示例#1
0
    def test_dict_to_file(self):
        file_good = os.path.join(DATAFILES_PATH, 'bernoulli_output_1.csv')
        dict_good = {'a': 0.5}
        created_tmp = None
        with MaybeDictToFilePath(file_good, dict_good) as (fg1, fg2):
            self.assertTrue(os.path.exists(fg1))
            self.assertTrue(os.path.exists(fg2))
            with open(fg2) as fg2_d:
                self.assertEqual(json.load(fg2_d), dict_good)
            created_tmp = fg2
        self.assertTrue(os.path.exists(file_good))
        self.assertFalse(os.path.exists(created_tmp))

        with self.assertRaises(ValueError):
            with MaybeDictToFilePath(123, dict_good) as (fg1, fg2):
                pass
示例#2
0
    def test_dict_to_file(self):
        file_good = os.path.join(datafiles_path, 'bernoulli_output_1.csv')
        dict_good = {'a': 'A'}
        created_tmp = None
        with MaybeDictToFilePath(file_good, dict_good) as (f1, f2):
            self.assertTrue(os.path.exists(f1))
            self.assertTrue(os.path.exists(f2))
            with open(f2) as f2_d:
                self.assertEqual(json.load(f2_d), dict_good)
            created_tmp = f2
        self.assertTrue(os.path.exists(file_good))
        self.assertFalse(os.path.exists(created_tmp))

        with self.assertRaises(ValueError):
            with MaybeDictToFilePath(123, dict_good) as (f1, f2):
                pass
示例#3
0
    def variational(
        self,
        data: Union[Dict, str] = None,
        seed: int = None,
        inits: float = None,
        output_dir: str = None,
        save_diagnostics: bool = False,
        algorithm: str = None,
        iter: int = None,
        grad_samples: int = None,
        elbo_samples: int = None,
        eta: Real = None,
        adapt_engaged: bool = True,
        adapt_iter: int = None,
        tol_rel_obj: Real = None,
        eval_elbo: int = None,
        output_samples: int = None,
        require_converged: bool = True,
    ) -> CmdStanVB:
        """
        Run CmdStan's variational inference algorithm to approximate
        the posterior distribution of the model conditioned on the data.

        This function validates the specified configuration, composes a call to
        the CmdStan ``variational`` method and spawns one subprocess to run the
        optimizer and waits for it to run to completion.
        Unspecified arguments are not included in the call to CmdStan, i.e.,
        those arguments will have CmdStan default values.

        The ``CmdStanVB`` object records the command, the return code,
        and the paths to the variational method output csv and console files.
        The output files are written either to a specified output directory
        or to a temporary directory which is deleted upon session exit.

        Output files are either written to a temporary directory or to the
        specified output directory.  Output filenames correspond to the template
        '<model_name>-<YYYYMMDDHHMM>-<chain_id>' plus the file suffix which is
        either '.csv' for the CmdStan output or '.txt' for
        the console messages, e.g. 'bernoulli-201912081451-1.csv'.
        Output files written to the temporary directory contain an additional
        8-character random string, e.g. 'bernoulli-201912081451-1-5nm6as7u.csv'.

        :param data: Values for all data variables in the model, specified
            either as a dictionary with entries matching the data variables,
            or as the path of a data file in JSON or Rdump format.

        :param seed: The seed for random number generator. Must be an integer
            between 0 and 2^32 - 1. If unspecified,
            ``numpy.random.RandomState()``
            is used to generate a seed which will be used for all chains.

        :param inits:  Specifies how the sampler initializes parameter values.
            Initialization is uniform random on a range centered on 0 with
            default range of 2. Specifying a single number n > 0 changes
            the initialization range to [-n, n].

        :param output_dir: Name of the directory to which CmdStan output
            files are written. If unspecified, output files will be written
            to a temporary directory which is deleted upon session exit.

        :param save_diagnostics: Whether or not to save diagnostics. If True,
            csv output files are written to an output file with filename
            template '<model_name>-<YYYYMMDDHHMM>-diagnostic-<chain_id>',
            e.g. 'bernoulli-201912081451-diagnostic-1.csv'.

        :param algorithm: Algorithm to use. One of: 'meanfield', 'fullrank'.

        :param iter: Maximum number of ADVI iterations.

        :param grad_samples: Number of MC draws for computing the gradient.

        :param elbo_samples: Number of MC draws for estimate of ELBO.

        :param eta: Stepsize scaling parameter.

        :param adapt_engaged: Whether eta adaptation is engaged.

        :param adapt_iter: Number of iterations for eta adaptation.

        :param tol_rel_obj: Relative tolerance parameter for convergence.

        :param eval_elbo: Number of iterations between ELBO evaluations.

        :param output_samples: Number of approximate posterior output draws
            to save.

        :param require_converged: Whether or not to raise an error if stan
            reports that "The algorithm may not have converged".

        :return: CmdStanVB object
        """
        variational_args = VariationalArgs(
            algorithm=algorithm,
            iter=iter,
            grad_samples=grad_samples,
            elbo_samples=elbo_samples,
            eta=eta,
            adapt_engaged=adapt_engaged,
            adapt_iter=adapt_iter,
            tol_rel_obj=tol_rel_obj,
            eval_elbo=eval_elbo,
            output_samples=output_samples,
        )

        with MaybeDictToFilePath(data, inits) as (_data, _inits):
            args = CmdStanArgs(
                self._name,
                self._exe_file,
                chain_ids=None,
                data=_data,
                seed=seed,
                inits=_inits,
                output_dir=output_dir,
                save_diagnostics=save_diagnostics,
                method_args=variational_args,
            )

            dummy_chain_id = 0
            runset = RunSet(args=args, chains=1)
            self._run_cmdstan(runset, dummy_chain_id)

        # treat failure to converge as failure
        transcript_file = runset.stdout_files[dummy_chain_id]
        valid = True
        pat = re.compile(r'The algorithm may not have converged.', re.M)
        with open(transcript_file, 'r') as transcript:
            contents = transcript.read()
            errors = re.findall(pat, contents)
            if len(errors) > 0:
                valid = False
        if require_converged and not valid:
            raise RuntimeError('The algorithm may not have converged.')
        if not runset._check_retcodes():
            msg = 'Error during variational inference.\n{}'.format(
                runset.get_err_msgs())
            raise RuntimeError(msg)
        # pylint: disable=invalid-name
        vb = CmdStanVB(runset)
        return vb
示例#4
0
    def generate_quantities(
        self,
        data: Union[Dict, str] = None,
        mcmc_sample: Union[CmdStanMCMC, List[str]] = None,
        seed: int = None,
        gq_output_dir: str = None,
    ) -> CmdStanGQ:
        """
        Run CmdStan's generate_quantities method which runs the generated
        quantities block of a model given an existing sample.

        This function takes a CmdStanMCMC object and the dataset used to
        generate that sample and calls to the CmdStan ``generate_quantities``
        method to generate additional quantities of interest.

        The ``CmdStanGQ`` object records the command, the return code,
        and the paths to the generate method output csv and console files.
        The output files are written either to a specified output directory
        or to a temporary directory which is deleted upon session exit.

