示例#1
0
def test_answer_set_to_str_complex():
    asp = 'a(a(2,3),(2,),b(c((d,),(e,f)))).'
    models = tuple(ASP(asp).parse_args)
    print('CAREFUL:', models)
    answerset = models[0]
    models = tuple(ASP(asp))
    print('NORMAL :', models)
    assert ' '.join(utils.generate_answer_set_as_str(answerset,
                                                     atom_end='.')) == asp
示例#2
0
def test_file_saving_api_with_as_pyasp(asp_code):
    # create the read_answers from the dictionary repr of answer sets
    as_dict_answers = tuple(ASP(asp_code).as_pyasp)
    fname = utils.save_answers_in_file(as_dict_answers)
    read_answers = frozenset(utils.load_answers_from_file(fname))

    # must be the same as regular repr of answer sets
    answers = frozenset(ASP(asp_code))
    assert answers == read_answers
示例#3
0
def test_solving():
    """Prove that the program is valid"""
    answers = tuple(ASP(ASP_SOURCE).by_predicate)
    assert len(answers) == 1
    for idx, answer in enumerate(answers):
        assert len(answer['p']) == 4
        assert len(answer['rel']) == 4
        assert answer['rel'] == {('a', 'b'), ('a', 'c'), ('a', 'd'),
                                 ('a', 'e')}
示例#4
0
def test_api_asp(asp_code):
    answers = ASP(asp_code, use_clingo_module=False)  # clingo module offers a *really* different statistics set
    found = set()
    for answer in answers.by_predicate.sorted.first_arg_only:
        found.add(''.join(answer['obj']) + '×' + ''.join(answer['att']))
    assert found == {'a×cd', 'b×de', 'ab×d'}
    assert len(answers.statistics) == 4
    assert answers.statistics['Calls'] == '1'
    assert answers.statistics['Models'] == '3'
    assert set(answers.statistics.keys()) == {'CPU Time', 'Calls', 'Models', 'Time'}
示例#5
0
def test_save_in_file(asp_code):
    answers = frozenset(ASP(asp_code))
    with tempfile.NamedTemporaryFile('w', delete=False) as ofd:
        ofd.write('\n'.join(
            utils.answer_set_to_str(answer) for answer in answers))
        fname = ofd.name

    with open(fname) as ifd:
        read_answers = frozenset(
            frozenset(utils.answer_set_from_str(line)) for line in ifd)

    assert read_answers == answers
示例#6
0
def test_file_saving_api(asp_code):
    answers = frozenset(ASP(asp_code))
    fname = utils.save_answers_in_file(answers)
    read_answers = frozenset(utils.load_answers_from_file(fname))
    assert answers == read_answers
示例#7
0
def predict(experiment_type=None):
    ex_table = pd.read_csv(configuration_dict[experiment_type])

    def extract_train_pid():
        # check the duplicates between the train set and the test set
        duplicates_list = []
        for pid in ex_table['train']:
            if pid in ex_table['test'].tolist():
                duplicates_list.append(pid)

        if len(duplicates_list) == 0:
            print('No duplicates between the train set and the test set')
        else:
            print('Duplicates: ', str(duplicates_list))

        print('The number of sentences in the train set: ',
              str(len(ex_table['train'].unique())))
        print('The number of sentences in the test set: ',
              str(len(ex_table['test'].unique())))

        # train_pid_list has indexes of the sentences in the train set
        train_pid_list = ex_table['train'].tolist()
        # add the general rules indexes to train_pid_list
        train_pid_list.append('general')
        train_pid_list.append('general_semantic')

        return train_pid_list

    train_pid_list = extract_train_pid()

    with open('facts_check_person.lp', 'rt') as file:
        facts_check_person = file.read()

    with open('rules_reasoning.lp', 'rt') as file:
        rules_reasoning = file.read()

    # add the semantic role rules which can be derived from the train set only
    df = pd.read_excel('rules_semantic_roles.xlsx')
    rules_semantic = ''
    for i in range(len(df)):
        if df['pID'][i] in train_pid_list:
            rules_semantic = rules_semantic + df['rules'][i] + '\n'

