.y[slice_index, :],    \
                    eta1(current_data)[slice_index, :]

    def top_speed(current_data):
        if multilayer_data.init_type == 2:
            return current_data.x[:, slice_index],    \
                    water_u1(current_data)[:, slice_index]
        elif multilayer_data.init_type == 6:
            return current_data.y[slice_index, :],    \
                    water_u1(current_data)[slice_index, :]

    def bottom_speed(current_data):
        if multilayer_data.init_type == 2:
            return current_data.x[:, slice_index],    \
                    water_u2(current_data)[:, slice_index]
        elif multilayer_data.init_type == 6:
            return current_data.y[slice_index, :],    \
                    water_u2(current_data)[slice_index, :]

    # Bathy
    plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data')
    plotitem.map_2d_to_1d = bathy_profile
    plotitem.plot_var = 0
    plotitem.amr_plotstyle = ['-', '+', 'x']
    plotitem.color = 'k'
    plotitem.show = True

    # Internal Interface
    plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data')
    plotitem.map_2d_to_1d = lower_surface
    plotitem.plot_var = 7
    plotitem.amr_plotstyle = ['-', '+', 'x']
    plotitem.color = 'b'
    plotitem.show = True

    # Upper Interface
    plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data')
    plotitem.map_2d_to_1d = upper_surface
    plotitem.plot_var = 6
    plotitem.amr_plotstyle = ['-', '+', 'x']
    plotitem.color = (0.2, 0.8, 1.0)
    plotitem.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Y-Velocity'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes

    # Water
    # plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    # # plotitem.plot_var = geoplot.surface
    # plotitem.plot_var = water_v
    # plotitem.pcolor_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'})
    # # plotitem.pcolor_cmin = -1.e-10
    # # plotitem.pcolor_cmax = 1.e-10
    # # plotitem.pcolor_cmin = -2.5 # -3.0
    # # plotitem.pcolor_cmax = 2.5 # 3.0
    # plotitem.add_colorbar = True
    # plotitem.amr_celledges_show = [0,0,0]
    # plotitem.amr_patchedges_show = [1,1,1]

    # Land
    ml_plot.add_land(plotaxes, 1)

    # ========================================================================
    #  Contour plot for surface
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='contour_surface', figno=15)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Set up for axes in this figure:

    # Top Surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Top Surface'
    plotaxes.axescmd = 'subplot(1,2,1)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = contour_afteraxes
    ml_plot.add_surface_elevation(plotaxes,
                                  plot_type='contour',
                                  surface=1,
                                  bounds=[-2.5, -1.5, -0.5, 0.5, 1.5, 2.5])
    ml_plot.add_land(plotaxes, 1, plot_type='contour')

    # Internal Surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Internal Surface'
    plotaxes.axescmd = 'subplot(1,2,2)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = contour_afteraxes
    ml_plot.add_surface_elevation(plotaxes,
                                  plot_type='contour',
                                  surface=2,
                                  bounds=[-2.5, -1.5, -0.5, 0.5, 1.5, 2.5])
    ml_plot.add_land(plotaxes, 2, plot_type='contour')

    # ========================================================================
    #  Contour plot for speed
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='contour_speed', figno=16)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Current'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = contour_afteraxes

    # Surface
    plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
    plotitem.plot_var = ml_plot.water_speed_depth_ave
    plotitem.kwargs = {'linewidths': 1}
    # plotitem.contour_levels = [1.0,2.0,3.0,4.0,5.0,6.0]
    plotitem.contour_levels = [0.5, 1.5, 3, 4.5, 6.0]
    plotitem.amr_contour_show = [1, 1, 1]
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [1, 1, 1]
    plotitem.amr_contour_colors = 'k'
    # plotitem.amr_contour_colors = ['r','k','b']  # color on each level
    # plotitem.amr_grid_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee']
    plotitem.show = True

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
    plotitem.plot_var = geoplot.land
    plotitem.contour_nlevels = 40
    plotitem.contour_min = 0.0
    plotitem.contour_max = 100.0
    plotitem.amr_contour_colors = ['g']  # color on each level
    plotitem.amr_patch_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee']
    plotitem.amr_celledges_show = 0
    plotitem.amr_patchedges_show = 0
    plotitem.show = True

    # ========================================================================
    #  Grid Cells
    # ========================================================================

    # Figure for grid cells
    plotfigure = plotdata.new_plotfigure(name='cells', figno=2)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.title = 'Grid patches'
    plotaxes.scaled = True

    # Set up for item on these axes:
    plotitem = plotaxes.new_plotitem(plot_type='2d_patch')
    plotitem.amr_patch_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee']
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [1, 1, 1]