        Output files are either written to a temporary directory or to the
        specified output directory.  Output filenames correspond to the template
        '<model_name>-<YYYYMMDDHHMM>-<chain_id>' plus the file suffix which is
        either '.csv' for the CmdStan output or '.txt' for
        the console messages, e.g. 'bernoulli-201912081451-1.csv'.
        Output files written to the temporary directory contain an additional
        8-character random string, e.g. 'bernoulli-201912081451-1-5nm6as7u.csv'.

        :param data: Values for all data variables in the model, specified
            either as a dictionary with entries matching the data variables,
            or as the path of a data file in JSON or Rdump format.

        :param mcmc_sample: Can be either a ``CmdStanMCMC`` object returned by
            the ``sample`` method or a list of stan-csv files generated
            by fitting the model to the data using any Stan interface.

        :param seed: The seed for random number generator. Must be an integer
            between 0 and 2^32 - 1. If unspecified,
            ``numpy.random.RandomState()``
            is used to generate a seed which will be used for all chains.
            *NOTE: Specifying the seed will guarantee the same result for
            multiple invocations of this method with the same inputs.  However
            this will not reproduce results from the sample method given
            the same inputs because the RNG will be in a different state.*

        :param gq_output_dir:  Name of the directory in which the CmdStan output
            files are saved.  If unspecified, files will be written to a
            temporary directory which is deleted upon session exit.

        :return: CmdStanGQ object
        """
        sample_csv_files = []
        sample_drawset = None
        chains = 0

        if isinstance(mcmc_sample, CmdStanMCMC):
            sample_csv_files = mcmc_sample.runset.csv_files
            sample_drawset = mcmc_sample.draws_pd()
            chains = mcmc_sample.chains
            chain_ids = mcmc_sample.chain_ids
        elif isinstance(mcmc_sample, list):
            if len(mcmc_sample) < 1:
                raise ValueError('MCMC sample cannot be empty list')
            sample_csv_files = mcmc_sample
            chains = len(sample_csv_files)
            chain_ids = [x + 1 for x in range(chains)]
        else:
            raise ValueError('MCMC sample must be either CmdStanMCMC object'
                             ' or list of paths to sample csv_files.')
        try:
            if sample_drawset is None:  # assemble sample from csv files
                config = {}
                # scan 1st csv file to get config
                try:
                    config = scan_sampler_csv(sample_csv_files[0])
                except ValueError:
                    config = scan_sampler_csv(sample_csv_files[0], True)
                conf_iter_sampling = None
                if 'num_samples' in config:
                    conf_iter_sampling = int(config['num_samples'])
                conf_iter_warmup = None
                if 'num_warmup' in config:
                    conf_iter_warmup = int(config['num_warmup'])
                conf_thin = None
                if 'thin' in config:
                    conf_thin = int(config['thin'])
                sampler_args = SamplerArgs(
                    iter_sampling=conf_iter_sampling,
                    iter_warmup=conf_iter_warmup,
                    thin=conf_thin,
                )
                args = CmdStanArgs(
                    self._name,
                    self._exe_file,
                    chain_ids=chain_ids,
                    method_args=sampler_args,
                )
                runset = RunSet(args=args, chains=chains, chain_ids=chain_ids)
                runset._csv_files = sample_csv_files
                sample_fit = CmdStanMCMC(runset)
                sample_drawset = sample_fit.draws_pd()
        except ValueError as exc:
            raise ValueError('Invalid mcmc_sample, error:\n\t{}\n\t'
                             ' while processing files\n\t{}'.format(
                                 repr(exc),
                                 '\n\t'.join(sample_csv_files))) from exc

        generate_quantities_args = GenerateQuantitiesArgs(
            csv_files=sample_csv_files)
        generate_quantities_args.validate(chains)
        with MaybeDictToFilePath(data, None) as (_data, _inits):
            args = CmdStanArgs(
                self._name,
                self._exe_file,
                chain_ids=chain_ids,
                data=_data,
                seed=seed,
                output_dir=gq_output_dir,
                method_args=generate_quantities_args,
            )
            runset = RunSet(args=args, chains=chains, chain_ids=chain_ids)

            parallel_chains_avail = cpu_count()
            parallel_chains = max(min(parallel_chains_avail - 2, chains), 1)
            with ThreadPoolExecutor(max_workers=parallel_chains) as executor:
                for i in range(chains):
                    executor.submit(self._run_cmdstan, runset, i)

            if not runset._check_retcodes():
                msg = 'Error during generate_quantities.\n{}'.format(
                    runset.get_err_msgs())
                raise RuntimeError(msg)
            quantities = CmdStanGQ(runset=runset, mcmc_sample=sample_drawset)
        return quantities
示例#5
0
    def sample(
        self,
        data: Union[Dict, str] = None,
        chains: Union[int, None] = None,
        parallel_chains: Union[int, None] = None,
        threads_per_chain: Union[int, None] = None,
        seed: Union[int, List[int]] = None,
        chain_ids: Union[int, List[int]] = None,
        inits: Union[Dict, float, str, List[str]] = None,
        iter_warmup: int = None,
        iter_sampling: int = None,
        save_warmup: bool = False,
        thin: int = None,
        max_treedepth: float = None,
        metric: Union[str, List[str]] = None,
        step_size: Union[float, List[float]] = None,
        adapt_engaged: bool = True,
        adapt_delta: float = None,
        adapt_init_phase: int = None,
        adapt_metric_window: int = None,
        adapt_step_size: int = None,
        fixed_param: bool = False,
        output_dir: str = None,
        save_diagnostics: bool = False,
        show_progress: Union[bool, str] = False,
        validate_csv: bool = True,
    ) -> CmdStanMCMC:
        """
        Run or more chains of the NUTS sampler to produce a set of draws
        from the posterior distribution of a model conditioned on some data.

        This function validates the specified configuration, composes a call to
        the CmdStan ``sample`` method and spawns one subprocess per chain to run
        the sampler and waits for all chains to run to completion.
        Unspecified arguments are not included in the call to CmdStan, i.e.,
        those arguments will have CmdStan default values.

        For each chain, the ``CmdStanMCMC`` object records the command,
        the return code, the sampler output file paths, and the corresponding
        console outputs, if any. The output files are written either to a
        specified output directory or to a temporary directory which is deleted
        upon session exit.

        Output files are either written to a temporary directory or to the
        specified output directory.  Ouput filenames correspond to the template
        '<model_name>-<YYYYMMDDHHMM>-<chain_id>' plus the file suffix which is
        either '.csv' for the CmdStan output or '.txt' for
        the console messages, e.g. 'bernoulli-201912081451-1.csv'.
        Output files written to the temporary directory contain an additional
        8-character random string, e.g. 'bernoulli-201912081451-1-5nm6as7u.csv'.

        :param data: Values for all data variables in the model, specified
            either as a dictionary with entries matching the data variables,
            or as the path of a data file in JSON or Rdump format.

        :param chains: Number of sampler chains, must be a positive integer.

