示例#1
0
def create_docker_connection(cleanup=True, start_clipper=True):
    logger.info("Creating DockerContainerManager")
    cm = DockerContainerManager(clipper_query_port=find_unbound_port(),
                                clipper_management_port=find_unbound_port(),
                                clipper_rpc_port=find_unbound_port(),
                                redis_port=find_unbound_port())
    cl = ClipperConnection(cm)
    if cleanup:
        cl.stop_all()
        docker_client = get_docker_client()
        docker_client.containers.prune(filters={"label": CLIPPER_DOCKER_LABEL})
    if start_clipper:
        # Try to start Clipper in a retry loop here to address flaky tests
        # as described in https://github.com/ucbrise/clipper/issues/352
        while True:
            try:
                logger.info("Starting Clipper")
                cl.start_clipper()
                time.sleep(1)
                break
            except docker.errors.APIError as e:
                logger.info(
                    "Problem starting Clipper: {}\nTrying again.".format(e))
                cl.stop_all()
                cm = DockerContainerManager(
                    clipper_query_port=find_unbound_port(),
                    clipper_management_port=find_unbound_port(),
                    clipper_rpc_port=find_unbound_port(),
                    redis_port=find_unbound_port())
                cl = ClipperConnection(cm)
    else:
        cl.connect()
    return cl
示例#2
0
def setup_clipper():
    app_name = 'inceptionv3-app'
    model_name = 'inceptionv3-model'
    clipper_conn = ClipperConnection(DockerContainerManager())
    clipper_conn.connect()

    pytorch_deployer.deploy_pytorch_model(
        clipper_conn=clipper_conn,
        name=model_name,
        version='1',
        input_type='bytes',
        func=incept_predict,
        pytorch_model=incept,
        num_replicas=10,
        batch_size=1,
        pkgs_to_install=['pillow', 'pyarrow', 'torch', 'torchvision'])

    clipper_conn.register_application(name=app_name,
                                      input_type="bytes",
                                      default_output="-1.0",
                                      slo_micros=10000000)  # 10s

    clipper_conn.link_model_to_app(app_name=app_name, model_name=model_name)

    print(
        "url: ", "http://{addr}/{app_name}/predict".format(addr="",
                                                           app_name=app_name))
def create_kubernetes_connection(cleanup=True,
                                 start_clipper=True,
                                 connect=True,
                                 with_proxy=False,
                                 num_frontend_replicas=1):
    logger.info("Creating KubernetesContainerManager")
    if with_proxy:
        cm = KubernetesContainerManager(kubernetes_proxy_addr="127.0.0.1:8080")
    else:
        cm = KubernetesContainerManager()
    cl = ClipperConnection(cm)
    if cleanup:
        cl.stop_all()
        # Give kubernetes some time to clean up
        time.sleep(20)
        logger.info("Done cleaning up clipper")
    if start_clipper:
        logger.info("Starting Clipper")
        cl.start_clipper(
            query_frontend_image=
            "568959175238.dkr.ecr.us-west-1.amazonaws.com/clipper/query_frontend:{}".
            format(clipper_version),
            mgmt_frontend_image=
            "568959175238.dkr.ecr.us-west-1.amazonaws.com/clipper/management_frontend:{}".
            format(clipper_version),
            num_frontend_replicas=num_frontend_replicas)
        time.sleep(1)
    if connect:
        try:
            cl.connect()
        except Exception:
            pass
        except ClipperException:
            pass
        return cl
示例#4
0
def create_kubernetes_connection(cleanup=False,
                                 start_clipper=False,
                                 connect=False,
                                 with_proxy=False,
                                 num_frontend_replicas=1,
                                 cleanup_name='default-cluster',
                                 new_name='default-cluster',
                                 connect_name='default-cluster',
                                 service_types=None,
                                 namespace='default'):
    logger.info("Creating KubernetesContainerManager")
    cl = None
    assert cleanup or start_clipper or connect, "You must set at least one of {cleanup, start_clipper, connect} to be true."