    # ========================================================================
    #  Vorticity Plot
    # ========================================================================
    # plotfigure = plotdata.new_plotfigure(name='vorticity',figno=17)
    # plotfigure.show = False
    # plotaxes = plotfigure.new_plotaxes()
    # plotaxes.title = "Vorticity"
    # plotaxes.scaled = True
    # plotaxes.xlimits = xlimits
    # plotaxes.ylimits = ylimits
    # plotaxes.afteraxes = pcolor_afteraxes
    #
    # # Vorticity
    # plotitem = plotaxes.new_plotitem(plot_type='2d_imshow')
    # plotitem.plot_var = 9
    # plotitem.imshow_cmap = plt.get_cmap('PRGn')
    # # plotitem.pcolor_cmap = plt.get_cmap('PuBu')
    # # plotitem.pcolor_cmin = 0.0
    # # plotitem.pcolor_cmax = 6.0
    # plotitem.imshow_cmin = -1.e-2
    # plotitem.imshow_cmax = 1.e-2
    # plotitem.add_colorbar = True
    # plotitem.amr_celledges_show = [0,0,0]
    # plotitem.amr_patchedges_show = [1]
    #
    # # Land
    # plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    # plotitem.plot_var = geoplot.land
    # plotitem.pcolor_cmap = geoplot.land_colors
    # plotitem.pcolor_cmin = 0.0
    # plotitem.pcolor_cmax = 80.0
    # plotitem.add_colorbar = False
    # plotitem.amr_celledges_show = [0,0,0]

    # ========================================================================
    #  Figures for gauges

    # Top
    plotfigure = plotdata.new_plotfigure(name='Surface & topo',
                                         type='each_gauge',
                                         figno=301)
    plotfigure.show = True
    plotfigure.clf_each_gauge = True
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = 'subplot(1, 2, 1)'
    plotaxes.xlimits = [0.0, 1.0]
    plotaxes.ylimits = top_surface_limits
    plotaxes.title = 'Top Surface'

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 6
    plotitem.plotstyle = 'b-'

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = 'subplot(1, 2, 2)'
    plotaxes.xlimits = [0.0, 1.0]
    plotaxes.ylimits = internal_surface_limits
    plotaxes.title = 'Bottom Surface'

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 7
    plotitem.plotstyle = 'b-'

    # =========================================================================
    #  Other plots

    # Gauge Locations - Enable to see where gauges are located
    def locations_afteraxes(current_data, gaugenos='all'):
        gaugetools.plot_gauge_locations(current_data.plotdata,
                                        gaugenos=gaugenos,
                                        format_string='kx',
                                        add_labels=True)
        pcolor_afteraxes(current_data)

    plotfigure = plotdata.new_plotfigure(name='Gauge Locations')
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Top surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Top Surface'
    plotaxes.axescmd = 'subplot(1, 2, 1)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = locations_afteraxes
    ml_plot.add_surface_elevation(plotaxes, 1, bounds=top_surface_limits)
    ml_plot.add_land(plotaxes, 1)

    # Bottom surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Internal Surface'
    plotaxes.axescmd = 'subplot(1, 2, 2)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = locations_afteraxes
    ml_plot.add_surface_elevation(plotaxes, 2, bounds=internal_surface_limits)
    ml_plot.add_land(plotaxes, 2)

    # -----------------------------------------
    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.latex = False  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?
    plotdata.parallel = True  # make multiple frame png's at once

    return plotdata
示例#21
0
def setplot(plotdata=None):
#--------------------------
    
    """ 
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of clawpack.visclaw.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    """ 


    from clawpack.visclaw import colormaps

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()


    plotdata.clearfigures()  # clear any old figures,axes,items data
    

    # Figure for pressure
    # -------------------

    plotfigure = plotdata.new_plotfigure(name='Pressure', figno=0)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = 'auto'
    plotaxes.ylimits = 'auto'
    plotaxes.title = 'Pressure'
    plotaxes.scaled = True      # so aspect ratio is 1
    plotaxes.afteraxes = addgauges

    # Set up for item on these axes:
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = 0
    plotitem.pcolor_cmap = colormaps.blue_yellow_red
    plotitem.add_colorbar = True
    plotitem.show = True       # show on plot?
    plotitem.pcolor_cmin = -2.0
    plotitem.pcolor_cmax = 2.0
    plotitem.amr_patchedges_show = [1,1,1]
    plotitem.amr_celledges_show = [1,0,0]
    
    

    # Figure for scatter plot
    # -----------------------

    plotfigure = plotdata.new_plotfigure(name='scatter', figno=3)
    plotfigure.show = (qref_dir is not None)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [0,1.5]
    plotaxes.ylimits = [-2.,4.]
    plotaxes.title = 'Scatter plot'

    # Set up for item on these axes: scatter of 2d data
    plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data')
    
    def p_vs_r(current_data):
        # Return radius of each grid cell and p value in the cell
        from pylab import sqrt
        x = current_data.x
        y = current_data.y
        r = sqrt(x**2 + y**2)
        q = current_data.q
        p = q[0,:,:]
        return r,p

    plotitem.map_2d_to_1d = p_vs_r
    plotitem.plot_var = 0
    plotitem.plotstyle = 'o'
    plotitem.color = 'b'
    plotitem.show = True       # show on plot?
    