        :param parallel_chains: Number of processes to run in parallel. Must be
            a positive integer.  Defaults to ``multiprocessing.cpu_count()``.

        :param threads_per_chain: The number of threads to use in parallelized
            sections within an MCMC chain (e.g., when using the Stan functions
            ``reduce_sum()``  or ``map_rect()``).  This will only have an effect
            if the model was compiled with threading support. The total number
            of threads used will be ``parallel_chains * threads_per_chain``.

        :param seed: The seed for random number generator. Must be an integer
            between 0 and 2^32 - 1. If unspecified,
            ``numpy.random.RandomState()``
            is used to generate a seed which will be used for all chains.
            When the same seed is used across all chains,
            the chain-id is used to advance the RNG to avoid dependent samples.

        :param chain_ids: The offset for the random number generator, either
            an integer or a list of unique per-chain offsets.  If unspecified,
            chain ids are numbered sequentially starting from 1.

        :param inits: Specifies how the sampler initializes parameter values.
            Initialization is either uniform random on a range centered on 0,
            exactly 0, or a dictionary or file of initial values for some or all
            parameters in the model.  The default initialization behavior will
            initialize all parameter values on range [-2, 2] on the
            *unconstrained* support.  If the expected parameter values are
            too far from this range, this option may improve adaptation.
            The following value types are allowed:

            * Single number n > 0 - initialization range is [-n, n].
            * 0 - all parameters are initialized to 0.
            * dictionary - pairs parameter name : initial value.
            * string - pathname to a JSON or Rdump data file.
            * list of strings - per-chain pathname to data file.

        :param iter_warmup: Number of warmup iterations for each chain.

        :param iter_sampling: Number of draws from the posterior for each
            chain.

        :param save_warmup: When ``True``, sampler saves warmup draws as part of
            the Stan csv output file.

        :param thin: Period between saved samples.

        :param max_treedepth: Maximum depth of trees evaluated by NUTS sampler
            per iteration.

        :param metric: Specification of the mass matrix, either as a
            vector consisting of the diagonal elements of the covariance
            matrix ('diag' or 'diag_e') or the full covariance matrix
            ('dense' or 'dense_e').

            If the value of the metric argument is a string other than
            'diag', 'diag_e', 'dense', or 'dense_e', it must be
            a valid filepath to a JSON or Rdump file which contains an entry
            'inv_metric' whose value is either the diagonal vector or
            the full covariance matrix.

            If the value of the metric argument is a list of paths, its
            length must match the number of chains and all paths must be
            unique.

        :param step_size: Initial stepsize for HMC sampler.  The value is either
            a single number or a list of numbers which will be used as the
            global or per-chain initial step size, respectively.
            The length of the list of step sizes must match the number of
            chains.

        :param adapt_engaged: When True, adapt stepsize and metric.

        :param adapt_delta: Adaptation target Metropolis acceptance rate.
            The default value is 0.8.  Increasing this value, which must be
            strictly less than 1, causes adaptation to use smaller step sizes
            which improves the effective sample size, but may increase the time
            per iteration.

        :param adapt_init_phase: Iterations for initial phase of adaptation
            during which step size is adjusted so that the chain converges
            towards the typical set.

        :param adapt_metric_window: The second phase of adaptation tunes
            the metric and stepsize in a series of intervals.  This parameter
            specifies the number of iterations used for the first tuning
            interval; window size increases for each subsequent interval.

        :param adapt_step_size: Number of iterations given over to adjusting
            the step size given the tuned metric during the final phase of
            adaptation.

        :param fixed_param: When ``True``, call CmdStan with argument
            ``algorithm=fixed_param`` which runs the sampler without
            updating the Markov Chain, thus the values of all parameters and
            transformed parameters are constant across all draws and
            only those values in the generated quantities block that are
            produced by RNG functions may change.  This provides
            a way to use Stan programs to generate simulated data via the
            generated quantities block.  This option must be used when the
            parameters block is empty.  Default value is ``False``.

        :param output_dir: Name of the directory to which CmdStan output
            files are written. If unspecified, output files will be written
            to a temporary directory which is deleted upon session exit.

        :param save_diagnostics: Whether or not to save diagnostics. If True,
            csv output files are written to an output file with filename
            template '<model_name>-<YYYYMMDDHHMM>-diagnostic-<chain_id>',
            e.g. 'bernoulli-201912081451-diagnostic-1.csv'.

        :param show_progress: Use tqdm progress bar to show sampling progress.
            If show_progress=='notebook' use tqdm_notebook
            (needs nodejs for jupyter).

        :param validate_csv: If ``False``, skip scan of sample csv output file.
            When sample is large or disk i/o is slow, will speed up processing.
            Default is ``True`` - sample csv files are scanned for completeness
            and consistency.

        :return: CmdStanMCMC object
        """
        if chains is None:
            if fixed_param:
                chains = 1
            else:
                chains = 4
        if chains < 1:
            raise ValueError(
                'Chains must be a positive integer value, found {}.'.format(
                    chains))
        if chain_ids is None:
            chain_ids = [x + 1 for x in range(chains)]
        else:
            if isinstance(chain_ids, int):
                if chain_ids < 1:
                    raise ValueError(
                        'Chain_id must be a positive integer value,'
                        ' found {}.'.format(chain_ids))
                chain_ids = [chain_ids + i for i in range(chains)]
            else:
                if not len(chain_ids) == chains:
                    raise ValueError(
                        'Chain_ids must correspond to number of chains'
                        ' specified {} chains, found {} chain_ids.'.format(
                            chains, len(chain_ids)))
                for chain_id in chain_ids:
                    if chain_id < 0:
                        raise ValueError(
                            'Chain_id must be a non-negative integer value,'
                            ' found {}.'.format(chain_id))
        if parallel_chains is None:
            parallel_chains = max(min(cpu_count(), chains), 1)
        elif parallel_chains > chains:
            self._logger.info(
                'Requesting %u parallel_chains for %u chains,'
                ' running all chains in parallel.',
                parallel_chains,
                chains,
            )
            parallel_chains = chains
        elif parallel_chains < 1:
            raise ValueError(
                'Argument parallel_chains must be a positive integer value, '
                'found {}.'.format(parallel_chains))
        if threads_per_chain is None:
            threads_per_chain = 1
        if threads_per_chain < 1:
            raise ValueError(
                'Argument threads_per_chain must be a positive integer value, '
                'found {}.'.format(threads_per_chain))
        self._logger.debug('total threads: %u',
                           parallel_chains * threads_per_chain)
        os.environ['STAN_NUM_THREADS'] = str(threads_per_chain)

        refresh = None
        if show_progress:
            try:
                import tqdm

                self._logger.propagate = False
            except ImportError:
                self._logger.warning(
                    ('Package tqdm not installed, cannot show progress '
                     'information. Please install tqdm with '
                     "'pip install tqdm'"))
                show_progress = False