    # add the background knowledge principles which can be derived from the train set only
    bg_id_list = []
    for i in range(len(df)):
        if df['pID'][i] in train_pid_list:
            if df['bg'][i] is not np.nan:
                bg_id_list.append(df['bg'][i])

    bg_id_list = list(set(bg_id_list))
    print('The number of the derived background knowledge principles: ',
          str(len(bg_id_list)))
    print('Waiting for the predictions...')
    # prediction results are saved in pred_dict
    pred_dict = {}

    for test_pid in ex_table['test']:
        print(test_pid)
        pred_dict[test_pid] = []

        with open('./sentences/' + test_pid + '.lp', 'rt') as file:
            test_representation = file.read()

        # compare one Winograd schema sentence with each background knowledge principle
        for bg_id in bg_id_list:
            with open('./background_knowledge/high_level_' + bg_id + '.lp',
                      'rt') as file:
                bg_representation = file.read()

            whole_representation = ''.join([
                test_representation, bg_representation, facts_check_person,
                rules_semantic, rules_reasoning
            ])
            answers = ASP(whole_representation)
            for answer in answers.by_predicate.first_arg_only:
                try:
                    pred_dict[test_pid].append(str(answer['ans']))
                    break
                except:
                    pass

    print(pred_dict)

    return pred_dict
示例#8
0
    return 'Perform 1000 graphs in {} seconds.'.format(
        timeit(run, number=number))


def time_efficiency_alt():
    program = (ASP_CODE)
    func = partial(asp_parsing.program_to_dependancy_graph,
                   program,
                   have_comments=False)
    return 'Perform 1000 graphs in ' + str(timeit(func,
                                                  number=1000)) + ' seconds.'
    # last time: 0.01s


if __name__ == '__main__':
    answers = ASP(ASP_CODE)
    for answer in answers.by_predicate.first_arg_only:
        print('{' + ','.join(answer['obj']) + '} × {' +
              ','.join(answer['att']) + '}')
    print()

    print('Dependancy graph:')
    pprint(asp_parsing.program_to_dependancy_graph(ASP_CODE))
    print()

    print('Benchmark:')
    for parser in (
            asp_parsing.precise_parser.
            parse_asp_program_by_arpeggio,  # last time: 4.0s, 5.8s
            asp_parsing.precise_parser.parse_asp_program_by_pypeg
    ):  # last time: 8.5s, 9.5s
示例#9
0
def test_answer_set_to_str_with_tuple():
    asp = 'a(b,(2,3,(a,b))).'
    model = next(ASP(asp).parse_args)
    assert ' '.join(utils.generate_answer_set_as_str(model,
                                                     atom_end='.')) == asp
示例#10
0
 def run(ASP=ASP, ASP_CODE=ASP_CODE):
     return tuple(ASP(ASP_CODE))
示例#11
0
import time

if __name__ == "__main__":
    # ASP input from the C# settings
    if len(sys.argv) != 3:
        exit()

    answerSet = [
        x.strip() for x in re.split(
            "(?<=[A-Za-z0-9\)\}])\.{1}(?=[A-Za-z0-9\(\{:%])", sys.argv[1])
    ]

    # Solve using clyngor wrapper; Get the peg atoms from the answer
    count = 0
    maxCount = 1000
    answers = ASP(sys.argv[1], options="--rand-freq=1 --seed=1")
    shapeList = []

    t_0 = time.time()
    for answer in answers:
        shapeList.append(answer)

        count += 1
        if count >= maxCount:
            break
    t_1 = time.time()

    print("Created {0} Answer Sets...".format(len(shapeList)))
    print("It took {0} seconds.".format(t_1 - t_0))

    if (sys.argv[2] == '0'):
示例#12
0
def test_api_asp(asp_code):
    answers = ASP(asp_code)
    found = set()
    for answer in answers.by_predicate.sorted.first_arg_only:
        found.add(''.join(answer['obj']) + '×' + ''.join(answer['att']))
    assert found == {'a×cd', 'b×de', 'ab×d'}
示例#13
0
def pathmodel_pathway_picture(asp_code, picture_name, input_filename):
    """
    Create the pathway picture using ASP results code from PathModel inference.

