示例#1
0
    def run(self, definition, run_type=None):
        if run_type == "performance":
            for op_type, op_value in definition.items():
                # run docker mode
                run_count = op_value["run_count"]
                run_params = op_value["params"]
                container = None

                if op_type == "insert":
                    if not run_params:
                        logger.debug("No run params")
                        continue
                    for index, param in enumerate(run_params):
                        logger.info("Definition param: %s" % str(param))
                        table_name = param["table_name"]
                        volume_name = param["db_path_prefix"]
                        print(table_name)
                        (data_type, table_size, index_file_size, dimension,
                         metric_type) = parser.table_parser(table_name)
                        for k, v in param.items():
                            if k.startswith("server."):
                                # Update server config
                                utils.modify_config(k,
                                                    v,
                                                    type="server",
                                                    db_slave=None)
                        container = utils.run_server(self.image,
                                                     test_type="remote",
                                                     volume_name=volume_name,
                                                     db_slave=None)
                        time.sleep(2)
                        milvus = MilvusClient(table_name)
                        # Check has table or not
                        if milvus.exists_table():
                            milvus.delete()
                            time.sleep(10)
                        milvus.create_table(table_name, dimension,
                                            index_file_size, metric_type)
                        # debug
                        # milvus.create_index("ivf_sq8", 16384)
                        res = self.do_insert(milvus, table_name, data_type,
                                             dimension, table_size,
                                             param["ni_per"])
                        logger.info(res)
                        # wait for file merge
                        time.sleep(table_size * dimension / 5000000)
                        # Clear up
                        utils.remove_container(container)

                elif op_type == "query":
                    for index, param in enumerate(run_params):
                        logger.info("Definition param: %s" % str(param))
                        table_name = param["dataset"]
                        volume_name = param["db_path_prefix"]
                        (data_type, table_size, index_file_size, dimension,
                         metric_type) = parser.table_parser(table_name)
                        for k, v in param.items():
                            if k.startswith("server."):
                                utils.modify_config(k, v, type="server")
                        container = utils.run_server(self.image,
                                                     test_type="remote",
                                                     volume_name=volume_name,
                                                     db_slave=None)
                        time.sleep(2)
                        milvus = MilvusClient(table_name)
                        logger.debug(milvus.show_tables())
                        # Check has table or not
                        if not milvus.exists_table():
                            logger.warning(
                                "Table %s not existed, continue exec next params ..."
                                % table_name)
                            continue
                        # parse index info
                        index_types = param["index.index_types"]
                        nlists = param["index.nlists"]
                        # parse top-k, nq, nprobe
                        top_ks, nqs, nprobes = parser.search_params_parser(
                            param)
                        for index_type in index_types:
                            for nlist in nlists:
                                result = milvus.describe_index()
                                logger.info(result)
                                # milvus.drop_index()
                                # milvus.create_index(index_type, nlist)
                                result = milvus.describe_index()
                                logger.info(result)
                                logger.info(milvus.count())
                                # preload index
                                milvus.preload_table()
                                logger.info("Start warm up query")
                                res = self.do_query(milvus, table_name, [1],
                                                    [1], 1, 1)
                                logger.info("End warm up query")
                                # Run query test
                                for nprobe in nprobes:
                                    logger.info(
                                        "index_type: %s, nlist: %s, metric_type: %s, nprobe: %s"
                                        % (index_type, nlist, metric_type,
                                           nprobe))
                                    res = self.do_query(
                                        milvus, table_name, top_ks, nqs,
                                        nprobe, run_count)
                                    headers = ["Nq/Top-k"]
                                    headers.extend(
                                        [str(top_k) for top_k in top_ks])
                                    utils.print_table(headers, nqs, res)
                        utils.remove_container(container)