        # TODO:  issue 49: inits can be initialization function

        sampler_args = SamplerArgs(
            iter_warmup=iter_warmup,
            iter_sampling=iter_sampling,
            save_warmup=save_warmup,
            thin=thin,
            max_treedepth=max_treedepth,
            metric=metric,
            step_size=step_size,
            adapt_engaged=adapt_engaged,
            adapt_delta=adapt_delta,
            adapt_init_phase=adapt_init_phase,
            adapt_metric_window=adapt_metric_window,
            adapt_step_size=adapt_step_size,
            fixed_param=fixed_param,
        )
        with MaybeDictToFilePath(data, inits) as (_data, _inits):
            args = CmdStanArgs(
                self._name,
                self._exe_file,
                chain_ids=chain_ids,
                data=_data,
                seed=seed,
                inits=_inits,
                output_dir=output_dir,
                save_diagnostics=save_diagnostics,
                method_args=sampler_args,
                refresh=refresh,
                logger=self._logger,
            )
            runset = RunSet(args=args, chains=chains, chain_ids=chain_ids)
            pbar = None
            all_pbars = []

            with ThreadPoolExecutor(max_workers=parallel_chains) as executor:
                for i in range(chains):
                    if show_progress:
                        if (isinstance(show_progress, str)
                                and show_progress.lower() == 'notebook'):
                            try:
                                tqdm_pbar = tqdm.tqdm_notebook
                            except ImportError:
                                msg = (
                                    'Cannot import tqdm.tqdm_notebook.\n'
                                    'Functionality is only supported on the '
                                    'Jupyter Notebook and compatible platforms'
                                    '.\nPlease follow the instructions in '
                                    'https://github.com/tqdm/tqdm/issues/394#'
                                    'issuecomment-384743637 and remember to '
                                    'stop & start your jupyter server.')
                                self._logger.warning(msg)
                                tqdm_pbar = tqdm.tqdm
                        else:
                            tqdm_pbar = tqdm.tqdm
                        # enable dynamic_ncols for advanced users
                        # currently hidden feature
                        dynamic_ncols = os.environ.get('TQDM_DYNAMIC_NCOLS',
                                                       'False')
                        if dynamic_ncols.lower() in ['0', 'false']:
                            dynamic_ncols = False
                        else:
                            dynamic_ncols = True

                        pbar = tqdm_pbar(
                            desc='Chain {} - warmup'.format(i + 1),
                            position=i,
                            total=1,  # Will set total from Stan's output
                            dynamic_ncols=dynamic_ncols,
                        )
                        all_pbars.append(pbar)
                    executor.submit(self._run_cmdstan, runset, i, pbar)

            # Closing all progress bars
            for pbar in all_pbars:
                pbar.close()
            if show_progress:
                # re-enable logger for console
                self._logger.propagate = True

            if not runset._check_retcodes():
                msg = 'Error during sampling.\n{}'.format(
                    runset.get_err_msgs())
                raise RuntimeError(msg)

            mcmc = CmdStanMCMC(runset, validate_csv, logger=self._logger)
        return mcmc
示例#6
0
    def optimize(
        self,
        data: Union[Dict, str] = None,
        seed: int = None,
        inits: Union[Dict, float, str] = None,
        output_dir: str = None,
        algorithm: str = None,
        init_alpha: float = None,
        iter: int = None,
    ) -> CmdStanMLE:
        """
        Run the specified CmdStan optimize algorithm to produce a
        penalized maximum likelihood estimate of the model parameters.

        This function validates the specified configuration, composes a call to
        the CmdStan ``optimize`` method and spawns one subprocess to run the
        optimizer and waits for it to run to completion.
        Unspecified arguments are not included in the call to CmdStan, i.e.,
        those arguments will have CmdStan default values.

        The ``CmdStanMLE`` object records the command, the return code,
        and the paths to the optimize method output csv and console files.
        The output files are written either to a specified output directory
        or to a temporary directory which is deleted upon session exit.

        Output files are either written to a temporary directory or to the
        specified output directory.  Ouput filenames correspond to the template
        '<model_name>-<YYYYMMDDHHMM>-<chain_id>' plus the file suffix which is
        either '.csv' for the CmdStan output or '.txt' for
        the console messages, e.g. 'bernoulli-201912081451-1.csv'.
        Output files written to the temporary directory contain an additional
        8-character random string, e.g. 'bernoulli-201912081451-1-5nm6as7u.csv'.

        :param data: Values for all data variables in the model, specified
            either as a dictionary with entries matching the data variables,
            or as the path of a data file in JSON or Rdump format.

        :param seed: The seed for random number generator. Must be an integer
            between 0 and 2^32 - 1. If unspecified,
            ``numpy.random.RandomState()`` is used to generate a seed.

        :param inits:  Specifies how the sampler initializes parameter values.
            Initialization is either uniform random on a range centered on 0,
            exactly 0, or a dictionary or file of initial values for some or
            all parameters in the model.  The default initialization behavior
            will initialize all parameter values on range [-2, 2] on the
            *unconstrained* support.  If the expected parameter values are
            too far from this range, this option may improve estimation.
            The following value types are allowed:

            * Single number, n > 0 - initialization range is [-n, n].
            * 0 - all parameters are initialized to 0.
            * dictionary - pairs parameter name : initial value.
            * string - pathname to a JSON or Rdump data file.

        :param output_dir: Name of the directory to which CmdStan output
            files are written. If unspecified, output files will be written
            to a temporary directory which is deleted upon session exit.

        :param algorithm: Algorithm to use. One of: 'BFGS', 'LBFGS', 'Newton'

        :param init_alpha: Line search step size for first iteration

        :param iter: Total number of iterations

        :return: CmdStanMLE object
        """
        optimize_args = OptimizeArgs(algorithm=algorithm,
                                     init_alpha=init_alpha,
                                     iter=iter)

        with MaybeDictToFilePath(data, inits) as (_data, _inits):
            args = CmdStanArgs(
                self._name,
                self._exe_file,
                chain_ids=None,
                data=_data,
                seed=seed,
                inits=_inits,
                output_dir=output_dir,
                save_diagnostics=False,
                method_args=optimize_args,
            )

            dummy_chain_id = 0
            runset = RunSet(args=args, chains=1)
            self._run_cmdstan(runset, dummy_chain_id)

        if not runset._check_retcodes():
            msg = 'Error during optimization.\n{}'.format(
                runset.get_err_msgs())
            raise RuntimeError(msg)
        mle = CmdStanMLE(runset)
        return mle
示例#7
0
    def sample(
        self,
        data: Union[Dict, str] = None,
        chains: int = 4,
        cores: Union[int, None] = None,
        seed: Union[int, List[int]] = None,
        chain_ids: Union[int, List[int]] = None,
        inits: Union[Dict, float, str, List[str]] = None,
        warmup_iters: int = None,
        sampling_iters: int = None,
        save_warmup: bool = False,
        thin: int = None,
        max_treedepth: float = None,
        metric: Union[str, List[str]] = None,
        step_size: Union[float, List[float]] = None,
        adapt_engaged: bool = True,
        adapt_delta: float = None,
        csv_basename: str = None,
        show_progress: bool = False,
    ) -> StanFit:
        """
        Run or more chains of the NUTS sampler to produce a set of draws
        from the posterior distribution of a model conditioned on some data.