    # Set up for item on these axes: 1d reference solution
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.outdir = qref_dir
    plotitem.plot_var = 0
    plotitem.plotstyle = '-'
    plotitem.color = 'r'
    plotitem.kwargs = {'linewidth': 2}
    plotitem.show = True       # show on plot?
    plotaxes.afteraxes = "import pylab; pylab.legend(('2d data', '1d reference solution'))"
    

    #-----------------------------------------
    # Figures for gauges
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='q', figno=300, \
                    type='each_gauge')
    plotfigure.clf_each_gauge = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = 'auto'
    plotaxes.ylimits = 'auto'
    plotaxes.title = 'Pressure'
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 0
    plotitem.plotstyle = 'b-'


    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via clawpack.visclaw.frametools.printframes:

    plotdata.printfigs = True                # print figures
    plotdata.print_format = 'png'            # file format
    plotdata.print_framenos = 'all'          # list of frames to print
    plotdata.print_fignos = 'all'            # list of figures to print
    plotdata.html = True                     # create html files of plots?
    plotdata.html_homelink = '../README.html'   # pointer for top of index
    plotdata.html_movie = 'JSAnimation'      # new style, or "4.x" for old style
    plotdata.latex = True                    # create latex file of plots?
    plotdata.latex_figsperline = 2           # layout of plots
    plotdata.latex_framesperline = 1         # layout of plots
    plotdata.latex_makepdf = False           # also run pdflatex?
    plotdata.parallel = True                 # make multiple frame png's at once

    return plotdata
示例#22
0
def setplot(plotdata=None):
    #--------------------------
    """
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.

    """

    from clawpack.visclaw import colormaps, geoplot
    from numpy import linspace

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    plotdata.clearfigures()  # clear any old figures,axes,items data
    plotdata.format = 'binary'

    def timeformat(t):
        from numpy import mod
        hours = int(t / 3600.)
        tmin = mod(t, 3600.)
        min = int(tmin / 60.)
        sec = int(mod(tmin, 60.))
        timestr = '%s:%s:%s' % (hours, str(min).zfill(2), str(sec).zfill(2))
        return timestr

    def title_hours(current_data):
        from pylab import title
        t = current_data.t
        timestr = timeformat(t)
        title('%s after earthquake' % timestr)

    #-----------------------------------------
    # Figure for surface
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='Domain and transects', figno=0)
    plotfigure.kwargs = {'figsize': (11, 7)}
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes('pcolor')
    #plotaxes.axescmd = 'axes([.1,.4,.8,.5])'
    plotaxes.axescmd = 'axes([.1,.1,.4,.8])'
    plotaxes.title = 'Surface'
    #plotaxes.xlimits = [-122.4, -122.16]
    #plotaxes.ylimits = [47.4, 47.8]

    x1_tr1 = -122.29
    x2_tr1 = -122.215
    y1_tr1 = 47.57
    y2_tr1 = 47.705

    x1_tr2 = -122.21
    x2_tr2 = -122.265
    y1_tr2 = 47.4925
    y2_tr2 = 47.545

    def aa_transects(current_data):
        from pylab import ticklabel_format, xticks, plot, text, gca, cos, pi
        title_hours(current_data)
        ticklabel_format(useOffset=False)
        xticks(rotation=20)
        plot([x1_tr1, x2_tr1], [y1_tr1, y2_tr1], 'w')
        plot([x1_tr2, x2_tr2], [y1_tr2, y2_tr2], 'w')
        text(x2_tr1 - 0.01,
             y2_tr1 + 0.005,
             'Transect 1',
             color='w',
             fontsize=8)
        text(x1_tr2 - 0.01,
             y1_tr2 - 0.008,
             'Transect 2',
             color='w',
             fontsize=8)
        gca().set_aspect(1. / cos(48 * pi / 180.))
        #addgauges(current_data)

    plotaxes.afteraxes = aa_transects

    # Water
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    #plotitem.plot_var = geoplot.surface
    plotitem.plot_var = surface_or_depth_lake
    plotitem.pcolor_cmap = geoplot.tsunami_colormap
    plotitem.pcolor_cmin = cmin
    plotitem.pcolor_cmax = cmax
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [0, 0, 0, 0]
    plotitem.amr_data_show = [1, 1, 1, 1, 1, 0, 0]

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.land
    plotitem.pcolor_cmap = geoplot.land_colors
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = cmax_land
    plotitem.add_colorbar = False
    plotitem.amr_celledges_show = [0]
    plotitem.amr_patchedges_show = [0, 0, 0, 0]
    plotitem.amr_data_show = [1, 1, 1, 1, 1, 0, 0]

    # add contour lines of bathy if desired:
    plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
    #plotitem.show = False
    plotitem.plot_var = geoplot.topo
    plotitem.contour_levels = [sea_level]
    plotitem.amr_contour_colors = ['g']  # color on each level
    plotitem.kwargs = {'linestyles': 'solid', 'linewidths': 0.5}
    plotitem.amr_contour_show = [0, 1, 0, 0]  # only on finest level
    plotitem.celledges_show = 0
    plotitem.patchedges_show = 0

