def run(self, FES): # main part for your implementation population_size = int(4 + (3 * np.log(self.dimension))) bounds = np.array([[self.lower, self.upper]] * self.dimension) optimizer = CMA(mean=np.zeros(self.dimension), sigma=0.5, bounds=bounds, population_size=population_size) while self.eval_times < FES: print('=====================FE=====================') # use other Function work because CMA need ask many times function = Function(self.target_func) solutions = [] for generation in range(optimizer.population_size): solution = optimizer.ask() value = self.f.evaluate(func_num, solution) #print('generate: ', solution, 'loss: ', value) solutions.append((solution, value)) self.eval_times += 1 if value == "ReachFunctionLimit": print("ReachFunctionLimit") break if float(value) < self.optimal_value: self.optimal_solution[:] = solution self.optimal_value = float(value) optimizer.tell(solutions) print('eval times: ', self.eval_times) print("optimal: {}\n".format(self.get_optimal()[1]))
def main() -> None: # Generate solutions from a source task source_solutions = [] for _ in range(1000): x = np.random.random(2) value = source_task(x[0], x[1]) source_solutions.append((x, value)) # Estimate a promising distribution of the source task ws_mean, ws_sigma, ws_cov = get_warm_start_mgd( source_solutions, gamma=0.1, alpha=0.1 ) optimizer = CMA(mean=ws_mean, sigma=ws_sigma, cov=ws_cov) # Run WS-CMA-ES print(" g f(x1,x2) x1 x2 ") print("=== ========== ====== ======") while True: solutions = [] for _ in range(optimizer.population_size): x = optimizer.ask() value = target_task(x[0], x[1]) solutions.append((x, value)) print( f"{optimizer.generation:3d} {value:10.5f}" f" {x[0]:6.2f} {x[1]:6.2f}" ) optimizer.tell(solutions) if optimizer.should_stop(): break
def main(): seed = 0 rng = np.random.RandomState(0) bounds = np.array([[-32.768, 32.768], [-32.768, 32.768]]) lower_bounds, upper_bounds = bounds[:, 0], bounds[:, 1] mean = lower_bounds + (rng.rand(2) * (upper_bounds - lower_bounds)) sigma = 32.768 * 2 / 5 # 1/5 of the domain width optimizer = CMA(mean=mean, sigma=sigma, bounds=bounds, seed=0) n_restarts = 0 # A small restart doesn't count in the n_restarts small_n_eval, large_n_eval = 0, 0 popsize0 = optimizer.population_size inc_popsize = 2 # Initial run is with "normal" population size; it is # the large population before first doubling, but its # budget accounting is the same as in case of small # population. poptype = "small" while n_restarts <= 5: solutions = [] for _ in range(optimizer.population_size): x = optimizer.ask() value = ackley(x[0], x[1]) solutions.append((x, value)) # print("{:10.5f} {:6.2f} {:6.2f}".format(value, x[0], x[1])) optimizer.tell(solutions) if optimizer.should_stop(): seed += 1 n_eval = optimizer.population_size * optimizer.generation if poptype == "small": small_n_eval += n_eval else: # poptype == "large" large_n_eval += n_eval if small_n_eval < large_n_eval: poptype = "small" popsize_multiplier = inc_popsize**n_restarts popsize = math.floor(popsize0 * popsize_multiplier**(rng.uniform()**2)) else: poptype = "large" n_restarts += 1 popsize = popsize0 * (inc_popsize**n_restarts) mean = lower_bounds + (rng.rand(2) * (upper_bounds - lower_bounds)) optimizer = CMA( mean=mean, sigma=sigma, bounds=bounds, seed=seed, population_size=popsize, ) print("Restart CMA-ES with popsize={} ({})".format( popsize, poptype))
def test_cma_tell(self, data): dim = data.draw(st.integers(min_value=2, max_value=100)) mean = data.draw(npst.arrays(dtype=float, shape=dim)) sigma = data.draw(st.floats(min_value=1e-16)) n_iterations = data.draw(st.integers(min_value=1)) try: optimizer = CMA(mean, sigma) except AssertionError: return popsize = optimizer.population_size for _ in range(n_iterations): tell_solutions = data.draw( st.lists( st.tuples(npst.arrays(dtype=float, shape=dim), st.floats()), min_size=popsize, max_size=popsize, )) optimizer.ask() try: optimizer.tell(tell_solutions) except AssertionError: return optimizer.ask()
def main(): optimizer = CMA(mean=np.zeros(2), sigma=1.3) print(" g f(x1,x2) x1 x2 ") print("=== ========== ====== ======") while True: solutions = [] for _ in range(optimizer.population_size): x = optimizer.ask() value = quadratic(x[0], x[1]) solutions.append((x, value)) print(f"{optimizer.generation:3d} {value:10.5f}" f" {x[0]:6.2f} {x[1]:6.2f}") optimizer.tell(solutions) if optimizer.should_stop(): break