        This function validates the specified configuration, composes a call to
        the CmdStan ``sample`` method and spawns one subprocess per chain to run
        the sampler and waits for all chains to run to completion.
        Unspecified arguments are not included in the call to CmdStan, i.e.,
        those arguments will have CmdStan default values.

        For each chain, the ``StanFit`` object records the command,
        the return code, the sampler output file paths, and the corresponding
        subprocess console outputs, if any.

        :param data: Values for all data variables in the model, specified
            either as a dictionary with entries matching the data variables,
            or as the path of a data file in JSON or Rdump format.

        :param chains: Number of sampler chains, should be > 1.

        :param cores: Number of processes to run in parallel. Must be an
            integer between 1 and the number of CPUs in the system.
            If none then set automatically to `chains` but no more
            than `total_cpu_count - 2`

        :param seed: The seed for random number generator or a list of per-chain
            seeds. Must be an integer between 0 and 2^32 - 1. If unspecified,
            numpy.random.RandomState() is used to generate a seed which will be
            used for all chains. When the same seed is used across all chains,
            the chain-id is used to advance the RNG to avoid dependent samples.

        :param chain_ids: The offset for the random number generator, either
            an integer or a list of unique per-chain offsets.  If unspecified,
            chain ids are numbered sequentially starting from 1.

        :param inits: Specifies how the sampler initializes parameter values.
            Initializiation is either uniform random on a range centered on 0,
            exactly 0, or a dictionary or file of initial values for some or all
            parameters in the model.  The default initialization behavoir will
            initialize all parameter values on range [-2, 2] on the
            _unconstrained_ support.  If the expected parameter values are
            too far from this range, this option may improve adaptation.
            The following value types are allowed:

            * Single number ``n > 0`` - initialization range is [-n, n].
            * ``0`` - all parameters are initialized to 0.
            * dictionary - pairs parameter name : initial value.
            * string - pathname to a JSON or Rdump data file.
            * list of strings - per-chain pathname to data file.

        :param warmup_iters: Number of warmup iterations for each chain.

        :param sampling_iters: Number of draws from the posterior for each
            chain.

        :param save_warmup: When True, sampler saves warmup draws as part of
            the Stan csv output file.

        :param thin: Period between saved samples.

        :param max_treedepth: Maximum depth of trees evaluated by NUTS sampler
            per iteration.

        :param metric: Specification of the mass matrix, either as a
            vector consisting of the diagonal elements of the covariance
            matrix (``diag`` or ``diag_e``) or the full covariance matrix
            (``dense`` or ``dense_e``).

            If the value of the metric argument is a string other than
            ``diag``, ``diag_e``, ``dense``, or ``dense_e``, it must be
            a valid filepath to a JSON or Rdump file which contains an entry
            ``inv_metric`` whose value is either the diagonal vector or
            the full covariance matrix.

            If the value of the metric argument is a list of paths, its
            length must match the number of chains and all paths must be
            unique.

        :param step_size: Initial stepsize for HMC sampler.  The value is either
            a single number or a list of numbers which will be used as the
            global or per-chain initial step_size, respectively.
            The length of the list of step sizes must match the number of
            chains.

        :param adapt_engaged: When True, adapt stepsize and metric.
            *Note: If True, ``warmup_iters`` must be > 0.*

        :param adapt_delta: Adaptation target Metropolis acceptance rate.
            The default value is 0.8.  Increasing this value, which must be
            strictly less than 1, causes adaptation to use smaller step sizes.
            It improves the effective sample size, but may increase the time
            per iteration.

        :param csv_basename: A path or file name which will be used as the
            base name for the sampler output files.  The csv output files
            for each chain are written to file ``<basename>-<chain_id>.csv``
            and the console output and error messages are written to file
            ``<basename>-<chain_id>.txt``.
        """
        if chains < 1:
            raise ValueError(
                'chains must be a positive integer value, found {}'.format(
                    chains))

        if chain_ids is None:
            chain_ids = [x + 1 for x in range(chains)]
        else:
            if type(chain_ids) is int:
                if chain_ids < 1:
                    raise ValueError(
                        'chain_id must be a positive integer value,'
                        ' found {}'.format(chain_ids))
                offset = chain_ids
                chain_ids = [x + offset + 1 for x in range(chains)]
            else:
                if not len(chain_ids) == chains:
                    raise ValueError(
                        'chain_ids must correspond to number of chains'
                        ' specified {} chains, found {} chain_ids'.format(
                            chains, len(chain_ids)))
                for i in len(chain_ids):
                    if chain_ids[i] < 1:
                        raise ValueError(
                            'chain_id must be a positive integer value,'
                            ' found {}'.format(chain_ids[i]))

        cores_avail = cpu_count()

        if cores is None:
            cores = max(min(cores_avail - 2, chains), 1)

        if cores < 1:
            raise ValueError(
                'cores must be a positive integer value, found {}'.format(
                    cores))
        if cores > cores_avail:
            self._logger.warning('requested %u cores, only %u available',
                                 cores, cpu_count())
            cores = cores_avail

            # TODO:  issue 49: inits can be initialization function

        sampler_args = SamplerArgs(
            warmup_iters=warmup_iters,
            sampling_iters=sampling_iters,
            save_warmup=save_warmup,
            thin=thin,
            max_treedepth=max_treedepth,
            metric=metric,
            step_size=step_size,
            adapt_engaged=adapt_engaged,
            adapt_delta=adapt_delta,
        )
        with MaybeDictToFilePath(data, inits) as (_data, _inits):
            args = CmdStanArgs(
                self._name,
                self._exe_file,
                chain_ids=chain_ids,
                data=_data,
                seed=seed,
                inits=_inits,
                output_basename=csv_basename,
                method_args=sampler_args,
            )

            stanfit = StanFit(args=args, chains=chains)
            try:
                tp = ThreadPool(cores)
                for i in range(chains):
                    tp.apply_async(self._do_sample, (stanfit, i))
            finally:
                tp.close()
                tp.join()
            if not stanfit._check_retcodes():
                msg = 'Error during sampling'
                for i in range(chains):
                    if stanfit._retcode(i) != 0:
                        msg = '{}, chain {} returned error code {}'.format(
                            msg, i, stanfit._retcode(i))
                raise RuntimeError(msg)
            stanfit._validate_csv_files()
        return stanfit
示例#8
0
    def optimize(
        self,
        data: Union[Dict, str] = None,
        seed: int = None,
        inits: Union[Dict, float, str] = None,
        csv_basename: str = None,
        algorithm: str = None,
        init_alpha: float = None,
        iter: int = None,
    ) -> StanFit:
        """
        Wrapper for optimize call
        :param data: Values for all data variables in the model, specified
            either as a dictionary with entries matching the data variables,
            or as the path of a data file in JSON or Rdump format.

        :param seed: The seed for random number generator Must be an integer
            between 0 and 2^32 - 1. If unspecified, numpy.random.RandomState()
            is used to generate a seed which will be used for all chains.