    #-----------------------------------------
    # Plots along transect:
    #-----------------------------------------

    eta1 = lambda q: q[3, :, :]
    B1 = lambda q: q[3, :, :] - q[0, :, :]

    def plot_xsec(current_data):
        import matplotlib.pyplot as plt
        import numpy
        import gridtools
        from clawpack.pyclaw import Solution

        framesoln = current_data.framesoln

        topo_color = [.8, 1, .8]
        water_color = [.5, .5, 1]

        plt.figure(0)

        # Transect 1:
        plt.axes([.55, .5, .4, .3])
        xout = numpy.linspace(x1_tr1, x2_tr1, 1000)
        yout = numpy.linspace(y1_tr1, y2_tr1, 1000)
        eta = gridtools.grid_output_2d(framesoln, eta1, xout, yout)
        topo = gridtools.grid_output_2d(framesoln, B1, xout, yout)

        eta = numpy.where(eta > topo, eta, numpy.nan)

        plt.fill_between(yout, eta, topo, color=water_color)
        plt.fill_between(yout, topo, -10000, color=topo_color)
        plt.plot(yout, eta, 'b')
        plt.plot(yout, topo, 'g')
        plt.plot(yout, sea_level + 0 * topo, 'k--')
        #plt.xlim(47.5,47.8)
        plt.ylim(ylim_transects)
        plt.ylabel('meters')
        plt.grid(True)
        timestr = timeformat(framesoln.t)
        plt.title('Elevation on Transect 1')

        # Transect 2:
        plt.axes([.55, .1, .4, .3])
        xout = numpy.linspace(x1_tr2, x2_tr2, 1000)
        yout = numpy.linspace(y1_tr2, y2_tr2, 1000)
        eta = gridtools.grid_output_2d(framesoln, eta1, xout, yout)
        topo = gridtools.grid_output_2d(framesoln, B1, xout, yout)

        eta = numpy.where(eta > topo, eta, numpy.nan)
        topo_color = [.8, 1, .8]
        water_color = [.5, .5, 1]

        plt.fill_between(yout, eta, topo, color=water_color)
        plt.fill_between(yout, topo, -10000, color=topo_color)
        plt.plot(yout, eta, 'b')
        plt.plot(yout, topo, 'g')
        plt.plot(yout, sea_level + 0 * topo, 'k--')
        #plt.xlim(47.5,47.8)
        plt.ylim(ylim_transects)
        plt.ylabel('meters')
        plt.grid(True)
        timestr = timeformat(framesoln.t)
        plt.title('Elevation on Transect 2')

    plotdata.afterframe = plot_xsec

    #-----------------------------------------
    # Figure for zoomed area
    #-----------------------------------------

    # To use, set the limits as desired and set `plotfigure.show = True`
    x1, x2, y1, y2 = [-122.23, -122.2, 47.69, 47.71]
    plotfigure = plotdata.new_plotfigure(name="zoomed area", figno=11)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': (8, 7)}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.scaled = False

    plotaxes.xlimits = [x1, x2]
    plotaxes.ylimits = [y1, y2]

    def aa(current_data):
        from pylab import ticklabel_format, xticks, gca, cos, pi
        title_hours(current_data)
        ticklabel_format(useOffset=False)
        xticks(rotation=20)
        gca().set_aspect(1. / cos(48 * pi / 180.))

    plotaxes.afteraxes = aa

    # Water
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    #plotitem.plot_var = geoplot.surface
    plotitem.plot_var = surface_or_depth_lake
    plotitem.pcolor_cmap = geoplot.tsunami_colormap
    plotitem.pcolor_cmin = cmin
    plotitem.pcolor_cmax = cmax
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.patchedges_show = 0

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.land
    plotitem.pcolor_cmap = geoplot.land_colors
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = cmax_land
    plotitem.add_colorbar = False
    plotitem.amr_celledges_show = [0]
    plotitem.patchedges_show = 0

    #-----------------------------------------
    # Figures for gauges
    #-----------------------------------------

    time_scale = 1. / 3600.
    time_label = 'hours'

    plotfigure = plotdata.new_plotfigure(name='gauge depth', figno=300, \
                    type='each_gauge')

    #plotfigure.clf_each_gauge = False

    def setglimits_depth(current_data):
        from pylab import xlim, ylim, title, argmax, show, array, ylabel
        gaugeno = current_data.gaugeno
        q = current_data.q
        depth = q[0, :]
        t = current_data.t
        g = current_data.plotdata.getgauge(gaugeno)
        level = g.level
        maxlevel = max(level)

        #find first occurrence of the max of levels used by
        #this gauge and set the limits based on that time
        argmax_level = argmax(level)
        xlim(time_scale * array(t[argmax_level], t[-1]))
        ylabel('meters')
        min_depth = depth[argmax_level:].min()
        max_depth = depth[argmax_level:].max()
        ylim(min_depth - 0.5, max_depth + 0.5)
        title('Gauge %i : Flow Depth (h)\n' % gaugeno + \
              'max(h) = %7.3f,    max(level) = %i' %(max_depth,maxlevel))
        #show()

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.time_scale = time_scale
    plotaxes.time_label = time_label

    # Plot depth as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 0
    plotitem.plotstyle = 'b-'

    ## Set the limits and the title in the function below
    plotaxes.afteraxes = setglimits_depth

    plotfigure = plotdata.new_plotfigure(name='gauge surface eta', figno=301, \
                    type='each_gauge')