        elif run_type == "insert_performance":
            for op_type, op_value in definition.items():
                # run docker mode
                run_count = op_value["run_count"]
                run_params = op_value["params"]
                container = None
                if not run_params:
                    logger.debug("No run params")
                    continue
                for index, param in enumerate(run_params):
                    logger.info("Definition param: %s" % str(param))
                    table_name = param["table_name"]
                    volume_name = param["db_path_prefix"]
                    print(table_name)
                    (data_type, table_size, index_file_size, dimension,
                     metric_type) = parser.table_parser(table_name)
                    for k, v in param.items():
                        if k.startswith("server."):
                            # Update server config
                            utils.modify_config(k,
                                                v,
                                                type="server",
                                                db_slave=None)
                    container = utils.run_server(self.image,
                                                 test_type="remote",
                                                 volume_name=volume_name,
                                                 db_slave=None)
                    time.sleep(2)
                    milvus = MilvusClient(table_name)
                    # Check has table or not
                    if milvus.exists_table():
                        milvus.delete()
                        time.sleep(10)
                    milvus.create_table(table_name, dimension, index_file_size,
                                        metric_type)
                    # debug
                    # milvus.create_index("ivf_sq8", 16384)
                    res = self.do_insert(milvus, table_name, data_type,
                                         dimension, table_size,
                                         param["ni_per"])
                    logger.info(res)
                    # wait for file merge
                    time.sleep(table_size * dimension / 5000000)
                    # Clear up
                    utils.remove_container(container)

        elif run_type == "search_performance":
            for op_type, op_value in definition.items():
                # run docker mode
                run_count = op_value["run_count"]
                run_params = op_value["params"]
                container = None
                for index, param in enumerate(run_params):
                    logger.info("Definition param: %s" % str(param))
                    table_name = param["dataset"]
                    volume_name = param["db_path_prefix"]
                    (data_type, table_size, index_file_size, dimension,
                     metric_type) = parser.table_parser(table_name)
                    for k, v in param.items():
                        if k.startswith("server."):
                            utils.modify_config(k, v, type="server")
                    container = utils.run_server(self.image,
                                                 test_type="remote",
                                                 volume_name=volume_name,
                                                 db_slave=None)
                    time.sleep(2)
                    milvus = MilvusClient(table_name)
                    logger.debug(milvus.show_tables())
                    # Check has table or not
                    if not milvus.exists_table():
                        logger.warning(
                            "Table %s not existed, continue exec next params ..."
                            % table_name)
                        continue
                    # parse index info
                    index_types = param["index.index_types"]
                    nlists = param["index.nlists"]
                    # parse top-k, nq, nprobe
                    top_ks, nqs, nprobes = parser.search_params_parser(param)
                    for index_type in index_types:
                        for nlist in nlists:
                            result = milvus.describe_index()
                            logger.info(result)
                            # milvus.drop_index()
                            # milvus.create_index(index_type, nlist)
                            result = milvus.describe_index()
                            logger.info(result)
                            logger.info(milvus.count())
                            # preload index
                            milvus.preload_table()
                            logger.info("Start warm up query")
                            res = self.do_query(milvus, table_name, [1], [1],
                                                1, 1)
                            logger.info("End warm up query")
                            # Run query test
                            for nprobe in nprobes:
                                logger.info(
                                    "index_type: %s, nlist: %s, metric_type: %s, nprobe: %s"
                                    % (index_type, nlist, metric_type, nprobe))
                                res = self.do_query(milvus, table_name, top_ks,
                                                    nqs, nprobe, run_count)
                                headers = ["Nq/Top-k"]
                                headers.extend(
                                    [str(top_k) for top_k in top_ks])
                                utils.print_table(headers, nqs, res)
                    utils.remove_container(container)

        elif run_type == "accuracy":
            """
            {
                "dataset": "random_50m_1024_512", 
                "index.index_types": ["flat", ivf_flat", "ivf_sq8"],
                "index.nlists": [16384],
                "nprobes": [1, 32, 128], 
                "nqs": [100],
                "top_ks": [1, 64], 
                "server.use_blas_threshold": 1100, 
                "server.cpu_cache_capacity": 256
            }
            """
            for op_type, op_value in definition.items():
                if op_type != "query":
                    logger.warning(
                        "invalid operation: %s in accuracy test, only support query operation"
                        % op_type)
                    break
                run_count = op_value["run_count"]
                run_params = op_value["params"]
                container = None

                for index, param in enumerate(run_params):
                    logger.info("Definition param: %s" % str(param))
                    table_name = param["dataset"]
                    sift_acc = False
                    if "sift_acc" in param:
                        sift_acc = param["sift_acc"]
                    (data_type, table_size, index_file_size, dimension,
                     metric_type) = parser.table_parser(table_name)
                    for k, v in param.items():
                        if k.startswith("server."):
                            utils.modify_config(k, v, type="server")
                    volume_name = param["db_path_prefix"]
                    container = utils.run_server(self.image,
                                                 test_type="remote",
                                                 volume_name=volume_name,
                                                 db_slave=None)
                    time.sleep(2)
                    milvus = MilvusClient(table_name)
                    # Check has table or not
                    if not milvus.exists_table():
                        logger.warning(
                            "Table %s not existed, continue exec next params ..."
                            % table_name)
                        continue