def main(): cma_es = CMA(mean=np.zeros(2), sigma=1.3) print(" g f(x1,x2) x1 x2 ") print("=== ========== ====== ======") for generation in range(50): solutions = [] for _ in range(cma_es.population_size): x = cma_es.ask() value = quadratic(x[0], x[1]) solutions.append((x, value)) msg = "{g:3d} {value:10.5f} {x1:6.2f} {x2:6.2f}".format( g=generation, value=value, x1=x[0], x2=x[1], ) print(msg) cma_es.tell(solutions)
def main(): dim = 40 optimizer = CMA(mean=3 * np.ones(dim), sigma=2.0) print(" evals f(x)") print("====== ==========") evals = 0 while True: solutions = [] for _ in range(optimizer.population_size): x = optimizer.ask() value = ellipsoid(x) evals += 1 solutions.append((x, value)) if evals % 3000 == 0: print(f"{evals:5d} {value:10.5f}") optimizer.tell(solutions) if optimizer.should_stop(): break
def main(): seed = 0 rng = np.random.RandomState(1) bounds = np.array([[-32.768, 32.768], [-32.768, 32.768]]) lower_bounds, upper_bounds = bounds[:, 0], bounds[:, 1] mean = lower_bounds + (rng.rand(2) * (upper_bounds - lower_bounds)) sigma = 32.768 * 2 / 5 # 1/5 of the domain width optimizer = CMA(mean=mean, sigma=sigma, bounds=bounds, seed=0) # Multiplier for increasing population size before each restart. inc_popsize = 2 print(" g f(x1,x2) x1 x2 ") print("=== ========== ====== ======") for generation in range(200): solutions = [] for _ in range(optimizer.population_size): x = optimizer.ask() value = ackley(x[0], x[1]) solutions.append((x, value)) print(f"{generation:3d} {value:10.5f} {x[0]:6.2f} {x[1]:6.2f}") optimizer.tell(solutions) if optimizer.should_stop(): seed += 1 popsize = optimizer.population_size * inc_popsize mean = lower_bounds + (rng.rand(2) * (upper_bounds - lower_bounds)) optimizer = CMA( mean=mean, sigma=sigma, bounds=bounds, seed=seed, population_size=popsize, ) print("Restart CMA-ES with popsize={}".format(popsize))
class OptimizingEmitter(object): """ This class is a wrapper for the CMA-ES algorithm """ def __init__(self, init_mean, id, mutation_rate, bounds, parameters): self.init_mean = init_mean self.id = id self._mutation_rate = mutation_rate self.steps = 0 self._params = parameters self._bounds = bounds self.stored = 0 # List of lists. Each inner list corresponds to the values obtained during a step # We init with the ancestor reward so it's easier to calculate the improvement self.values = [] self.archived_values = [] self._cmaes = CMA(mean=self.init_mean.copy(), sigma=self._mutation_rate, bounds=self._bounds, seed=self._params.seed, population_size=self._params.emitter_population) def ask(self): return self._cmaes.ask() def tell(self, solutions): return self._cmaes.tell(solutions) def should_stop(self): """ Checks internal stopping criteria :return: """ return self._cmaes.should_stop()
from cmaes import CMA import numpy as np import matplotlib.pyplot as plt target = np.array((0.75,0.75)) def evaluate(point): return np.sqrt(((point-target)**2).sum()) optimizer = CMA(mean=np.array([0.5,0.5]),bounds=np.array([[0,1],[0,1]]),sigma=0.5,n_max_resampling=1) generations = 16 sqrt = int(np.sqrt(generations)) fig, axs = plt.subplots(sqrt,sqrt,num="CMA-ES",sharex=True,sharey=True) points = np.ndarray((generations,optimizer.population_size,2)) for g in range(generations): solutions = [] for i in range(optimizer.population_size): point = optimizer.ask() points[g,i] = point score = evaluate(point) solutions.append((point,score)) optimizer.tell(solutions) for i in range(generations): ax = axs[i//sqrt,i%sqrt] ax.scatter(*zip(*points[i]),c="b") ax.scatter(*target,c="r") ax.set_xlim([0,1]) ax.set_ylim([0,1]) plt.show()