    #plotfigure.clf_each_gauge = False

    def setglimits_eta(current_data):
        from pylab import xlim, ylim, title, argmax, show, array, ylabel
        gaugeno = current_data.gaugeno
        q = current_data.q
        eta = q[3, :]
        t = current_data.t
        g = current_data.plotdata.getgauge(gaugeno)
        level = g.level
        maxlevel = max(level)

        #find first occurrence of the max of levels used by
        #this gauge and set the limits based on that time
        argmax_level = argmax(level)  #first occurrence of it
        xlim(time_scale * array(t[argmax_level], t[-1]))
        ylabel('meters')
        min_eta = eta[argmax_level:].min()
        max_eta = eta[argmax_level:].max()
        ylim(min_eta - 0.5, max_eta + 0.5)
        title('Gauge %i : Surface Elevation (eta)\n' % gaugeno + \
              'max(eta) = %7.3f,    max(level) = %i' %(max_eta,maxlevel))
        #show()

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.time_scale = time_scale
    plotaxes.time_label = time_label

    # Plot surface (eta) as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    ## Set the limits and the title in the function below
    plotaxes.afteraxes = setglimits_eta

    plotfigure = plotdata.new_plotfigure(name='speed', figno=302, \
                    type='each_gauge')

    #plotfigure.clf_each_gauge = False

    def speed(current_data):
        from numpy import sqrt, maximum, where
        q = current_data.q
        h = q[0, :]
        hu = q[1, :]
        hv = q[2, :]
        s = sqrt(hu**2 + hv**2) / maximum(h, 0.001)
        s = where(h > 0.001, s, 0.0)
        return s

    def setglimits_speed(current_data):
        from pylab import xlim, ylim, title, argmax, show, array, ylabel
        gaugeno = current_data.gaugeno
        s = speed(current_data)
        t = current_data.t
        g = current_data.plotdata.getgauge(gaugeno)
        level = g.level
        maxlevel = max(level)

        #find first occurrence of the max of levels used by
        #this gauge and set the limits based on that time
        argmax_level = argmax(level)  #first occurrence of it
        xlim(time_scale * array(t[argmax_level], t[-1]))
        ylabel('meters/sec')
        min_speed = s[argmax_level:].min()
        max_speed = s[argmax_level:].max()
        ylim(min_speed - 0.5, max_speed + 0.5)
        title('Gauge %i : Speed (s)\n' % gaugeno + \
              'max(s) = %7.3f,    max(level) = %i' %(max_speed,maxlevel))
        #show()

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.time_scale = time_scale
    plotaxes.time_label = time_label

    # Plot speed (s) as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = speed
    plotitem.plotstyle = 'b-'

    ## Set the limits and the title in the function below
    plotaxes.afteraxes = setglimits_speed

    #-----------------------------------------
    # Figures for fgmax plots
    #-----------------------------------------
    # Note: need to move fgmax png files into _plots after creating with
    #   python run_process_fgmax.py
    # This just creates the links to these figures...

    if 0:
        ### Putting them in _other_figures with the proper name as a link
        ### Can run process fgmax either before or after setplot now.
        otherfigure = plotdata.new_otherfigure(name='max depth',
                        fname='_other_figures/%s_%s_h_onshore.png' \
                                % (params.loc,params.event))
        otherfigure = plotdata.new_otherfigure(name='max depth on GE image',
                        fname='_other_figures/%s_%s_h_onshore_GE.png' \
                                % (params.loc,params.event))
        otherfigure = plotdata.new_otherfigure(name='max speed',
                        fname='_other_figures/%s_%s_speed.png' \
                                % (params.loc,params.event))

    # Plots of timing (CPU and wall time):

    def make_timing_plots(plotdata):
        import os
        from clawpack.visclaw import plot_timing_stats
        try:
            timing_plotdir = plotdata.plotdir + '/_timing_figures'
            os.system('mkdir -p %s' % timing_plotdir)
            units = {
                'comptime': 'hours',
                'simtime': 'hours',
                'cell': 'billions'
            }
            plot_timing_stats.make_plots(outdir=plotdata.outdir,
                                         make_pngs=True,
                                         plotdir=timing_plotdir,
                                         units=units)
            os.system('cp %s/timing.* %s' % (plotdata.outdir, timing_plotdir))
        except:
            print('*** Error making timing plots')

    otherfigure = plotdata.new_otherfigure(name='timing',
                                           fname='_timing_figures/timing.html')
    otherfigure.makefig = make_timing_plots

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_gaugenos = 'all'  # list of gauges to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?
    plotdata.parallel = True  # make multiple frame png's at once

    return plotdata
示例#23
0
def setplot(plotdata=None):
#--------------------------
    
    """ 
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    """ 


    from clawpack.visclaw import colormaps, geoplot

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()


    plotdata.clearfigures()  # clear any old figures,axes,items data

    def set_drytol(current_data):
        # The drytol parameter is used in masking land and water and
        # affects what color map is used for cells with small water depth h.
        # The cell will be plotted as dry if h < drytol.
        # The best value to use often depends on the application and can
        # be set here (measured in meters):
        current_data.user["drytol"] = 1.e-3

    plotdata.beforeframe = set_drytol

    #-----------------------------------------
    # Figure for pcolor plot
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='pcolor', figno=0)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes('pcolor')
    plotaxes.title = 'Surface'
    plotaxes.scaled = True

