def runAssembler(snpRate, typeOfGen, detail, parameterRobot): #N, G, L, p,K,snpRate, typeOfGen, detail = 100, 100, 10000, 0.01,30,0.001, 'r', "1000" motherGen, reads, noisyReads = dataGen.generateData( typeOfGen, detail, parameterRobot) motherGen, reads, noisyReads = logging.rawDataLoad( parameterRobot.defaultFolder + "UnitTest", parameterRobot.G, parameterRobot.N, parameterRobot.L, "dn") f1 = cluster.groupIndelNoisyKmers(noisyReads, parameterRobot) G1, startList, f1 = graphForm.getSeqGraph(f1, noisyReads, parameterRobot) f2, G2 = branchClear.clearResidual(f1, G1, parameterRobot) G3 = bridgeResolve.resolveRepeats(f2, G2, parameterRobot) G4 = alignmentBridge.MSAresolve(f2, G3, noisyReads, snpRate, parameterRobot) #G4 = G3 recovSeq = eulerCycle.findEC(G4) recovGen = readAns.reportRecovSeq(recovSeq, f2, noisyReads, parameterRobot) numMistakes, success = compare.subAlignCompare(recovGen, motherGen, parameterRobot) #numMistakes, success = 0 , 0 return numMistakes, success # Target of the new code : Fast Assemble and assembly in optimal amount of information #t0 = time.time() #N, G, L, p,snpRate, typeOfGen, detail = 1000, 10000,200, 0.015, 0.001 ,'m', "500-300-50" #runAssembler(N, G, L, p,snpRate, typeOfGen, detail) #print "Time (sec) :", time.time() - t0
def runAssembler(snpRate, typeOfGen, detail,parameterRobot): #N, G, L, p,K,snpRate, typeOfGen, detail = 100, 100, 10000, 0.01,30,0.001, 'r', "1000" motherGen, reads, noisyReads = dataGen.generateData(typeOfGen, detail,parameterRobot) motherGen, reads, noisyReads = logging.rawDataLoad(parameterRobot.defaultFolder+"UnitTest",parameterRobot.G,parameterRobot.N,parameterRobot.L, "dn") f1 = cluster.groupIndelNoisyKmers(noisyReads,parameterRobot) G1,startList, f1 = graphForm.getSeqGraph(f1,noisyReads, parameterRobot) f2, G2 = branchClear.clearResidual(f1, G1,parameterRobot) G3 = bridgeResolve.resolveRepeats(f2, G2,parameterRobot) G4 = alignmentBridge.MSAresolve(f2, G3, noisyReads, snpRate,parameterRobot ) #G4 = G3 recovSeq = eulerCycle.findEC(G4) recovGen = readAns.reportRecovSeq(recovSeq, f2, noisyReads,parameterRobot) numMistakes, success = compare.subAlignCompare(recovGen, motherGen,parameterRobot) #numMistakes, success = 0 , 0 return numMistakes, success # Target of the new code : Fast Assemble and assembly in optimal amount of information #t0 = time.time() #N, G, L, p,snpRate, typeOfGen, detail = 1000, 10000,200, 0.015, 0.001 ,'m', "500-300-50" #runAssembler(N, G, L, p,snpRate, typeOfGen, detail) #print "Time (sec) :", time.time() - t0
def clusterUnitTest2(): # Unit Test 1 : Generate 30 reads with 10 copies with noise , length being 20 motherGen, reads, noisyReads = logging.rawDataLoad("clusterReadsUnitTest", 10, 300, 40, "dn") parameterRobot = logging.parameterObj() parameterRobot.N = 300 parameterRobot.L = 40 parameterRobot.G = 10000 parameterRobot.liid = 30 parameterRobot.K = 30 parameterRobot.threshold = 5 parameterRobot.p = 0.01 parameterRobot.indel = True cluster.groupIndelNoisyKmers(noisyReads, parameterRobot, "fast")
def clusterUnitTest2(): # Unit Test 1 : Generate 30 reads with 10 copies with noise , length being 20 motherGen, reads, noisyReads = logging.rawDataLoad("clusterReadsUnitTest",10,300,40,"dn") parameterRobot = logging.parameterObj() parameterRobot.N = 300 parameterRobot.L = 40 parameterRobot.G = 10000 parameterRobot.liid = 30 parameterRobot.K = 30 parameterRobot.threshold = 5 parameterRobot.p = 0.01 parameterRobot.indel = True cluster.groupIndelNoisyKmers(noisyReads, parameterRobot, "fast")
def graphFormUnitTest(N, G, L, folderName =""): print "dataGenUnitTest" dummyParameters = logging.parameterObj() dummyParameters.defaultFolder = folderName dummyParameters.liid = 40 dummyParameters.K = 40 dummyParameters.threshold = 6 dummyParameters.p = 0.015 dummyParameters.indel = True dummyParameters.N, dummyParameters.G, dummyParameters.L, dummyParameters.p, typeOfGen, detail = N, G, L, 0.015, 'm', "500-200-50" # motherGen, reads, noisyReads = dataGen.generateData( typeOfGen,detail,dummyParameters) motherGen, reads, noisyReads = logging.rawDataLoad(dummyParameters.defaultFolder+"UnitTest",dummyParameters.G,dummyParameters.N,dummyParameters.L, "dn") returnfmapping= cluster.groupIndelNoisyKmers(noisyReads, dummyParameters, "fast")
def graphFormUnitTest(N, G, L, folderName=""): print "dataGenUnitTest" dummyParameters = logging.parameterObj() dummyParameters.defaultFolder = folderName dummyParameters.liid = 40 dummyParameters.K = 40 dummyParameters.threshold = 6 dummyParameters.p = 0.015 dummyParameters.indel = True dummyParameters.N, dummyParameters.G, dummyParameters.L, dummyParameters.p, typeOfGen, detail = N, G, L, 0.015, 'm', "500-200-50" # motherGen, reads, noisyReads = dataGen.generateData( typeOfGen,detail,dummyParameters) motherGen, reads, noisyReads = logging.rawDataLoad( dummyParameters.defaultFolder + "UnitTest", dummyParameters.G, dummyParameters.N, dummyParameters.L, "dn") returnfmapping = cluster.groupIndelNoisyKmers(noisyReads, dummyParameters, "fast")