    Args:
        asp_code (str): string containing PathModel results
        picture_name (str): path to the output picture file
        input_filename (str): path to PathModel intermediary file
    """
    DG = nx.DiGraph()

    known_compounds = []
    inferred_compounds = []

    known_reactions = []
    inferred_reactions = []

    absent_molecules = []

    with open(input_filename, 'r') as intermediate_file:
        for answer in ASP(intermediate_file.read(), use_clingo_module=False
                          ).parse_args.by_predicate.discard_quotes:
            for predicate in answer:
                if predicate == "absentmolecules":
                    for atom in answer[predicate]:
                        absent_molecules.append(atom[0])

    for answer in ASP(
            asp_code,
            use_clingo_module=False).parse_args.by_predicate.discard_quotes:
        for predicate in answer:
            for atom in answer[predicate]:
                reaction = atom[0]
                reactant = atom[1]
                product = atom[2]
                if predicate == "reaction":
                    if reactant not in absent_molecules:
                        known_compounds.append(reactant)
                    if product not in absent_molecules:
                        known_compounds.append(product)

                    if product not in absent_molecules and reactant not in absent_molecules:
                        known_reactions.append((reactant, product))
                        DG.add_edge(reactant, product, label=reaction)
                elif predicate == "newreaction":
                    if 'Prediction_' in reactant:
                        inferred_compounds.append(reactant)
                    if 'Prediction_' in product:
                        inferred_compounds.append(product)

                    inferred_reactions.append((reactant, product))
                    DG.add_edge(reactant, product, label=reaction)
    plt.figure(figsize=(25, 25))

    nx.draw_networkx_nodes(DG,
                           graphviz_layout(DG, prog='neato'),
                           nodelist=known_compounds,
                           node_color="green",
                           node_size=3000,
                           node_shape='s',
                           alpha=0.5)
    nx.draw_networkx_nodes(DG,
                           graphviz_layout(DG, prog='neato'),
                           nodelist=inferred_compounds,
                           node_color="blue",
                           node_size=2000,
                           node_shape='s',
                           alpha=0.5)

    nx.draw_networkx_edges(DG,
                           graphviz_layout(DG, prog='neato'),
                           edgelist=known_reactions,
                           edge_color="green",
                           alpha=0.5,
                           width=2.0,
                           arrows=True,
                           arrowstyle='->',
                           arrowsize=14)
    nx.draw_networkx_edges(DG,
                           graphviz_layout(DG, prog='neato'),
                           edgelist=inferred_reactions,
                           edge_color="blue",
                           alpha=0.5,
                           width=2.0,
                           arrows=True,
                           arrowstyle='->',
                           arrowsize=14)
    nx.draw_networkx_labels(DG,
                            graphviz_layout(DG, prog='neato'),
                            font_size=15)

    ax = plt.gca()
    ax.set_axis_off()

    extension = os.path.splitext(picture_name)[1].strip('.')
    plt.savefig(picture_name, dpi=144, format=extension)
示例#14
0
def create_2dmolecule(input_filename, output_directory, align_domain=None):
    '''
    From an ASP input file create 2d representation of molecules.
    To use align_domain, you need the intermediate file creates by pathmodel_wrapper.py.
    With align_domain, rdkit will use domain to align molecules.

    Args:
        input_filename (str): path to PathMoldel output file
        output_directory (str): output folder containing pictures of the molecuels and of the infered pathway
        align_domain (bool): if True, rdkit will use domain to align molecules
    '''
    with open(input_filename, 'r') as input_file:
        asp_code = input_file.read()
    # Set bond types transformation from ASP to rdkit.
    bondtypes = {
        'single': Chem.BondType.SINGLE,
        'singleS': Chem.BondType.SINGLE,
        'singleR': Chem.BondType.SINGLE,
        'double': Chem.BondType.DOUBLE,
        'triple': Chem.BondType.TRIPLE,
        'variable': Chem.BondType.UNSPECIFIED
    }

