def mytopic(event: v1.Event) -> TopicEventResponse: global should_retry data = json.loads(event.Data()) print( f'Subscriber received: id={data["id"]}, message="{data["message"]}", content_type="{event.content_type}"', flush=True) if should_retry: should_retry = False # we only retry once in this example return TopicEventResponse('retry') return TopicEventResponse('success')
def mytopic(event: v1.Event) -> None: X = json.loads(event.Data()).get('X') Y = json.loads(event.Data()).get('Y') # convert numpy array to tensor in shape of input size x = torch.from_numpy(np.asarray(X).reshape(-1, 1)).float() y = torch.from_numpy(np.asarray(Y).reshape(-1, 1)).float() # Define Optimizer and Loss Function optimizer = torch.optim.SGD(net.parameters(), lr=0.2) loss_func = torch.nn.MSELoss() inputs = Variable(x) outputs = Variable(y) for i in range(25): prediction = net(inputs) loss = loss_func(prediction, outputs) optimizer.zero_grad() loss.backward() optimizer.step() if i % 5 == 0: # plot and show learning process plt.cla() plt.scatter(x.data.numpy(), y.data.numpy()) plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=2) plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={ 'size': 10, 'color': 'red' }) plt.pause(0.1) # display(fig) # make_dot(net) for param in net.parameters(): print(param)
def mytopic(event: v1.Event) -> None: data = json.loads(event.Data()) print(f'Subscriber received: id={data["id"]}, message="{data["message"]}", content_type="{event.content_type}"',flush=True)
def mytopic(event: v1.Event) -> None: print(event.Data(), flush=True)
def mytopic(event: v1.Event) -> None: data = json.loads(event.Data()) print( f'Subscriber received: value="{data["value"]}", timestamp = "{data["timestamp"]}", topic="{data["topic"]}", content_type="{event.content_type}"', flush=True)
def local_subscribe(event: v1.Event) -> None: """Receives event/data from local component and forwards to remotes.""" data = str(event.Data(), encoding='utf-8') print(f"Data received from local: {data}") send_request(data)