class CMAES(BaseEvolver): """ This class is a wrapper around the CMA ES implementation. """ def __init__(self, parameters): super().__init__(parameters) self.update_criteria = 'fitness' self.sigma = 0.05 # Instantiated only to extract genome size controller = registered_envs[ self.params.env_name]['controller']['controller']( input_size=registered_envs[ self.params.env_name]['controller']['input_size'], output_size=registered_envs[ self.params.env_name]['controller']['output_size']) self.genome_size = controller.genome_size self.bounds = self.params.genome_limit * np.ones( (self.genome_size, len(self.params.genome_limit))) self.values = [] self.optimizer = CMA(mean=self.mu * np.ones(self.genome_size), sigma=self.sigma, bounds=self.bounds, seed=self.params.seed, population_size=self.params.emitter_population) self.restarted_at = 0 def generate_offspring(self, parents, generation, pool=None): """ This function returns the parents. This way the population is evaluated given that contrary to the other algos here the population is given by the CMA-ES library :param parents: :param pool: :return: """ return parents def evaluate_performances(self, population, offsprings, pool=None): """ This function evaluates performances of the population. It's what calls the tell function from the optimizer The novelty is evaluated according to the given distance metric :param population: :param offsprings: :param pool: Multiprocessing pool :return: """ solutions = [(genome, -value) for genome, value in zip( population['genome'], population['reward'])] self.values += [-val[1] for val in solutions] self.optimizer.tell(solutions) def check_stopping_criteria(self, generation): """ This function is used to check for when to stop the emitter :param emitter_idx: :return: """ if self.optimizer.should_stop(): return True elif self._stagnation(generation - self.restarted_at): return True else: return False def _stagnation(self, cma_es_step): """ Calculates the stagnation criteria :param emitter_idx: :param ca_es_step: :return: """ bottom = int(20 * self.genome_size / self.params.emitter_population + 120 + 0.2 * cma_es_step) if cma_es_step > bottom: values = self.values[-bottom:] if np.median(values[:20]) >= np.median(values[-20:]) or np.max( values[:20]) >= np.max(values[-20:]): return True return False def update_archive(self, population, offsprings, generation): """ Updates the archive. In this case the archive is a copy of the population. We do not really have the concept of archive in CMA-ES, so this archive here is just for ease of analysis and code compatibility. :param population: :param offsprings: :return: """ # del self.archive # self.archive = Archive(self.params) for i in range(population.size): population[i]['stored'] = generation self.archive.store(population[i]) def update_population(self, population, offsprings, generation): """ This function updates the population according to the given criteria. For CMA-ES we use the ask function of the library :param population: :param offsprings: :return: """ # In case a stopping criteria has been met, reinitialize the optimizer with the best agent in the archive (that is # the best found so far) if self.check_stopping_criteria(generation): print("Restarting") best = np.argmax(self.archive['reward']) self.restarted_at = generation self.values = [] genome_idx = self.params.archive_stored_info.index('genome') self.optimizer = CMA( mean=self.archive[best][genome_idx], sigma=self.sigma, bounds=self.bounds, seed=self.params.seed, population_size=self.params.emitter_population) population.empty() for idx in range(self.params.emitter_population): population.add() population[idx]['genome'] = self.optimizer.ask() population[idx]['born'] = generation
def test_dimension(self): optimizer = CMA(mean=np.zeros(10), sigma=1.3) source_solutions = [(optimizer.ask(), 0.0) for _ in range(100)] ws_mean, ws_sigma, ws_cov = get_warm_start_mgd(source_solutions) self.assertEqual(ws_mean.size, 10)
with open(file_to_write, "w", newline='') as csv_file: writer = csv.writer(csv_file, delimiter=',') writer.writerow((*C[:-2].T.columns, 'loss')) print('something wrong') if __name__ == "__main__": mean = x0 + 0.001 sigma = 0.5 optimizer = CMA(mean=mean, sigma=sigma, bounds=scale_bounds, seed=0, population_size=5) for generation in range(5): solutions = [] for _ in range(optimizer.population_size): x = optimizer.ask() value = loss(x, data, kwargs) solutions.append((x, value)) with open(file_to_write, "a", newline='') as csv_file: writer = csv.writer(csv_file, delimiter=',') writer.writerow((*x, value)) #print(f"#{generation} {value} ") optimizer.tell(solutions) #res = calculate_full_trace(scale(C.value.values[:-2],*bounds.T), kwargs) #print(res) #result = pd.DataFrame(solutions, columns=['x', 'loss']) #name = 'result_1.csv' #result.to_csv(f"../../data/results/{name}") print('OK')