def test_n_train_examples(n=500): if python_version.is_compatible(): cnn = CNN(epochs=3, log_interval=1000, loader='train', seed=0) idx = np.random.choice(X_train, n, replace=False) # Grab n random examples. cnn.fit(train_idx=X_train[idx], train_labels=y_train[idx], loader='train') cnn.loader = 'test' pred = cnn.predict(X_test[:n]) print(accuracy_score(y_test[:n], pred)) assert (accuracy_score(y_test[:n], pred) > 0.1) # Check that dataset defaults to test set when an invalid name is given. cnn.loader = 'INVALID' pred = cnn.predict(X_test[:n]) assert (len(pred) == MNIST_TEST_SIZE) # Check that pred_proba runs on all examples when None is passed in cnn.loader = 'test' proba = cnn.predict_proba(idx=None, loader='test') assert proba is not None assert (len(pred) == MNIST_TEST_SIZE) assert True
def test_n_train_examples(): if python_version.is_compatible(): cnn = CNN(epochs=3, log_interval=1000, loader='train', seed=0, dataset='sklearn-digits', ) cnn.fit(train_idx=X_train_idx, train_labels=y_train, loader='train', ) cnn.loader = 'test' pred = cnn.predict(X_test_idx) print(accuracy_score(y_test, pred)) assert (accuracy_score(y_test, pred) > 0.1) # Check that exception is raised when invalid name is given. cnn.loader = 'INVALID' with pytest.raises(ValueError) as e: pred = cnn.predict(X_test_idx) # Check that pred_proba runs on all examples when None is passed in cnn.loader = 'test' proba = cnn.predict_proba(idx=None, loader='test') assert proba is not None assert (len(pred) == SKLEARN_DIGITS_TEST_SIZE) assert True