    # Water
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.surface
    plotitem.pcolor_cmap = geoplot.tsunami_colormap
    plotitem.pcolor_cmin = -0.1
    plotitem.pcolor_cmax = 0.1
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0,0,0]
    plotitem.patchedges_show = 1

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.land
    plotitem.pcolor_cmap = geoplot.land_colors
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 100.0
    plotitem.add_colorbar = False
    plotitem.amr_celledges_show = [0,0,0]
    plotitem.patchedges_show = 1
    plotaxes.xlimits = [-2,2]
    plotaxes.ylimits = [-2,2]

    # Add contour lines of bathymetry:
    plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
    plotitem.plot_var = geoplot.topo
    from numpy import arange, linspace
    plotitem.contour_levels = linspace(-.1, 0.5, 20)
    plotitem.amr_contour_colors = ['k']  # color on each level
    plotitem.kwargs = {'linestyles':'solid'}
    plotitem.amr_contour_show = [1]  
    plotitem.celledges_show = 0
    plotitem.patchedges_show = 0
    plotitem.show = True

    #-----------------------------------------
    # Figure for cross section
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='cross-section', figno=1)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [-2,2]
    plotaxes.ylimits = [-0.15,0.3]
    plotaxes.title = 'Cross section at y=0'
    def plot_topo_xsec(current_data):
        from pylab import plot, cos,sin,where,legend,nan
        t = current_data.t

        x = linspace(-2,2,201)
        y = 0.
        B = h0*(x**2 + y**2)/a**2 - h0
        eta1 = sigma*h0/a**2 * (2.*x*cos(omega*t) + 2.*y*sin(omega*t) -sigma)
        etatrue = where(eta1>B, eta1, nan)
        plot(x, etatrue, 'r', label="true solution", linewidth=2)
        plot(x, B, 'g', label="bathymetry")
        ## plot([0],[-1],'kx',label="Level 1")  # shouldn't show up in plots,
        ## plot([0],[-1],'bo',label="Level 2")  # but will produced desired legend
        plot([0],[-1],'bo',label="Computed")  ## need to fix plotstyle
        legend()
    plotaxes.afteraxes = plot_topo_xsec

    plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data')

    def xsec(current_data):
        # Return x value and surface eta at this point, along y=0
        from pylab import find,ravel
        x = current_data.x
        y = current_data.y
        dy = current_data.dy
        q = current_data.q

        ij = find((y <= dy/2.) & (y > -dy/2.))
        x_slice = ravel(x)[ij]
        eta_slice = ravel(q[3,:,:])[ij]
        return x_slice, eta_slice

    plotitem.map_2d_to_1d = xsec
    plotitem.plotstyle = 'kx'     ## need to be able to set amr_plotstyle
    plotitem.kwargs = {'markersize':3}
    plotitem.amr_show = [1]  # plot on all levels


    #-----------------------------------------
    # Figure for grids alone
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='grids', figno=2)
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [-2,2]
    plotaxes.ylimits = [-2,2]
    plotaxes.title = 'grids'
    plotaxes.scaled = True

    # Set up for item on these axes:
    plotitem = plotaxes.new_plotitem(plot_type='2d_patch')
    plotitem.amr_patch_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee']
    plotitem.amr_celledges_show = [1,1,0]   
    plotitem.amr_patchedges_show = [1]


    #-----------------------------------------
    
    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True                # print figures
    plotdata.print_format = 'png'            # file format
    plotdata.print_framenos = 'all'          # list of frames to print
    plotdata.print_gaugenos = []             # list of gauges to print
    plotdata.print_fignos = 'all'            # list of figures to print
    plotdata.html = True                     # create html files of plots?
    plotdata.html_homelink = '../README.html'   # pointer for top of index
    plotdata.latex = True                    # create latex file of plots?
    plotdata.latex_figsperline = 2           # layout of plots
    plotdata.latex_framesperline = 1         # layout of plots
    plotdata.latex_makepdf = False           # also run pdflatex?
    plotdata.parallel = True                 # make multiple frame png's at once

    return plotdata
示例#24
0
def setplot(plotdata=None):
    #--------------------------
    """ 
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    """

    from clawpack.visclaw import colormaps, geoplot
    from numpy import linspace
    import math