    # Set atomic number transformation from ASP to rdkit.
    atomicNumber = {'carb': 6, 'nitr': 7, 'oxyg': 8, 'phos': 15, 'variable': 0}

    if align_domain:
        domain_molecules = {}
        domain_molecule_numberings = {}
        domain_bonds = {}
        molecule_domains = {}

    molecules = {}
    molecule_numberings = {}
    bonds = {}

    # Parse ASP input file and extract molecules, atoms and bonds.
    for predicate in ASP(asp_code,
                         use_clingo_module=False).parse_args.discard_quotes:
        for variable in predicate:
            if variable[0] == 'atom' or variable[0] == 'predictatom':
                atom_molecule = variable[1][0]
                atom_number = variable[1][1]
                atom_type = atomicNumber[variable[1][2]]
                if atom_molecule not in molecules:
                    molecules[atom_molecule] = [(atom_number, atom_type)]
                    molecule_numberings[atom_molecule] = [atom_number]
                else:
                    molecules[atom_molecule].append((atom_number, atom_type))
                    molecule_numberings[atom_molecule].append(atom_number)

            elif variable[0] == 'bond' or variable[0] == 'predictbond':
                atom_molecule = variable[1][0]
                bond_number_1 = variable[1][2]
                bond_number_2 = variable[1][3]
                bond_type = bondtypes[variable[1][1]]
                if atom_molecule not in bonds:
                    bonds[atom_molecule] = [(bond_number_1, bond_number_2,
                                             bond_type)]
                else:
                    bonds[atom_molecule].append(
                        (bond_number_1, bond_number_2, bond_type))

            if align_domain:
                # Extract domain information.
                if variable[0] == 'atomDomain':
                    atom_molecule = variable[1][0]
                    atom_number = variable[1][1]
                    atom_type = atomicNumber[variable[1][2]]
                    if atom_molecule not in domain_molecules:
                        domain_molecules[atom_molecule] = [(atom_number,
                                                            atom_type)]
                        domain_molecule_numberings[atom_molecule] = [
                            atom_number
                        ]
                    else:
                        domain_molecules[atom_molecule].append(
                            (atom_number, atom_type))
                        domain_molecule_numberings[atom_molecule].append(
                            atom_number)

                elif variable[0] == 'bondDomain':
                    atom_molecule = variable[1][0]
                    bond_number_1 = variable[1][2]
                    bond_number_2 = variable[1][3]
                    bond_type = bondtypes[variable[1][1]]
                    if atom_molecule not in domain_bonds:
                        domain_bonds[atom_molecule] = [
                            (bond_number_1, bond_number_2, bond_type)
                        ]
                    else:
                        domain_bonds[atom_molecule].append(
                            (bond_number_1, bond_number_2, bond_type))

                elif variable[0] == 'domain':
                    molecule_name = variable[1][0]
                    domain_name = variable[1][1]
                    molecule_domains[molecule_name] = domain_name

    # For each domains, create the corresponding rdkit molecule.
    if align_domain:
        rddomains = {}
        for domain_name in domain_molecules:
            rddomain = create_rdkit_molecule(domain_name, domain_molecules,
                                             domain_molecule_numberings,
                                             domain_bonds)
            rddomains[domain_name] = rddomain

    # For each molecules, create a rdkit molecule.
    for molecule_name in molecules:
        rdmol = create_rdkit_molecule(molecule_name, molecules,
                                      molecule_numberings, bonds)

        if align_domain:
            # Use domain to align molecule.
            template = rddomains[molecule_domains[molecule_name]]
            AllChem.Compute2DCoords(rdmol)
            AllChem.Compute2DCoords(template)
            AllChem.GenerateDepictionMatching2DStructure(rdmol, template)

        # Add atom numbering to molecule.
        # Source: https://iwatobipen.wordpress.com/2017/02/25/draw-molecule-with-atom-index-in-rdkit/
        def mol_with_atom_index(mol):
            atoms = mol.GetNumAtoms()
            for idx in range(atoms):
                mol.GetAtomWithIdx(idx).SetProp(
                    'molAtomMapNumber',
                    str(sorted(molecule_numberings[molecule_name])[idx]))
            return mol

        # Remove Atom with atomic number == 0
        # Source: https://sourceforge.net/p/rdkit/mailman/message/28157259/
        rdmol = Chem.DeleteSubstructs(rdmol, Chem.MolFromSmarts('[#0]'))

        # Draw molecule.
        molecule_name = molecule_name
        print(molecule_name)
        output_molecule_path = os.path.join(output_directory,
                                            molecule_name + '.svg')
        Draw.MolToFile(mol_with_atom_index(rdmol),
                       output_molecule_path,
                       size=(800, 800),
                       includeAtomNumbers=True)

    input_file.close()