def test_xe_smoothing(self): loss = CrossEntropy(self.model, smoothing=0.1) l = loss.fprop(self.x, self.y) with tf.Session() as sess: vl1 = sess.run(l, feed_dict={self.x: self.vx, self.y: self.vy}) vl2 = sess.run(l, feed_dict={self.x: self.vx, self.y: self.vy}) self.assertClose(vl1, sum([2.10587597, 1.47194624]) / 2., atol=1e-6) self.assertClose(vl2, sum([2.10587597, 1.47194624]) / 2., atol=1e-6)
def test_xe(self): loss = CrossEntropy(self.model, smoothing=0.) l = loss.fprop(self.x, self.y) with tf.Session() as sess: vl1 = sess.run(l, feed_dict={self.x: self.vx, self.y: self.vy}) vl2 = sess.run(l, feed_dict={self.x: self.vx, self.y: self.vy}) self.assertClose(vl1, sum([2.210599660, 1.53666997]) / 2., atol=1e-6) self.assertClose(vl2, sum([2.210599660, 1.53666997]) / 2., atol=1e-6)
def prep_bbox(sess, x, y, x_train, y_train, x_test, y_test, nb_epochs, batch_size, learning_rate, rng, nb_classes=10, img_rows=28, img_cols=28, nchannels=1): """ Define and train a model that simulates the "remote" black-box oracle described in the original paper. :param sess: the TF session :param x: the input placeholder for MNIST :param y: the ouput placeholder for MNIST :param x_train: the training data for the oracle :param y_train: the training labels for the oracle :param x_test: the testing data for the oracle :param y_test: the testing labels for the oracle :param nb_epochs: number of epochs to train model :param batch_size: size of training batches :param learning_rate: learning rate for training :param rng: numpy.random.RandomState :return: """ # Define TF model graph (for the black-box model) nb_filters = 64 model = ModelBasicCNN('model1', nb_classes, nb_filters) loss = CrossEntropy(model, smoothing=0.1) predictions = model.get_logits(x) print("Defined TensorFlow model graph.") # Train an MNIST model train_params = { 'nb_epochs': nb_epochs, 'batch_size': batch_size, 'learning_rate': learning_rate } train(sess, loss, x, y, x_train, y_train, args=train_params, rng=rng) # Print out the accuracy on legitimate data eval_params = {'batch_size': batch_size} accuracy = model_eval(sess, x, y, predictions, x_test, y_test, args=eval_params) print('Test accuracy of black-box on legitimate test ' 'examples: ' + str(accuracy)) return model, predictions, accuracy
def train_sub(sess, x, y, bbox_preds, x_sub, y_sub, nb_classes, nb_epochs_s, batch_size, learning_rate, data_aug, lmbda, aug_batch_size, rng, img_rows=28, img_cols=28, nchannels=1): """ This function creates the substitute by alternatively augmenting the training data and training the substitute. :param sess: TF session :param x: input TF placeholder :param y: output TF placeholder :param bbox_preds: output of black-box model predictions :param x_sub: initial substitute training data :param y_sub: initial substitute training labels :param nb_classes: number of output classes :param nb_epochs_s: number of epochs to train substitute model :param batch_size: size of training batches :param learning_rate: learning rate for training :param data_aug: number of times substitute training data is augmented :param lmbda: lambda from arxiv.org/abs/1602.02697 :param rng: numpy.random.RandomState instance :return: """ # Define TF model graph (for the black-box model) model_sub = ModelSubstitute('model_s', nb_classes) preds_sub = model_sub.get_logits(x) loss_sub = CrossEntropy(model_sub, smoothing=0) print("Defined TensorFlow model graph for the substitute.") # Define the Jacobian symbolically using TensorFlow grads = jacobian_graph(preds_sub, x, nb_classes) # Train the substitute and augment dataset alternatively for rho in xrange(data_aug): print("Substitute training epoch #" + str(rho)) train_params = { 'nb_epochs': nb_epochs_s, 'batch_size': batch_size, 'learning_rate': learning_rate } with TemporaryLogLevel(logging.WARNING, "cleverhans.utils.tf"): train(sess, loss_sub, x, y, x_sub, to_categorical(y_sub, nb_classes), init_all=False, args=train_params, rng=rng, var_list=model_sub.get_params()) # If we are not at last substitute training iteration, augment dataset if rho < data_aug - 1: print("Augmenting substitute training data.") # Perform the Jacobian augmentation lmbda_coef = 2 * int(int(rho / 3) != 0) - 1 x_sub = jacobian_augmentation(sess, x, x_sub, y_sub, grads, lmbda_coef * lmbda, aug_batch_size) print("Labeling substitute training data.") # Label the newly generated synthetic points using the black-box y_sub = np.hstack([y_sub, y_sub]) x_sub_prev = x_sub[int(len(x_sub) / 2):] eval_params = {'batch_size': batch_size} bbox_val = batch_eval(sess, [x], [bbox_preds], [x_sub_prev], args=eval_params)[0] # Note here that we take the argmax because the adversary # only has access to the label (not the probabilities) output # by the black-box model y_sub[int(len(x_sub) / 2):] = np.argmax(bbox_val, axis=1) return model_sub, preds_sub