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    plotdata.clearfigures()  # clear any old figures,axes,items data

    def speed(current_data):
        from numpy import ma, where, sqrt, log10
        drytol = 1e-3
        q = current_data.q
        h = q[0, :, :]
        hu = q[1, :, :]
        hv = q[2, :, :]
        u = where(h > 0.0, hu / h, 0.)
        v = where(h > 0.0, hv / h, 0.)
        speed = sqrt(u**2 + v**2)
        return speed

    def stress(current_data):
        from numpy import ma, where, sqrt, log10
        q = current_data.q
        h = q[0, :, :]
        hu = q[1, :, :]
        hv = q[2, :, :]
        u = where(h > 0.0, hu / h, 0.)
        v = where(h > 0.0, hv / h, 0.)
        speed = np.sqrt(u**2 + v**2)  #Speed calc, same as above
        n = 0.06  #Manning's n
        g = 9.8  #gravity
        cf = where(
            h > 0.0, (g * n**2) / (h**(1. / 3)), 0.
        )  #calculate friction coefficient, DONT FORGET THE F*****G PERIOD YOU IDIOT (mike)
        stress = 1000 * cf * (speed**2)
        return stress

#####-----------------------------------------
# Gorge  depth
#-----------------------------------------
#

    plotfigure = plotdata.new_plotfigure(name='Gorgetesting_depth', figno=21)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': [15, 15]}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes('Depth')
    #plotaxes.title = 'Water Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = [95.0, 95.45]
    plotaxes.ylimits = [29.5, 30.0]

    # Water
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    #plotitem.plot_var = geoplot.surface
    plotitem.plot_var = geoplot.depth  #variable to plot
    plotitem.pcolor_cmap = geoplot.custom_river
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 300
    plotitem.add_colorbar = True  #turn off for making movies
    plotitem.amr_celledges_show = [0]
    plotitem.amr_patchedges_show = [0]

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.land
    #plotitem.pcolor_cmap = geoplot.blank
    plotitem.pcolor_cmap = geoplot.bw_colormap
    plotitem.pcolor_cmin = 2000.0
    plotitem.pcolor_cmax = 6000.0
    #plotitem.add_colorbar = True    #turn off for making movies
    plotitem.amr_celledges_show = [0]

    #plotaxes.afteraxes = addgauges
    #####-----------------------------------------
    # Gorge  speed
    #-----------------------------------------
    #
    plotfigure = plotdata.new_plotfigure(name='Gorgetesting_speed', figno=22)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': [15, 15]}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes('Speed')
    #plotaxes.title = 'Water Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = [95.0, 95.45]
    plotaxes.ylimits = [29.5, 30.0]

    # speed
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    #plotitem.plot_var = geoplot.surface
    plotitem.plot_var = speed
    plotitem.pcolor_cmap = geoplot.custom_river
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 80
    plotitem.add_colorbar = True  #turn off for making movies
    plotitem.amr_celledges_show = [0]
    plotitem.amr_patchedges_show = [0]

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.land
    #plotitem.pcolor_cmap = geoplot.blank
    plotitem.pcolor_cmap = geoplot.bw_colormap
    plotitem.pcolor_cmin = 2000.0
    plotitem.pcolor_cmax = 6000.0
    #plotitem.add_colorbar = True    #turn off for making movies
    plotitem.amr_celledges_show = [0]

    #plotaxes.afteraxes = addgauges

    #####-----------------------------------------
    # Gorge  stress
    #-----------------------------------------
    #
    plotfigure = plotdata.new_plotfigure(name='Gorgetesting_stress', figno=23)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': [15, 15]}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes('Stress')
    #plotaxes.title = 'Water Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = [95.0, 95.45]
    plotaxes.ylimits = [29.5, 30.0]

    # stress
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    #plotitem.plot_var = geoplot.surface
    plotitem.plot_var = stress
    plotitem.pcolor_cmap = geoplot.custom_river
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 30000  #make this reasonable max stress
    plotitem.add_colorbar = True  #turn off for making movies
    plotitem.amr_celledges_show = [0]
    plotitem.amr_patchedges_show = [0]

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.land
    #plotitem.pcolor_cmap = geoplot.blank
    plotitem.pcolor_cmap = geoplot.bw_colormap
    plotitem.pcolor_cmin = 2000.0
    plotitem.pcolor_cmax = 6000.0
    #plotitem.add_colorbar = True    #turn off for making movies
    plotitem.amr_celledges_show = [0]

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    #plotdata.print_framenos = np.arange(0,5,1)       # list of frames to print
    #plotdata.print_framenos = [1,2,3,4,5]       #frame is a timestep, so this is the way
    #plotdata.print_gaugenos = [1,2,3,4]          # list of gauges to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = False  # create html files of plots?
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.latex = False  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?
    plotdata.parallel = True  # make multiple frame png's at once

    return plotdata
示例#25
0
def setplot(plotdata=None):
#--------------------------
    
    """ 
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of clawpack.visclaw.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    """ 

    from clawpack.visclaw import colormaps

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()


    plotdata.clearfigures()  # clear any old figures,axes,items data
    

    # Figure for density - pcolor
    plotfigure = plotdata.new_plotfigure(name='Density', figno=0)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [0,1]
    plotaxes.ylimits = [0,1]
    plotaxes.title = 'Density'
    plotaxes.scaled = True
    plotaxes.afteraxes = addgauges

    # Set up for item on these axes:
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = 0
    #plotitem.pcolor_cmap = colormaps.yellow_red_blue
    plotitem.pcolor_cmin = 0.
    plotitem.pcolor_cmax = 2.
    plotitem.add_colorbar = True
    plotitem.amr_patchedges_show = [0]
    plotitem.amr_celledges_show = [0]