    if with_proxy:
        kubernetes_proxy_addr = "127.0.0.1:8080"
    else:
        kubernetes_proxy_addr = None

    if cleanup:
        logger.info("Cleaning up Kubernetes Cluster {}".format(cleanup_name))
        cm = KubernetesContainerManager(
            cluster_name=cleanup_name,
            useInternalIP=USE_MINIKUBE,
            service_types=service_types,
            kubernetes_proxy_addr=kubernetes_proxy_addr)
        cl = ClipperConnection(cm)
        cl.stop_all()
        logger.info("Done cleaning up clipper")

    if start_clipper:
        logger.info("Starting up Kubernetes Cluster {}".format(new_name))
        cm = KubernetesContainerManager(
            cluster_name=new_name,
            kubernetes_proxy_addr=kubernetes_proxy_addr,
            namespace=namespace,
            useInternalIP=USE_MINIKUBE,
            service_types=service_types,
            create_namespace_if_not_exists=True)
        cl = ClipperConnection(cm)
        cl.start_clipper(num_frontend_replicas=num_frontend_replicas)

    if connect:
        try:
            cm = KubernetesContainerManager(
                cluster_name=connect_name,
                useInternalIP=USE_MINIKUBE,
                service_types=service_types,
                kubernetes_proxy_addr=kubernetes_proxy_addr)
            cl = ClipperConnection(cm)
            cl.connect()
        except Exception:
            pass

    return cl
def main(version, label):
    from clipper_admin import ClipperConnection, KubernetesContainerManager
    clipper_conn = ClipperConnection(
        KubernetesContainerManager(useInternalIP=True))
    clipper_conn.connect()
    from clipper_admin.deployers import python as python_deployer
    registry = 'localhost:5000'
    python_deployer.deploy_python_closure(clipper_conn,
                                          name="sum-model",
                                          version=version,
                                          input_type="doubles",
                                          func=feature_sum,
                                          labels=[label],
                                          registry=registry)
示例#6
0
class Clip(object):
    def __init__(self, sleep_time):
        from clipper_admin import ClipperConnection, DockerContainerManager
        #from clipper_admin.deployers import python as python_deployer
        from clipper_admin.deployers import pytorch as pt_deployer
        self.clipper_conn = ClipperConnection(DockerContainerManager())
        try:
            self.clipper_conn.connect()
            self.clipper_conn.stop_all()
        except Exception:
            pass
        self.clipper_conn.start_clipper()
        self.clipper_conn.register_application(name="hello-world",
                                               input_type="strings",
                                               default_output="-1.0",
                                               slo_micros=10**8)
        model = Model()

        def policy(ptmodel, x):
            batch = (len(x))
            arr = []
            for j in x:
                xs, masks = j.split("###")
                res = np.frombuffer(base64.decodestring(xs), dtype=np.float32)
                res = res.reshape((64, 19, 19, 3))
                res = np.frombuffer(base64.decodestring(masks),
                                    dtype=np.float32)
                res = res.reshape((64, 362))
            for i in x:
                time.sleep(sleep_time)
            return [
                np.random.rand(64).astype(np.float32) for i in range(batch)
            ]

        pt_deployer.deploy_pytorch_model(self.clipper_conn,
                                         name="policy",
                                         version=1,
                                         input_type="strings",
                                         func=policy,
                                         pytorch_model=model)

        self.clipper_conn.link_model_to_app(app_name="hello-world",
                                            model_name="policy")
示例#7
0
class Clip(object):
    def __init__(self, shape, model_name):
        from clipper_admin import ClipperConnection, DockerContainerManager
        from clipper_admin.deployers import python as python_deployer
        from clipper_admin.deployers import pytorch as pytorch_deployer
        self.clipper_conn = ClipperConnection(DockerContainerManager())
        try:
            self.clipper_conn.connect()
            self.clipper_conn.stop_all()
        except Exception:
            pass
        self.clipper_conn.start_clipper()
        self.clipper_conn.register_application(name="hello-world",
                                               input_type="strings",
                                               default_output="-1.0",
                                               slo_micros=10**8)
        ptmodel = get_model(model_name)

        def policy(model, x):
            print(len(x))
            batch = (len(x))
            arr = []
            for j in x:
                print(type(j), len(j))
                res = np.frombuffer(base64.decodestring(j), dtype=np.float32)
                print(res.shape)
                arr += [res]
            x = np.array(arr)
            x = x.reshape((-1, ) + shape[1:])
            print("new shape", x.shape)
            return evaluate_model(model, x).reshape((batch, shape[0]))

        pytorch_deployer.deploy_pytorch_model(self.clipper_conn,
                                              name="policy",
                                              version=1,
                                              input_type="strings",
                                              func=policy,
                                              pytorch_model=ptmodel)

        self.clipper_conn.link_model_to_app(app_name="hello-world",
                                            model_name="policy")
示例#8
0
def deployModelToClipper():
    """Deploy model to clipper and replace its entry."""
    global app_name, model_name, model_version

    print('Deploying model to clipper, model_name={}, model_version={}'.format(
        model_name, model_version))