                    # parse index info
                    index_types = param["index.index_types"]
                    nlists = param["index.nlists"]
                    # parse top-k, nq, nprobe
                    top_ks, nqs, nprobes = parser.search_params_parser(param)
                    if sift_acc is True:
                        # preload groundtruth data
                        true_ids_all = self.get_groundtruth_ids(table_size)
                    acc_dict = {}
                    for index_type in index_types:
                        for nlist in nlists:
                            result = milvus.describe_index()
                            logger.info(result)
                            milvus.create_index(index_type, nlist)
                            # preload index
                            milvus.preload_table()
                            # Run query test
                            for nprobe in nprobes:
                                logger.info(
                                    "index_type: %s, nlist: %s, metric_type: %s, nprobe: %s"
                                    % (index_type, nlist, metric_type, nprobe))
                                for top_k in top_ks:
                                    for nq in nqs:
                                        result_ids = []
                                        id_prefix = "%s_index_%s_nlist_%s_metric_type_%s_nprobe_%s_top_k_%s_nq_%s" % \
                                                    (table_name, index_type, nlist, metric_type, nprobe, top_k, nq)
                                        if sift_acc is False:
                                            self.do_query_acc(
                                                milvus, table_name, top_k, nq,
                                                nprobe, id_prefix)
                                            if index_type != "flat":
                                                # Compute accuracy
                                                base_name = "%s_index_flat_nlist_%s_metric_type_%s_nprobe_%s_top_k_%s_nq_%s" % \
                                                    (table_name, nlist, metric_type, nprobe, top_k, nq)
                                                avg_acc = self.compute_accuracy(
                                                    base_name, id_prefix)
                                                logger.info(
                                                    "Query: <%s> accuracy: %s"
                                                    % (id_prefix, avg_acc))
                                        else:
                                            result_ids, result_distances = self.do_query_ids(
                                                milvus, table_name, top_k, nq,
                                                nprobe)
                                            debug_file_ids = "0.5.3_result_ids"
                                            debug_file_distances = "0.5.3_result_distances"
                                            with open(debug_file_ids,
                                                      "w+") as fd:
                                                total = 0
                                                for index, item in enumerate(
                                                        result_ids):
                                                    true_item = true_ids_all[:
                                                                             nq, :
                                                                             top_k].tolist(
                                                                             )[index]
                                                    tmp = set(
                                                        item).intersection(
                                                            set(true_item))
                                                    total = total + len(tmp)
                                                    fd.write(
                                                        "query: N-%d, intersection: %d, total: %d\n"
                                                        % (index, len(tmp),
                                                           total))
                                                    fd.write("%s\n" %
                                                             str(item))
                                                    fd.write("%s\n" %
                                                             str(true_item))
                                            acc_value = self.get_recall_value(
                                                true_ids_all[:nq, :top_k].
                                                tolist(), result_ids)
                                            logger.info(
                                                "Query: <%s> accuracy: %s" %
                                                (id_prefix, acc_value))
                    # # print accuracy table
                    # headers = [table_name]
                    # headers.extend([str(top_k) for top_k in top_ks])
                    # utils.print_table(headers, nqs, res)

                    # remove container, and run next definition
                    logger.info("remove container, and run next definition")
                    utils.remove_container(container)

        elif run_type == "stability":
            for op_type, op_value in definition.items():
                if op_type != "query":
                    logger.warning(
                        "invalid operation: %s in accuracy test, only support query operation"
                        % op_type)
                    break
                run_count = op_value["run_count"]
                run_params = op_value["params"]
                container = None
                for index, param in enumerate(run_params):
                    logger.info("Definition param: %s" % str(param))
                    table_name = param["dataset"]
                    index_type = param["index_type"]
                    volume_name = param["db_path_prefix"]
                    (data_type, table_size, index_file_size, dimension,
                     metric_type) = parser.table_parser(table_name)