def mnist_tutorial_jsma(train_start=0, train_end=60000, test_start=0, test_end=10000, viz_enabled=VIZ_ENABLED, nb_epochs=NB_EPOCHS, batch_size=BATCH_SIZE, source_samples=SOURCE_SAMPLES, learning_rate=LEARNING_RATE): """ MNIST tutorial for the Jacobian-based saliency map approach (JSMA) :param train_start: index of first training set example :param train_end: index of last training set example :param test_start: index of first test set example :param test_end: index of last test set example :param viz_enabled: (boolean) activate plots of adversarial examples :param nb_epochs: number of epochs to train model :param batch_size: size of training batches :param nb_classes: number of output classes :param source_samples: number of test inputs to attack :param learning_rate: learning rate for training :return: an AccuracyReport object """ # Object used to keep track of (and return) key accuracies report = AccuracyReport() # Set TF random seed to improve reproducibility tf.set_random_seed(1234) # Create TF session and set as Keras backend session sess = tf.Session() print("Created TensorFlow session.") set_log_level(logging.DEBUG) # Get MNIST test data x_train, y_train, x_test, y_test = data_mnist(train_start=train_start, train_end=train_end, test_start=test_start, test_end=test_end) # Obtain Image Parameters img_rows, img_cols, nchannels = x_train.shape[1:4] nb_classes = y_train.shape[1] # Define input TF placeholder x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols, nchannels)) y = tf.placeholder(tf.float32, shape=(None, nb_classes)) nb_filters = 64 # Define TF model graph model = ModelBasicCNN('model1', nb_classes, nb_filters) preds = model.get_logits(x) loss = CrossEntropy(model, smoothing=0.1) print("Defined TensorFlow model graph.") ########################################################################### # Training the model using TensorFlow ########################################################################### # Train an MNIST model train_params = { 'nb_epochs': nb_epochs, 'batch_size': batch_size, 'learning_rate': learning_rate } sess.run(tf.global_variables_initializer()) rng = np.random.RandomState([2017, 8, 30]) train(sess, loss, x, y, x_train, y_train, args=train_params, rng=rng) # Evaluate the accuracy of the MNIST model on legitimate test examples eval_params = {'batch_size': batch_size} accuracy = model_eval(sess, x, y, preds, x_test, y_test, args=eval_params) assert x_test.shape[0] == test_end - test_start, x_test.shape print('Test accuracy on legitimate test examples: {0}'.format(accuracy)) report.clean_train_clean_eval = accuracy ########################################################################### # Craft adversarial examples using the Jacobian-based saliency map approach ########################################################################### print('Crafting ' + str(source_samples) + ' * ' + str(nb_classes - 1) + ' adversarial examples') # Keep track of success (adversarial example classified in target) results = np.zeros((nb_classes, source_samples), dtype='i') # Rate of perturbed features for each test set example and target class perturbations = np.zeros((nb_classes, source_samples), dtype='f') # Initialize our array for grid visualization grid_shape = (nb_classes, nb_classes, img_rows, img_cols, nchannels) grid_viz_data = np.zeros(grid_shape, dtype='f') # Instantiate a SaliencyMapMethod attack object jsma = SaliencyMapMethod(model, back='tf', sess=sess) jsma_params = { 'theta': 1., 'gamma': 0.1, 'clip_min': 0., 'clip_max': 1., 'y_target': None } figure = None # Loop over the samples we want to perturb into adversarial examples for sample_ind in xrange(0, source_samples): print('--------------------------------------') print('Attacking input %i/%i' % (sample_ind + 1, source_samples)) sample = x_test[sample_ind:(sample_ind + 1)] # We want to find an adversarial example for each possible target class # (i.e. all classes that differ from the label given in the dataset) current_class = int(np.argmax(y_test[sample_ind])) target_classes = other_classes(nb_classes, current_class) # For the grid visualization, keep original