        :param inits:  Specifies how the sampler initializes parameter values.
            Initializiation is either uniform random on a range centered on 0,
            exactly 0, or a dictionary or file of initial values for some or
            all parameters in the model.  The default initialization behavoir
            will initialize all parameter values on range [-2, 2] on the
            _unconstrained_ support.  If the expected parameter values are
            too far from this range, this option may improve adaptation.
            The following value types are allowed:

            * Single number ``n > 0`` - initialization range is [-n, n].
            * ``0`` - all parameters are initialized to 0.
            * dictionary - pairs parameter name : initial value.
            * string - pathname to a JSON or Rdump data file.

        :param csv_basename:  A path or file name which will be used as the
            base name for the sampler output files.  The csv output files
            for each chain are written to file ``<basename>-0.csv``
            and the console output and error messages are written to file
            ``<basename>-0.txt``.

        :param algorithm: Algorithm to use. One of: "BFGS", "LBFGS", "Newton"

        :param init_alpha: Line search step size for first iteration

        :param iter: Total number of iterations

        :return: StanFit object
        """

        optimize_args = OptimizeArgs(algorithm=algorithm,
                                     init_alpha=init_alpha,
                                     iter=iter)

        with MaybeDictToFilePath(data, inits) as (_data, _inits):
            args = CmdStanArgs(
                self._name,
                self._exe_file,
                chain_ids=None,
                data=_data,
                seed=seed,
                inits=_inits,
                output_basename=csv_basename,
                method_args=optimize_args,
            )

            stanfit = StanFit(args=args, chains=1)
            dummy_chain_id = 0
            self._do_sample(stanfit, dummy_chain_id)

        if not stanfit._check_retcodes():
            msg = 'Error during optimizing'
            if stanfit._retcode(dummy_chain_id) != 0:
                msg = '{} Got returned error code {}'.format(
                    msg, stanfit._retcode(dummy_chain_id))
            raise RuntimeError(msg)
        stanfit._validate_csv_files()
        return stanfit
示例#9
0
    def run_generated_quantities(
        self,
        data: Union[Dict, str] = None,
        csv_files: List[str] = None,
        seed: int = None,
        gq_csv_basename: str = None,
    ) -> StanFit:
        """
        Wrapper for generated quantities call.  Given a StanFit object
        containing a sample from the fitted model, along with the
        corresponding dataset for that fit, run just the generated quantities
        block of the model in order to get additional quantities of interest.

        :param data: Values for all data variables in the model, specified
            either as a dictionary with entries matching the data variables,
            or as the path of a data file in JSON or Rdump format.

        :param csv_files: A list of sampler output csv files generated by
            fitting the model to the data, either using CmdStanPy's `sample`
            method or via another Stan interface.

        :param seed: The seed for random number generator Must be an integer
            between 0 and 2^32 - 1. If unspecified, numpy.random.RandomState()
            is used to generate a seed which will be used for all chains.
            *NOTE: Specifying the seed will guarantee the same result for
            multiple invocations of this method with the same inputs.  However
            this will not reproduce results from the sample method given
            the same inputs because the RNG will be in a different state.*

        :param gq_csv_basename: A path or file name which will be used as the
            basename for the sampler output files.  The csv output files
            for each chain are written to file ``<basename>-<chain_id>.csv``
            and the console output and error messages are written to file
            ``<basename>-<chain_id>.txt``.

        :return: StanFit object
        """
        generate_quantities_args = GenerateQuantitiesArgs(csv_files=csv_files)
        generate_quantities_args.validate(len(csv_files))
        chains = len(csv_files)
        with MaybeDictToFilePath(data, None) as (_data, _inits):
            args = CmdStanArgs(self._name,
                               self._exe_file,
                               chain_ids=[x + 1 for x in range(chains)],
                               data=_data,
                               seed=seed,
                               output_basename=gq_csv_basename,
                               method_args=generate_quantities_args)
            stanfit = StanFit(args=args, chains=chains)

            cores_avail = cpu_count()
            cores = max(min(cores_avail - 2, chains), 1)
            with ThreadPoolExecutor(max_workers=cores) as executor:
                for i in range(chains):
                    executor.submit(self._run_cmdstan(stanfit, i))
            if not stanfit._check_retcodes():
                msg = 'Error during sampling'
                for i in range(chains):
                    if stanfit._retcode(i) != 0:
                        msg = '{}, chain {} returned error code {}'.format(
                            msg, i, stanfit._retcode(i))
                raise RuntimeError(msg)
            stanfit._set_attrs_gq_csv_files(csv_files[0])
        return stanfit
示例#10
0
    def generate_quantities(
        self,
        data: Union[Dict, str] = None,
        mcmc_sample: Union[CmdStanMCMC, List[str]] = None,
        seed: int = None,
        gq_output_dir: str = None,
    ) -> CmdStanGQ:
        """
        Run CmdStan's generate_quantities method which runs the generated
        quantities block of a model given an existing sample.

        This function takes a CmdStanMCMC object and the dataset used to
        generate that sample and calls to the CmdStan ``generate_quantities``
        method to generate additional quantities of interest.

        The ``CmdStanGQ`` object records the command, the return code,
        and the paths to the generate method output csv and console files.
        The output files are written either to a specified output directory
        or to a temporary directory which is deleted upon session exit.

        Output filenames are composed of the model name, a timestamp
        in the form YYYYMMDDhhmm and the chain id, plus the corresponding
        filetype suffix, either '.csv' for the CmdStan output or '.txt' for
        the console messages, e.g. `bernoulli_ppc-201912081451-1.csv`. Output
        files  written to the temporary directory contain an additional
        8-character random string, e.g.
        `bernoulli_ppc-201912081451-1-5nm6as7u.csv`.

        :param data: Values for all data variables in the model, specified
            either as a dictionary with entries matching the data variables,
            or as the path of a data file in JSON or Rdump format.

        :param mcmc_sample: Can be either a CmdStanMCMC object returned by
            CmdStanPy's `sample` method or a list of stan-csv files generated
            by fitting the model to the data using any Stan interface.

        :param seed: The seed for random number generator. Must be an integer
            between ``0`` and ``2^32 - 1``. If unspecified,
            ``numpy.random.RandomState()``
            is used to generate a seed which will be used for all chains.
            *NOTE: Specifying the seed will guarantee the same result for
            multiple invocations of this method with the same inputs.  However
            this will not reproduce results from the sample method given
            the same inputs because the RNG will be in a different state.*

        :param gq_output_dir:  Name of the directory in which the CmdStan output
            files are saved.  If unspecified, files will be written to a
            temporary directory which is deleted upon session exit.