                    # set default test time
                    if "during_time" not in param:
                        during_time = 100  # seconds
                    else:
                        during_time = int(param["during_time"]) * 60
                    # set default query process num
                    if "query_process_num" not in param:
                        query_process_num = 10
                    else:
                        query_process_num = int(param["query_process_num"])

                    for k, v in param.items():
                        if k.startswith("server."):
                            utils.modify_config(k, v, type="server")

                    container = utils.run_server(self.image,
                                                 test_type="remote",
                                                 volume_name=volume_name,
                                                 db_slave=None)
                    time.sleep(2)
                    milvus = MilvusClient(table_name)
                    # Check has table or not
                    if not milvus.exists_table():
                        logger.warning(
                            "Table %s not existed, continue exec next params ..."
                            % table_name)
                        continue

                    start_time = time.time()
                    insert_vectors = [[
                        random.random() for _ in range(dimension)
                    ] for _ in range(10000)]
                    i = 0
                    while time.time() < start_time + during_time:
                        i = i + 1
                        processes = []
                        # do query
                        # for i in range(query_process_num):
                        #     milvus_instance = MilvusClient(table_name)
                        #     top_k = random.choice([x for x in range(1, 100)])
                        #     nq = random.choice([x for x in range(1, 100)])
                        #     nprobe = random.choice([x for x in range(1, 1000)])
                        #     # logger.info("index_type: %s, nlist: %s, metric_type: %s, nprobe: %s" % (index_type, nlist, metric_type, nprobe))
                        #     p = Process(target=self.do_query, args=(milvus_instance, table_name, [top_k], [nq], [nprobe], run_count, ))
                        #     processes.append(p)
                        #     p.start()
                        #     time.sleep(0.1)
                        # for p in processes:
                        #     p.join()
                        milvus_instance = MilvusClient(table_name)
                        top_ks = random.sample([x for x in range(1, 100)], 3)
                        nqs = random.sample([x for x in range(1, 1000)], 3)
                        nprobe = random.choice([x for x in range(1, 500)])
                        res = self.do_query(milvus, table_name, top_ks, nqs,
                                            nprobe, run_count)
                        if i % 10 == 0:
                            status, res = milvus_instance.insert(
                                insert_vectors,
                                ids=[x for x in range(len(insert_vectors))])
                            if not status.OK():
                                logger.error(status)
                            # status = milvus_instance.drop_index()
                            # if not status.OK():
                            #     logger.error(status)
                            # index_type = random.choice(["flat", "ivf_flat", "ivf_sq8"])
                            milvus_instance.create_index(index_type, 16384)
                            result = milvus.describe_index()
                            logger.info(result)
                            # milvus_instance.create_index("ivf_sq8", 16384)
                    utils.remove_container(container)

        else:
            logger.warning("Run type: %s not supported" % run_type)
示例#2
0
    def run(self, definition, run_type=None):
        if run_type == "performance":
            for op_type, op_value in definition.items():
                run_count = op_value["run_count"]
                run_params = op_value["params"]

                if op_type == "insert":
                    for index, param in enumerate(run_params):
                        table_name = param["table_name"]
                        (data_type, table_size, index_file_size, dimension,
                         metric_type) = parser.table_parser(table_name)
                        milvus = MilvusClient(table_name,
                                              ip=self.ip,
                                              port=self.port)
                        # Check has table or not
                        if milvus.exists_table():
                            milvus.delete()
                            time.sleep(10)
                        milvus.create_table(table_name, dimension,
                                            index_file_size, metric_type)
                        res = self.do_insert(milvus, table_name, data_type,
                                             dimension, table_size,
                                             param["ni_per"])
                        logger.info(res)

                elif op_type == "query":
                    for index, param in enumerate(run_params):
                        logger.info("Definition param: %s" % str(param))
                        table_name = param["dataset"]
                        (data_type, table_size, index_file_size, dimension,
                         metric_type) = parser.table_parser(table_name)