images along the diagonal grid_viz_data[current_class, current_class, :, :, :] = np.reshape( sample, (img_rows, img_cols, nchannels)) # Loop over all target classes for target in target_classes: print('Generating adv. example for target class %i' % target) # This call runs the Jacobian-based saliency map approach one_hot_target = np.zeros((1, nb_classes), dtype=np.float32) one_hot_target[0, target] = 1 jsma_params['y_target'] = one_hot_target adv_x = jsma.generate_np(sample, **jsma_params) # Check if success was achieved res = int(model_argmax(sess, x, preds, adv_x) == target) # Computer number of modified features adv_x_reshape = adv_x.reshape(-1) test_in_reshape = x_test[sample_ind].reshape(-1) nb_changed = np.where(adv_x_reshape != test_in_reshape)[0].shape[0] percent_perturb = float(nb_changed) / adv_x.reshape(-1).shape[0] # Display the original and adversarial images side-by-side if viz_enabled: figure = pair_visual( np.reshape(sample, (img_rows, img_cols, nchannels)), np.reshape(adv_x, (img_rows, img_cols, nchannels)), figure) # Add our adversarial example to our grid data grid_viz_data[target, current_class, :, :, :] = np.reshape( adv_x, (img_rows, img_cols, nchannels)) # Update the arrays for later analysis results[target, sample_ind] = res perturbations[target, sample_ind] = percent_perturb print('--------------------------------------') # Compute the number of adversarial examples that were successfully found nb_targets_tried = ((nb_classes - 1) * source_samples) succ_rate = float(np.sum(results)) / nb_targets_tried print('Avg. rate of successful adv. examples {0:.4f}'.format(succ_rate)) report.clean_train_adv_eval = 1. - succ_rate # Compute the average distortion introduced by the algorithm percent_perturbed = np.mean(perturbations) print('Avg. rate of perturbed features {0:.4f}'.format(percent_perturbed)) # Compute the average distortion introduced for successful samples only percent_perturb_succ = np.mean(perturbations * (results == 1)) print('Avg. rate of perturbed features for successful ' 'adversarial examples {0:.4f}'.format(percent_perturb_succ)) # Close TF session sess.close() # Finally, block & display a grid of all the adversarial examples if viz_enabled: import matplotlib.pyplot as plt plt.close(figure) _ = grid_visual(grid_viz_data) return report
def mnist_tutorial(train_start=0, train_end=60000, test_start=0, test_end=10000, nb_epochs=NB_EPOCHS, batch_size=BATCH_SIZE, learning_rate=LEARNING_RATE, clean_train=CLEAN_TRAIN, testing=False, backprop_through_attack=BACKPROP_THROUGH_ATTACK, nb_filters=NB_FILTERS, num_threads=None, label_smoothing=0.1): """ MNIST cleverhans tutorial :param train_start: index of first training set example :param train_end: index of last training set example :param test_start: index of first test set example :param test_end: index of last test set example :param nb_epochs: number of epochs to train model :param batch_size: size of training batches :param learning_rate: learning rate for training :param clean_train: perform normal training on clean examples only before performing adversarial training. :param testing: if true, complete an AccuracyReport for unit tests to verify that performance is adequate :param backprop_through_attack: If True, backprop through adversarial example construction process during adversarial training. :param label_smoothing: float, amount of label smoothing for cross entropy :return: an AccuracyReport object """ # Object used to keep track of (and return) key accuracies report = AccuracyReport() # Set TF random seed to improve reproducibility tf.set_random_seed(1234) # Set logging level to see debug information set_log_level(logging.DEBUG) # Create TF session if num_threads: config_args = dict(intra_op_parallelism_threads=1) else: config_args = {} sess = tf.Session(config=tf.ConfigProto(**config_args)) # Get MNIST test data x_train, y_train, x_test, y_test = data_mnist(train_start=train_start, train_end=train_end, test_start=test_start, test_end=test_end) # Use Image Parameters img_rows, img_cols, nchannels = x_train.shape[1:4] nb_classes = y_train.shape[1] # Define input TF placeholder x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols, nchannels)) y = tf.placeholder(tf.float32, shape=(None, nb_classes)) # Train an MNIST model train_params = { 'nb_epochs': nb_epochs, 'batch_size': batch_size, 'learning_rate': learning_rate } eval_params = {'batch_size': batch_size} fgsm_params = { 'eps': 0.3, 'clip_min': 0., 'clip_max': 