        :return: CmdStanGQ object
        """
        sample_csv_files = []
        sample_drawset = None
        chains = 0

        if isinstance(mcmc_sample, CmdStanMCMC):
            sample_csv_files = mcmc_sample.runset.csv_files
            sample_drawset = mcmc_sample.get_drawset()
            chains = mcmc_sample.chains
        elif isinstance(mcmc_sample, list):
            sample_csv_files = mcmc_sample
        else:
            raise ValueError(
                'mcmc_sample must be either CmdStanMCMC object'
                ' or list of paths to sample csv_files'
            )

        try:
            chains = len(sample_csv_files)
            if sample_drawset is None:  # assemble sample from csv files
                sampler_args = SamplerArgs()
                args = CmdStanArgs(
                    self._name,
                    self._exe_file,
                    chain_ids=[x + 1 for x in range(chains)],
                    method_args=sampler_args,
                )
                runset = RunSet(args=args, chains=chains)
                runset._csv_files = sample_csv_files
                sample_fit = CmdStanMCMC(runset)
                sample_fit._validate_csv_files()
                sample_drawset = sample_fit.get_drawset()
        except ValueError as e:
            raise ValueError(
                'Invalid mcmc_sample, error:\n\t{}\n\t'
                ' while processing files\n\t{}'.format(
                    repr(e), '\n\t'.join(sample_csv_files)
                )
            )

        generate_quantities_args = GenerateQuantitiesArgs(
            csv_files=sample_csv_files
        )
        generate_quantities_args.validate(chains)
        with MaybeDictToFilePath(data, None) as (_data, _inits):
            args = CmdStanArgs(
                self._name,
                self._exe_file,
                chain_ids=[x + 1 for x in range(chains)],
                data=_data,
                seed=seed,
                output_dir=gq_output_dir,
                method_args=generate_quantities_args,
            )
            runset = RunSet(args=args, chains=chains)

            cores_avail = cpu_count()
            cores = max(min(cores_avail - 2, chains), 1)
            with ThreadPoolExecutor(max_workers=cores) as executor:
                for i in range(chains):
                    executor.submit(self._run_cmdstan, runset, i)

            if not runset._check_retcodes():
                msg = 'Error during generate_quantities'
                for i in range(chains):
                    if runset._retcode(i) != 0:
                        msg = '{}, chain {} returned error code {}'.format(
                            msg, i, runset._retcode(i)
                        )
                raise RuntimeError(msg)
            quantities = CmdStanGQ(runset=runset, mcmc_sample=sample_drawset)
            quantities._set_attrs_gq_csv_files(sample_csv_files[0])
        return quantities
示例#11
0
    def sample(
        self,
        data: Union[Dict, str] = None,
        chains: Union[int, None] = None,
        cores: Union[int, None] = None,
        seed: Union[int, List[int]] = None,
        chain_ids: Union[int, List[int]] = None,
        inits: Union[Dict, float, str, List[str]] = None,
        warmup_iters: int = None,
        sampling_iters: int = None,
        save_warmup: bool = False,
        thin: int = None,
        max_treedepth: float = None,
        metric: Union[str, List[str]] = None,
        step_size: Union[float, List[float]] = None,
        adapt_engaged: bool = True,
        adapt_delta: float = None,
        fixed_param: bool = False,
        output_dir: str = None,
        save_diagnostics: bool = False,
        show_progress: Union[bool, str] = False
    ) -> CmdStanMCMC:
        """
        Run or more chains of the NUTS sampler to produce a set of draws
        from the posterior distribution of a model conditioned on some data.

        This function validates the specified configuration, composes a call to
        the CmdStan ``sample`` method and spawns one subprocess per chain to run
        the sampler and waits for all chains to run to completion.
        Unspecified arguments are not included in the call to CmdStan, i.e.,
        those arguments will have CmdStan default values.

        For each chain, the ``CmdStanMCMC`` object records the command,
        the return code, the sampler output file paths, and the corresponding
        console outputs, if any. The output files are written either to a
        specified output directory or to a temporary directory which is deleted
        upon session exit.

        The output filenames are composed of the model name, a timestamp
        in the form YYYYMMDDhhmm and the chain id, plus the corresponding
        filetype suffix, either '.csv' for the CmdStan output or '.txt' for
        the console messages, e.g. `bernoulli-201912081451-1.csv`. Output files
        written to the temporary directory contain an additional 8-character
        random string, e.g. `bernoulli-201912081451-1-5nm6as7u.csv`.


        :param data: Values for all data variables in the model, specified
            either as a dictionary with entries matching the data variables,
            or as the path of a data file in JSON or Rdump format.

        :param chains: Number of sampler chains, should be > 1.

        :param cores: Number of processes to run in parallel. Must be an
            integer between 1 and the number of CPUs in the system.
            If none then set automatically to `chains` but no more
            than `total_cpu_count - 2`

        :param seed: The seed for random number generator. Must be an integer
            between ``0`` and ``2^32 - 1``. If unspecified,
            ``numpy.random.RandomState()``
            is used to generate a seed which will be used for all chains.
            When the same seed is used across all chains,
            the chain-id is used to advance the RNG to avoid dependent samples.

        :param chain_ids: The offset for the random number generator, either
            an integer or a list of unique per-chain offsets.  If unspecified,
            chain ids are numbered sequentially starting from 1.

        :param inits: Specifies how the sampler initializes parameter values.
            Initialization is either uniform random on a range centered on 0,
            exactly 0, or a dictionary or file of initial values for some or all
            parameters in the model.  The default initialization behavior will
            initialize all parameter values on range [-2, 2] on the
            _unconstrained_ support.  If the expected parameter values are
            too far from this range, this option may improve adaptation.
            The following value types are allowed:

            * Single number ``n > 0`` - initialization range is [-n, n].
            * ``0`` - all parameters are initialized to 0.
            * dictionary - pairs parameter name : initial value.
            * string - pathname to a JSON or Rdump data file.
            * list of strings - per-chain pathname to data file.

        :param warmup_iters: Number of warmup iterations for each chain.

        :param sampling_iters: Number of draws from the posterior for each
            chain.

        :param save_warmup: When True, sampler saves warmup draws as part of
            the Stan csv output file.

        :param thin: Period between saved samples.

        :param max_treedepth: Maximum depth of trees evaluated by NUTS sampler
            per iteration.

        :param metric: Specification of the mass matrix, either as a
            vector consisting of the diagonal elements of the covariance
            matrix (``diag`` or ``diag_e``) or the full covariance matrix
            (``dense`` or ``dense_e``).

            If the value of the metric argument is a string other than
            ``diag``, ``diag_e``, ``dense``, or ``dense_e``, it must be
            a valid filepath to a JSON or Rdump file which contains an entry
            ``inv_metric`` whose value is either the diagonal vector or
            the full covariance matrix.

            If the value of the metric argument is a list of paths, its
            length must match the number of chains and all paths must be
            unique.

        :param step_size: Initial stepsize for HMC sampler.  The value is either
            a single number or a list of numbers which will be used as the
            global or per-chain initial step_size, respectively.
            The length of the list of step sizes must match the number of
            chains.

        :param adapt_engaged: When True, adapt stepsize and metric.
            *Note: If True, ``warmup_iters`` must be > 0.*

        :param adapt_delta: Adaptation target Metropolis acceptance rate.
            The default value is 0.8.  Increasing this value, which must be
            strictly less than 1, causes adaptation to use smaller step sizes.
            It improves the effective sample size, but may increase the time
            per iteration.