                        milvus = MilvusClient(table_name,
                                              ip=self.ip,
                                              port=self.port)
                        logger.info(milvus.describe())
                        logger.info(milvus.describe_index())
                        logger.info(milvus.count())
                        logger.info(milvus.show_tables())
                        # parse index info
                        index_types = param["index.index_types"]
                        nlists = param["index.nlists"]
                        # parse top-k, nq, nprobe
                        top_ks, nqs, nprobes = parser.search_params_parser(
                            param)
                        # milvus.drop_index()

                        for index_type in index_types:
                            for nlist in nlists:
                                # milvus.create_index(index_type, nlist)
                                # preload index
                                logger.info("Start preloading table")
                                milvus.preload_table()
                                logger.info("End preloading table")
                                # Run query test
                                logger.info("Start warm up query")
                                res = self.do_query(milvus, table_name, [1],
                                                    [1], 1, 2)
                                logger.info("End warm up query")
                                for nprobe in nprobes:
                                    logger.info(
                                        "index_type: %s, nlist: %s, metric_type: %s, nprobe: %s"
                                        % (index_type, nlist, metric_type,
                                           nprobe))
                                    res = self.do_query(
                                        milvus, table_name, top_ks, nqs,
                                        nprobe, run_count)
                                    headers = ["nq/topk"]
                                    headers.extend(
                                        [str(top_k) for top_k in top_ks])
                                    utils.print_table(headers, nqs, res)

        elif run_type == "accuracy":
            for op_type, op_value in definition.items():
                if op_type != "query":
                    logger.warning(
                        "invalid operation: %s in accuracy test, only support query operation"
                        % op_type)
                    break
                run_count = op_value["run_count"]
                run_params = op_value["params"]
                for index, param in enumerate(run_params):
                    logger.info("Definition param: %s" % str(param))
                    table_name = param["dataset"]
                    sift_acc = False
                    if "sift_acc" in param:
                        sift_acc = param["sift_acc"]
                    (data_type, table_size, index_file_size, dimension,
                     metric_type) = parser.table_parser(table_name)

                    milvus = MilvusClient(table_name,
                                          ip=self.ip,
                                          port=self.port)
                    logger.debug(milvus.show_tables())
                    # Check has table or not
                    if not milvus.exists_table():
                        logger.warning(
                            "Table %s not existed, continue exec next params ..."
                            % table_name)
                        continue

                    # parse index info
                    index_types = param["index.index_types"]
                    nlists = param["index.nlists"]
                    # parse top-k, nq, nprobe
                    top_ks, nqs, nprobes = parser.search_params_parser(param)

                    if sift_acc is True:
                        # preload groundtruth data
                        true_ids_all = self.get_groundtruth_ids(table_size)

                    acc_dict = {}
                    for index_type in index_types:
                        for nlist in nlists:
                            result = milvus.describe_index()
                            logger.info(result)
                            # milvus.drop_index()
                            milvus.create_index(index_type, nlist)
                            # preload index
                            milvus.preload_table()
                            # Run query test
                            for nprobe in nprobes:
                                logger.info(
                                    "index_type: %s, nlist: %s, metric_type: %s, nprobe: %s"
                                    % (index_type, nlist, metric_type, nprobe))
                                for top_k in top_ks:
                                    for nq in nqs:
                                        result_ids = []
                                        id_prefix = "%s_index_%s_nlist_%s_metric_type_%s_nprobe_%s_top_k_%s_nq_%s" % \
                                                    (table_name, index_type, nlist, metric_type, nprobe, top_k, nq)
                                        if sift_acc is False:
                                            self.do_query_acc(
                                                milvus, table_name, top_k, nq,
                                                nprobe, id_prefix)
                                            if index_type != "flat":
                                                # Compute accuracy
                                                base_name = "%s_index_flat_nlist_%s_metric_type_%s_nprobe_%s_top_k_%s_nq_%s" % \
                                                    (table_name, nlist, metric_type, nprobe, top_k, nq)
                                                avg_acc = self.compute_accuracy(
                                                    base_name, id_prefix)
                                                logger.info(
                                                    "Query: <%s> accuracy: %s"
                                                    % (id_prefix, avg_acc))
                                        else:
                                            result_ids, result_distances = self.do_query_ids(
                                                milvus, table_name, top_k, nq,
                                                nprobe)
                                            debug_file_ids = "0.5.3_result_ids"
                                            debug_file_distances = "0.5.3_result_distances"
                                            with open(debug_file_ids,
                                                      "w+") as fd:
                                                total = 0
                                                for index, item in enumerate(
                                                        result_ids):
                                                    true_item = true_ids_all[:
                                                                             nq, :
                                                                             top_k].tolist(
                                                                             )[index]
                                                    tmp = set(
                                                        item).intersection(
                                                            set(true_item))
                                                    total = total + len(tmp)
                                                    fd.write(
                                                        "query: N-%d, intersection: %d, total: %d\n"
                                                        % (index, len(tmp),
                                                           total))
                                                    fd.write("%s\n" %
                                                             str(item))
                                                    fd.write("%s\n" %
                                                             str(true_item))
                                            acc_value = self.get_recall_value(
                                                true_ids_all[:nq, :top_k].
                                                tolist(), result_ids)
                                            logger.info(
                                                "Query: <%s> accuracy: %s" %
                                                (id_prefix, acc_value))
                    # # print accuracy table
                    # headers = [table_name]
                    # headers.extend([str(top_k) for top_k in top_ks])
                    # utils.print_table(headers, nqs, res)