    # Setup clipper and deploy model
    clipper_conn = ClipperConnection(DockerContainerManager(redis_port=6380))
    try:
        clipper_conn.start_clipper()
    except:
        clipper_conn.connect()
    try:
        # input_type must be bytes as inputs will be serialized into bytes with pickle
        clipper_conn.register_application(name=app_name,
                                          input_type="bytes",
                                          default_output="-1.0",
                                          slo_micros=1000000)
    except Exception as e:
        print(e)
    try:
        deploy_python_closure(clipper_conn,
                              name=model_name,
                              version=model_version,
                              input_type="bytes",
                              batch_size=1,
                              func=predict,
                              base_image='hysia-clipper-base-container-gpu')
    except Exception as e:
        print(e)
    try:
        clipper_conn.link_model_to_app(app_name=app_name,
                                       model_name=model_name)
    except Exception as e:
        print(e)

    replaceDefaultEntry()
    print('{} deployed to clipper!'.format(model_name))
示例#9
0
def setup_clipper():

    app_name = 'predict-app'
    model_name = "predict-model"
    clipper_conn = ClipperConnection(DockerContainerManager())
    clipper_conn.connect()

    deploy_python_closure(clipper_conn,
                          name="predict-model",
                          version='1',
                          input_type="bytes",
                          func=join_predict)

    clipper_conn.register_application(name=app_name,
                                      input_type="bytes",
                                      default_output="-1.0",
                                      slo_micros=10000000)  # 10s

    clipper_conn.link_model_to_app(app_name=app_name, model_name=model_name)

    print(
        "url: ", "http://{addr}/{app_name}/predict".format(addr="",
                                                           app_name=app_name))
示例#10
0
def setup_clipper():
  app_name = 'resnet101-app'
  model_name = 'resnet101-model'
  clipper_conn = ClipperConnection(DockerContainerManager())
  clipper_conn.connect()
  
  pytorch_deployer.deploy_pytorch_model(clipper_conn=clipper_conn,
          name=model_name,
          version='1',
          input_type='bytes',
          func=resnet_predict,
          pytorch_model=resnet101,
          pkgs_to_install=['pillow', 'torch', 'torchvision'])

  clipper_conn.register_application(name=app_name,
          input_type="bytes",
          default_output="-1.0",
          slo_micros=10000000)  # 10s

  clipper_conn.link_model_to_app(app_name=app_name, model_name=model_name)
  print("query_adress: ", clipper_conn.get_query_addr())
  print("app_name: ", )
  print("model_name: ", )
  print("url: ", "http://{addr}/{app_name}/predict".format(addr=clipper_conn.get_query_addr(),app_name=app_name))
示例#11
0
def register(model_name, sess, func):
    """
    Register a tf session with its function 

    Input: 
    - model_name: name of the model, string
    - sess: TF session
    - func: the function that runs the TF session 

    Return:
    - clipper connection 
    """
    clipper_conn = ClipperConnection(DockerContainerManager())
    clipper_conn.connect()
    deploy_tensorflow_model(
        clipper_conn=clipper_conn,
        name=model_name,
        version='1.0',
        input_type='strings',
        func=func,
        tf_sess_or_saved_model_path=sess,
    )
    print(model_name, "registered")
    return clipper_conn
    # turn into predictions
    with open('submission.csv') as fh:
        lines = fh.readlines()[1:] # ignore first line
    preds = [line.strip().split(',')[1] for line in lines]
    return preds

# pickle function and write to appropriate location
s = six.StringIO()
c = CloudPickler(s, 2)
c.dump(libffm)
serialized_prediction_function = s.getvalue()
filepath = 'docker/lib/func.pkl'
with open(filepath, 'w') as fh:
    fh.write(serialized_prediction_function)

# refresh creds
os.system('gcloud container clusters get-credentials redis-cluster')
os.system('kubectl cluster-info')

clipper_conn = ClipperConnection(KubernetesContainerManager(clipper_ip, useInternalIP=True))
clipper_conn.connect()

# Build model and deploy to clipper
version = int(time.time())
clipper_conn.build_and_deploy_model('ffm', version, 'strings', 'docker/lib', 'clipper/python-closure-container:develop', container_registry='ryanhoque')
# Uncomment the following if first time
#clipper_conn.link_model_to_app(app_name="testbed", model_name="ffm") 

# finally deploy new version of model to clipper (set version as timestamp)
print('Successfully deployed model ffm version ' + str(version) + ' to Clipper.')