1. } rng = np.random.RandomState([2017, 8, 30]) def do_eval(preds, x_set, y_set, report_key, is_adv=None): acc = model_eval(sess, x, y, preds, x_set, y_set, args=eval_params) setattr(report, report_key, acc) if is_adv is None: report_text = None elif is_adv: report_text = 'adversarial' else: report_text = 'legitimate' if report_text: print('Test accuracy on %s examples: %0.4f' % (report_text, acc)) if clean_train: model = ModelBasicCNN('model1', nb_classes, nb_filters) preds = model.get_logits(x) loss = CrossEntropy(model, smoothing=label_smoothing) def evaluate(): do_eval(preds, x_test, y_test, 'clean_train_clean_eval', False) train(sess, loss, x, y, x_train, y_train, evaluate=evaluate, args=train_params, rng=rng, var_list=model.get_params()) # Calculate training error if testing: do_eval(preds, x_train, y_train, 'train_clean_train_clean_eval') # Initialize the Fast Gradient Sign Method (FGSM) attack object and # graph fgsm = FastGradientMethod(model, sess=sess) adv_x = fgsm.generate(x, **fgsm_params) preds_adv = model.get_logits(adv_x) # Evaluate the accuracy of the MNIST model on adversarial examples do_eval(preds_adv, x_test, y_test, 'clean_train_adv_eval', True) # Calculate training error if testing: do_eval(preds_adv, x_train, y_train, 'train_clean_train_adv_eval') print('Repeating the process, using adversarial training') # Create a new model and train it to be robust to FastGradientMethod model2 = ModelBasicCNN('model2', nb_classes, nb_filters) fgsm2 = FastGradientMethod(model2, sess=sess) def attack(x): return fgsm2.generate(x, **fgsm_params) loss2 = CrossEntropy(model2, smoothing=label_smoothing, attack=attack) preds2 = model2.get_logits(x) adv_x2 = attack(x) if not backprop_through_attack: # For the fgsm attack used in this tutorial, the attack has zero # gradient so enabling this flag does not change the gradient. # For some other attacks, enabling this flag increases the cost of # training, but gives the defender the ability to anticipate how # the atacker will change their strategy in response to updates to # the defender's parameters. adv_x2 = tf.stop_gradient(adv_x2) preds2_adv = model2.get_logits(adv_x2) def evaluate2(): # Accuracy of adversarially trained model on legitimate test inputs do_eval(preds2, x_test, y_test, 'adv_train_clean_eval', False) # Accuracy of the adversarially trained model on adversarial examples do_eval(preds2_adv, x_test, y_test, 'adv_train_adv_eval', True) # Perform and evaluate adversarial training train(sess, loss2, x, y, x_train, y_train, evaluate=evaluate2, args=train_params, rng=rng, var_list=model2.get_params()) # Calculate training errors if testing: do_eval(preds2, x_train, y_train, 'train_adv_train_clean_eval') do_eval(preds2_adv, x_train, y_train, 'train_adv_train_adv_eval') return report
def mnist_tutorial_cw(train_start=0, train_end=60000, test_start=0, test_end=10000, viz_enabled=VIZ_ENABLED, nb_epochs=NB_EPOCHS, batch_size=BATCH_SIZE, source_samples=SOURCE_SAMPLES, learning_rate=LEARNING_RATE, attack_iterations=ATTACK_ITERATIONS, model_path=MODEL_PATH, targeted=TARGETED): """ MNIST tutorial for Carlini and Wagner's attack :param train_start: index of first training set example :param train_end: index of last training set example :param test_start: index of first test set example :param test_end: index of last test set example :param viz_enabled: (boolean) activate plots of adversarial examples :param nb_epochs: number of epochs to train model :param batch_size: size of training batches :param nb_classes: number of output classes :param source_samples: number of test inputs to attack :param learning_rate: learning rate for training :param model_path: path to the model file :param targeted: should we run a targeted attack? or untargeted? :return: an AccuracyReport object """ # Object used to keep track of (and return) key accuracies report = AccuracyReport() # Set TF random seed to improve reproducibility tf.set_random_seed(1234) # Create TF session sess = tf.Session() print("Created TensorFlow session.") set_log_level(logging.DEBUG) # Get MNIST test data x_train, y_train, x_test, y_test = data_mnist(train_start=train_start, train_end=train_end, test_start=test_start, test_end=test_end) # Obtain Image Parameters img_rows, img_cols, nchannels = x_train.shape[1:4] nb_classes = y_train.shape[1] # Define input TF placeholder x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols, nchannels)) y = tf.placeholder(tf.float32, shape=(None, nb_classes)) nb_filters = 64 # Define TF model graph model = ModelBasicCNN('model1', nb_classes, nb_filters) preds = model.get_logits(x) loss = CrossEntropy(model, smoothing=0.1) print("Defined TensorFlow model graph.") ########################################################################### # Training the model using TensorFlow ########################################################################### # Train an MNIST model train_params = { 'nb_epochs': nb_epochs, 'batch_size': batch_size, 'learning_rate': learning_rate, 'filename': os.path.split(model_path)[-1] } rng = np.random.RandomState([2017, 8, 30]) # check if we've trained before, and if we have, use that pre-trained model if os.path.exists(model_path + ".meta"): tf_model_load(sess, model_path) else: train(sess, loss, x, y, x_train, y_train, args=train_params, rng=rng) saver = tf.train.Saver() saver.save(sess, model_path) # Evaluate the accuracy of the MNIST model on legitimate test examples eval_params = {'batch_size': batch_size} accuracy = model_eval(sess, x, y, preds, x_test, y_test, args=eval_params) assert x_test.shape[0] == test_end - test_start, x_test.shape print('Test accuracy on legitimate test examples: {0}'.format(accuracy)) report.clean_train_clean_eval = accuracy ########################################################################### # Craft adversarial examples using Carlini and Wagner's approach ########################################################################### nb_adv_per_sample = str(nb_classes - 1) if targeted else '1' print('Crafting ' + str(source_samples) + ' * ' + nb_adv_per_sample + ' adversarial examples') print("This could take some time ...") # Instantiate a CW attack object cw = CarliniWagnerL2(model, back='tf', sess=sess) if viz_enabled: assert source_samples == nb_classes idxs = [np.where(np.argmax(y_test, axis=1) == i)[0][0] for i in range(nb_classes)] if targeted: if viz_enabled: # Initialize our array for grid visualization grid_shape = (nb_classes, nb_classes, img_rows, img_cols, nchannels) grid_viz_data = np.zeros(grid_shape, dtype='f') adv_inputs = np.array( [[instance] * nb_classes for instance in x_test[idxs]], dtype=np.float32) else: adv_inputs = np.array( [[instance] * nb_classes for instance in x_test[:source_samples]], dtype=np.float32) one_hot = np.zeros((nb_classes, nb_classes)) one_hot[np.arange(nb_classes), np.arange(nb_classes)] = 1 adv_inputs = adv_inputs.reshape( (source_samples * nb_classes, img_rows, img_cols, nchannels)) adv_ys = np.array([one_hot] * source_samples, dtype=np.float32).reshape((source_samples * nb_classes, nb_classes)) yname = "y_target" else: if viz_enabled: # Initialize our array for grid visualization grid_shape = (nb_classes, 2, img_rows, img_cols, nchannels) grid_viz_data = np.zeros(grid_shape, dtype='f') adv_inputs = x_test[idxs] else: adv_inputs = x_test[:source_samples] adv_ys = None yname = "y" if targeted: cw_params_batch_size = source_samples * nb_classes else: cw_params_batch_size = source_samples cw_params = {'binary_search_steps': 1, yname: adv_ys, 'max_iterations': attack_iterations, 'learning_rate': CW_LEARNING_RATE, 'batch_size': cw_params_batch_size, 'initial_const': 10} adv = cw.generate_np(adv_inputs, **cw_params) eval_params = {'batch_size': np.minimum(nb_classes, source_samples)} if targeted: adv_accuracy = model_eval( sess, x, y, preds, adv, adv_ys, args=eval_params) else: if viz_enabled: err = model_eval(sess, x, y, preds, adv, y_test[idxs], args=eval_params) adv_accuracy = 1 - err else: err = model_eval(sess, x, y, preds, adv, y_test[:source_samples], args=eval_params) adv_accuracy = 1 - err if viz_enabled: for j in range(nb_classes): if targeted: for i in range(nb_classes): grid_viz_data[i, j] = adv[i * nb_classes + j] else: grid_viz_data[j, 0] = adv_inputs[j] grid_viz_data[j, 1] = adv[j] print(grid_viz_data.shape) print('--------------------------------------') # Compute the number of adversarial examples that were successfully found print('Avg. rate of successful adv. examples {0:.4f}'.format(adv_accuracy)) report.clean_train_adv_eval = 1. - adv_accuracy # Compute the average distortion introduced by the algorithm percent_perturbed = np.mean(np.sum((adv - adv_inputs)**2, axis=(1, 2, 3))**.5) print('Avg. L_2 norm of perturbations {0:.4f}'.format(percent_perturbed)) # Close TF session sess.close() # Finally, block & display a grid of all the adversarial examples if viz_enabled: import matplotlib.pyplot as plt _ = grid_visual(grid_viz_data) return report