def make_osmexposure(highValueArea, mode="default", country=None, save_path=None, check_plot=1, **kwargs): """ Generate climada-compatiple entity by assigning values to midpoints of individual house shapes from OSM query, according to surface area and country. Parameters: highValueArea (str): absolute path for gdf of building features queried from get_features_OSM() mode (str): "LitPop" or "default": Default assigns a value of 5400 Chf to each m2 of building, LitPop assigns total LitPop value for the region proportionally to houses (by base area of house) Country (str): ISO3 code or name of country in which entity is located. Only if mode = LitPop kwargs (dict): arguments for LitPop set_country method Returns: exp_building (Exposure): (CLIMADA-compatible) with allocated asset values. Saved as exposure_buildings_mode_lat_lon.h5 Example: buildings_47_8 = \ make_osmexposure(save_path + '/OSM_features_47_8.shp', mode="default", save_path = save_path, check_plot=1) """ if save_path is None: save_path = Path.cwd() elif isinstance(save_path, str): save_path = Path(save_path) High_Value_Area_gdf = _get_midpoints(highValueArea) High_Value_Area_gdf = _assign_values_exposure(High_Value_Area_gdf, mode, country, **kwargs) # put back into CLIMADA-compatible entity format and save as hdf5 file: exp_buildings = Exposures(High_Value_Area_gdf) exp_buildings.set_lat_lon() exp_buildings.check() exp_buildings.write_hdf5( save_path.joinpath('exposure_buildings_' + mode + '_' + str(int(min(High_Value_Area_gdf.bounds.miny))) + '_' + str(int(min(High_Value_Area_gdf.bounds.minx))) + '.h5')) # plotting if check_plot == 1: # normal hexagons exp_buildings.plot_hexbin(pop_name=True) # select the OSM background image from the available ctx.sources # - returns connection error, left out for now: #fig, ax = exp_buildings.plot_basemap(buffer=30000, url=ctx.sources.OSM_C, cmap='brg') return exp_buildings
def get_osmstencil_litpop(bbox, country, mode, highValueArea=None, \ save_path=os.getcwd(), check_plot=1, **kwargs): """ Generate climada-compatible exposure by downloading LitPop exposure for a bounding box, corrected for centroids which lie inside a certain high-value multipolygon area from previous OSM query. Parameters: bbox (array): List of coordinates in format [South, West, North, East] Country (str): ISO3 code or name of country in which bbox is located highValueArea (str): path of gdf of high-value area from previous step. If empty, searches for cwd/High_Value_Area_lat_lon.shp mode (str): mode of re-assigning low-value points to high-value points. "nearest", "even", or "proportional" kwargs (dict): arguments for LitPop set_country method Returns: exp_sub_high_exp (Exposure): (CLIMADA-compatible) with re-allocated asset values with name exposure_high_lat_lon Example: exposure_high_47_8 = get_osmstencil_litpop([47.16, 8.0, 47.3, 8.0712],\ 'CHE',"proportional", highValueArea = \ save_path + '/High_Value_Area_47_8.shp' ,\ save_path = save_path) """ if highValueArea == None: try: High_Value_Area_gdf = \ geopandas.read_file(os.getcwd() + '/High_Value_Area_'+ str(int(bbox[0]))+'_'+ str(int(bbox[1]))+".shp") except: print('No file found of form %s. Please add or specify path.' \ %(os.getcwd() + 'High_Value_Area_'+str(int(bbox[0]))+'_'+\ str(int(bbox[1]))+".shp")) else: High_Value_Area_gdf = geopandas.read_file(highValueArea) exp_sub = _get_litpop_bbox(country, High_Value_Area_gdf, **kwargs) exp_sub_high = _split_exposure_highlow(exp_sub, mode, High_Value_Area_gdf) ###### how to "spread" centroids with value to e.g. hexagons? ########### # put exp_sub_high back into CLIMADA-compatible exposure format and save as hdf5 file: exp_sub_high_exp = Exposures(exp_sub_high) exp_sub_high_exp.set_lat_lon() exp_sub_high_exp.check() exp_sub_high_exp.write_hdf5(save_path + '/exposure_high_'+str(int(bbox[0]))+\ '_'+str(int(bbox[1]))+'.h5') # plotting if check_plot == 1: # normal hexagons exp_sub_high_exp.plot_hexbin(pop_name=True) # select the OSM background image from the available ctx.sources - doesnt work atm #fig, ax = exp_sub_high_exp.plot_basemap(buffer=30000, url=ctx.sources.OSM_C, cmap='brg') return exp_sub_high_exp
exposure_tmp = Exposures(exposure_tmp) exposure_tmp.set_geometry_points() # set geometry attribute (shapely Points) from GeoDataFrame from latitude and longitude exposure_tmp.check() # puts metadata that has not been assigned exposure_data = exposure_data.append(exposure_tmp) if fix_zeros: exposure_tmp.value[exposure_tmp.value<plot_minimum] = plot_minimum else: print('\n' + '\x1b[1;03;30;30m' + 'ERROR Loading: %s_%ias.tiff' %(fi[0:-4]+fadd, res_target) + '\x1b[0m') print('\n' + '\x1b[1;03;30;30m' + 'Checking combined data...' + '\x1b[0m') exposure_data.check() if write_to_tiff: print('\n' + '\x1b[1;03;30;30m' + 'Writing combined data to TIFF...' + '\x1b[0m') exposure_data.plot_raster(res=res_target/3600, raster_res=res_target/3600, save_tiff=\ os.path.join(RES_DIR, '%s_000_%ias.tiff' %(files[0][0:-8]+fadd, res_target))) ax_exp = exposure_data.plot_hexbin(pop_name=False, cmap='plasma', norm=LogNorm(vmin=plot_minimum, vmax=0.1*exposure_data.value.max())) if save_plots: plt.savefig(os.path.join(RES_DIR, 'LitPop_pc_%iarcsec_%i_%s_world_map.png' % (res_target, REF_YEAR, fadd)), \ dpi=300, facecolor='w', edgecolor='w', \ orientation='portrait', papertype=None, format='png', \ transparent=False, bbox_inches=None, pad_inches=0.1, \ frameon=None, metadata=None) plt.savefig(os.path.join(RES_DIR, 'LitPop_pc_%iarcsec_%i_%s_world_map.pdf' % (res_target, REF_YEAR, fadd)), \ dpi=300, facecolor='w', edgecolor='w', \ orientation='portrait', papertype=None, format='pdf', \ transparent=False, bbox_inches=None, pad_inches=0.1, \ frameon=None, metadata=None) ax_exp_scatter = exposure_data.plot_scatter(pop_name=False, cmap='plasma', s=.01, shapes=False, \ norm=LogNorm(vmin=plot_minimum, vmax=np.max([0.1*exposure_data.value.max(), 10**9])))