        elif run_type == "stability":
            for op_type, op_value in definition.items():
                if op_type != "query":
                    logger.warning(
                        "invalid operation: %s in accuracy test, only support query operation"
                        % op_type)
                    break
                run_count = op_value["run_count"]
                run_params = op_value["params"]
                nq = 100000

                for index, param in enumerate(run_params):
                    logger.info("Definition param: %s" % str(param))
                    table_name = param["dataset"]
                    index_type = param["index_type"]
                    (data_type, table_size, index_file_size, dimension,
                     metric_type) = parser.table_parser(table_name)

                    # set default test time
                    if "during_time" not in param:
                        during_time = 100  # seconds
                    else:
                        during_time = int(param["during_time"]) * 60
                    # set default query process num
                    if "query_process_num" not in param:
                        query_process_num = 10
                    else:
                        query_process_num = int(param["query_process_num"])
                    milvus = MilvusClient(table_name,
                                          ip=self.ip,
                                          port=self.port)
                    logger.debug(milvus.show_tables())
                    logger.debug(milvus.describe_index())
                    logger.debug(milvus.count())
                    # Check has table or not
                    if not milvus.exists_table():
                        logger.warning(
                            "Table %s not existed, continue exec next params ..."
                            % table_name)
                        continue

                    start_time = time.time()
                    insert_vectors = [[
                        random.random() for _ in range(dimension)
                    ] for _ in range(nq)]
                    i = 0
                    while time.time() < start_time + during_time:
                        # processes = []
                        # # do query
                        # for i in range(query_process_num):
                        #     milvus_instance = MilvusClient(table_name)
                        #     top_k = random.choice([x for x in range(1, 100)])
                        #     nq = random.choice([x for x in range(1, 1000)])
                        #     nprobe = random.choice([x for x in range(1, 500)])
                        #     logger.info(nprobe)
                        #     p = Process(target=self.do_query, args=(milvus_instance, table_name, [top_k], [nq], 64, run_count, ))
                        #     processes.append(p)
                        #     p.start()
                        #     time.sleep(0.1)
                        # for p in processes:
                        #     p.join()
                        i = i + 1
                        milvus_instance = MilvusClient(table_name,
                                                       ip=self.ip,
                                                       port=self.port)
                        top_ks = random.sample([x for x in range(1, 100)], 1)
                        nqs = random.sample([x for x in range(1, 200)], 2)
                        nprobe = random.choice([x for x in range(1, 100)])
                        res = self.do_query(milvus_instance, table_name,
                                            top_ks, nqs, nprobe, run_count)
                        # milvus_instance = MilvusClient(table_name)
                        status, res = milvus_instance.insert(
                            insert_vectors,
                            ids=[x for x in range(len(insert_vectors))])
                        if not status.OK():
                            logger.error(status.message)
                        logger.debug(milvus.count())
                        res = self.do_query(milvus_instance, table_name,
                                            top_ks, nqs, nprobe, run_count)