    # Figure for density - Schlieren
    plotfigure = plotdata.new_plotfigure(name='Schlieren', figno=1)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [0,1]
    plotaxes.ylimits = [0,1]
    plotaxes.title = 'Density'
    plotaxes.scaled = True      # so aspect ratio is 1

    # Set up for item on these axes:
    plotitem = plotaxes.new_plotitem(plot_type='2d_schlieren')
    plotitem.schlieren_cmin = 0.0
    plotitem.schlieren_cmax = 1.0
    plotitem.plot_var = 0
    plotitem.add_colorbar = False


    # Figure for grid cells
    plotfigure = plotdata.new_plotfigure(name='cells', figno=2)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [0,1]
    plotaxes.ylimits = [0,1]
    plotaxes.title = 'Grid patches'
    plotaxes.scaled = True

    # Set up for item on these axes:
    plotitem = plotaxes.new_plotitem(plot_type='2d_patch')
    plotitem.amr_patch_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee']
    plotitem.amr_celledges_show = [1,0]
    plotitem.amr_patchedges_show = [1]


    #-----------------------------------------
    # Figures for gauges
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='q', figno=300, \
                    type='each_gauge')
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [0,1]
    plotaxes.ylimits = [0,1]
    plotaxes.title = 'Density'

    # Plot q as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 0
    plotitem.plotstyle = 'b-'


    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via clawpack.visclaw.frametools.printframes:

    plotdata.printfigs = True                # print figures
    plotdata.print_format = 'png'            # file format
    plotdata.print_framenos = 'all'          # list of frames to print
    plotdata.print_fignos = 'all'            # list of figures to print
    plotdata.html = True                     # create html files of plots?
    plotdata.html_homelink = '../README.html'   # pointer for top of index
    plotdata.html_movie = 'JSAnimation'      # new style, or "4.x" for old style
    plotdata.latex = True                    # create latex file of plots?
    plotdata.latex_figsperline = 2           # layout of plots
    plotdata.latex_framesperline = 1         # layout of plots
    plotdata.latex_makepdf = False           # also run pdflatex?
    plotdata.parallel = True                 # make multiple frame png's at once

    return plotdata
示例#26
0
def setplot(plotdata=None):
    #--------------------------
    """
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.

    """

    from clawpack.visclaw import colormaps, geoplot
    from bay import Bay

    mobile = Bay('bay.info')

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    plotdata.clearfigures()  # clear any old figures,axes,items data

    def set_drytol(current_data):
        # The drytol parameter is used in masking land and water and
        # affects what color map is used for cells with small water depth h.
        # The cell will be plotted as dry if h < drytol.
        # The best value to use often depends on the application and can
        # be set here (measured in meters):
        current_data.user["drytol"] = 1.e-3

    plotdata.beforeframe = set_drytol

    #-----------------------------------------
    # Figure for pcolor plot
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='pcolor', figno=0)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes('pcolor')
    plotaxes.title = 'Surface'
    plotaxes.scaled = True

    # Water
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.surface
    plotitem.pcolor_cmap = geoplot.tsunami_colormap
    plotitem.pcolor_cmin = -0.5
    plotitem.pcolor_cmax = 0.5
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.patchedges_show = 1

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.land
    plotitem.pcolor_cmap = geoplot.land_colors
    plotitem.pcolor_cmin = mobile.z0
    plotitem.pcolor_cmax = mobile.z_r
    plotitem.add_colorbar = False
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.patchedges_show = 1
    plotaxes.xlimits = [mobile.x_o1, mobile.x_o2]
    plotaxes.ylimits = [mobile.y0, mobile.y_r]

    # Add contour lines of bathymetry:
    plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
    plotitem.plot_var = geoplot.topo
    from numpy import arange, linspace
    plotitem.contour_levels = linspace(mobile.z0, mobile.z_r, 10)
    plotitem.amr_contour_colors = ['k']  # color on each level
    plotitem.kwargs = {'linestyles': 'solid'}
    plotitem.amr_contour_show = [1]
    plotitem.celledges_show = 0
    plotitem.patchedges_show = 0
    plotitem.show = True

    #-----------------------------------------
    # Figures for gauges
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='Surface & topo',
                                         figno=1,
                                         type='each_gauge')

    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = 'auto'
    plotaxes.ylimits = [-1.5, 1.5]
    plotaxes.title = 'Surface'

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    # Plot topo as green curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')

    def gaugetopo(current_data):
        q = current_data.q
        h = q[0, :]
        eta = q[3, :]
        topo = eta - h
        return topo

    plotitem.plot_var = gaugetopo
    plotitem.plotstyle = 'g-'

    def add_zeroline(current_data):
        from pylab import plot, legend
        t = current_data.t
        legend(('surface', 'topography'), loc='lower left')
        plot(t, 0 * t, 'k')

    plotaxes.afteraxes = add_zeroline

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_gaugenos = 'all'  # list of gauges to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?
    plotdata.parallel = True  # make multiple frame png's at once

    return plotdata