        :param fixed_param: When True, call CmdStan with argument
            "algorithm=fixed_param" which runs the sampler without
            updating the Markov Chain, thus the values of all parameters and
            transformed parameters are constant across all draws and
            only those values in the generated quantities block that are
            produced by RNG functions may change.  This provides
            a way to use Stan programs to generate simulated data via the
            generated quantities block.  This option must be used when the
            parameters block is empty.  Default value is False.

        :param output_dir: Name of the directory to with the  CmdStan output
            files are written. If unspecified, output files will be written
            to a temporary directory which is deleted upon session exit.

        :param save_diagnostics: Whether or not to save diagnostics. If True,
            csv output files are written to
            ``<basename>-diagnostic-<chain_id>.csv.``, where ``<basename>``
            is set with ``csv_basename``.

        :param show_progress: Use tqdm progress bar to show sampling progress.
            If show_progress=='notebook' use tqdm_notebook
            (needs nodejs for jupyter).

        :return: CmdStanMCMC object
        """

        if chains is None:
            if fixed_param:
                chains = 1
            else:
                chains = 4
        if chains < 1:
            raise ValueError(
                'chains must be a positive integer value, found {}'.format(
                    chains
                )
            )

        if chain_ids is None:
            chain_ids = [x + 1 for x in range(chains)]
        else:
            if isinstance(chain_ids, int):
                if chain_ids < 1:
                    raise ValueError(
                        'chain_id must be a positive integer value,'
                        ' found {}'.format(chain_ids)
                    )
                offset = chain_ids
                chain_ids = [x + offset + 1 for x in range(chains)]
            else:
                if not len(chain_ids) == chains:
                    raise ValueError(
                        'chain_ids must correspond to number of chains'
                        ' specified {} chains, found {} chain_ids'.format(
                            chains, len(chain_ids)
                        )
                    )
                for i in len(chain_ids):
                    if chain_ids[i] < 1:
                        raise ValueError(
                            'chain_id must be a positive integer value,'
                            ' found {}'.format(chain_ids[i])
                        )

        cores_avail = cpu_count()
        if cores is None:
            cores = max(min(cores_avail - 2, chains), 1)
        if cores < 1:
            raise ValueError(
                'cores must be a positive integer value, found {}'.format(cores)
            )
        if cores > cores_avail:
            self._logger.warning(
                'requested %u cores, only %u available', cores, cpu_count()
            )
            cores = cores_avail

        refresh = None
        if show_progress:
            try:
                import tqdm

                self._logger.propagate = False
            except ImportError:
                self._logger.warning(
                    (
                        'tqdm not installed, progress information is not '
                        'shown. Please install tqdm with '
                        "'pip install tqdm'"
                    )
                )
                show_progress = False

        # TODO:  issue 49: inits can be initialization function

        sampler_args = SamplerArgs(
            warmup_iters=warmup_iters,
            sampling_iters=sampling_iters,
            save_warmup=save_warmup,
            thin=thin,
            max_treedepth=max_treedepth,
            metric=metric,
            step_size=step_size,
            adapt_engaged=adapt_engaged,
            adapt_delta=adapt_delta,
            fixed_param=fixed_param,
        )
        with MaybeDictToFilePath(data, inits) as (_data, _inits):
            args = CmdStanArgs(
                self._name,
                self._exe_file,
                chain_ids=chain_ids,
                data=_data,
                seed=seed,
                inits=_inits,
                output_dir=output_dir,
                save_diagnostics=save_diagnostics,
                method_args=sampler_args,
                refresh=refresh,
            )
            runset = RunSet(args=args, chains=chains)
            pbar = None
            all_pbars = []

            with ThreadPoolExecutor(max_workers=cores) as executor:
                for i in range(chains):
                    if show_progress:
                        if (
                            isinstance(show_progress, str)
                            and show_progress.lower() == 'notebook'
                        ):
                            try:
                                tqdm_pbar = tqdm.tqdm_notebook
                            except ImportError:
                                msg = (
                                    'Cannot import tqdm.tqdm_notebook.\n'
                                    'Functionality is only supported on the '
                                    'Jupyter Notebook and compatible platforms'
                                    '.\nPlease follow the instructions in '
                                    'https://github.com/tqdm/tqdm/issues/394#'
                                    'issuecomment-384743637 and remember to '
                                    'stop & start your jupyter server.'
                                )
                                self._logger.warning(msg)
                                tqdm_pbar = tqdm.tqdm
                        else:
                            tqdm_pbar = tqdm.tqdm

                        # enable dynamic_ncols for advanced users
                        # currently hidden feature
                        dynamic_ncols = os.environ.get(
                            'TQDM_DYNAMIC_NCOLS', 'False'
                        )
                        if dynamic_ncols.lower() in ['0', 'false']:
                            dynamic_ncols = False
                        else:
                            dynamic_ncols = True

                        pbar = tqdm_pbar(
                                desc='Chain {} - warmup'.format(i + 1),
                                position=i,
                                total=1,  # Will set total from Stan's output
                                dynamic_ncols=dynamic_ncols,
                            )

                        all_pbars.append(pbar)

                    executor.submit(self._run_cmdstan, runset, i, pbar)

            # Closing all progress bars
            for pbar in all_pbars:
                pbar.close()

            if show_progress:
                # re-enable logger for console
                self._logger.propagate = True
            if not runset._check_retcodes():
                msg = 'Error during sampling'
                for i in range(chains):
                    if runset._retcode(i) != 0:
                        msg = '{}, chain {} returned error code {}'.format(
                            msg, i, runset._retcode(i)
                        )
                raise RuntimeError(msg)
            mcmc = CmdStanMCMC(runset, fixed_param)
            mcmc._validate_csv_files()
        return mcmc
示例#12
0
    def variational(
        self,
        data: Union[Dict, str] = None,
        seed: int = None,
        inits: float = None,
        csv_basename: str = None,
        algorithm: str = None,
        iter: int = None,
        grad_samples: int = None,
        elbo_samples: int = None,
        eta: Real = None,
        adapt_iter: int = None,
        tol_rel_obj: Real = None,
        eval_elbo: int = None,
        output_samples: int = None,
    ) -> CmdStanVB:
        """
        Run CmdStan's variational inference algorithm to approximate
        the posterior distribution of the model conditioned on the data.

        :param data: Values for all data variables in the model, specified
            either as a dictionary with entries matching the data variables,
            or as the path of a data file in JSON or Rdump format.

        :param seed: The seed for random number generator. Must be an integer
            between ``0`` and ``2^32 - 1``. If unspecified,
            ``numpy.random.RandomState()``
            is used to generate a seed which will be used for all chains.

        :param inits:  Specifies how the sampler initializes parameter values.
            Initializiation is uniform random on a range centered on ``0`` with
            default range of ``2``. Specifying a single number ``n > 0`` changes
            the initialization range to ``[-n, n]``.

        :param csv_basename:  A path or file name which will be used as the
            basename for the CmdStan output files.  The csv output files
            are written to file ``<basename>-0.csv`` and the console output
            and error messages are written to file ``<basename>-0.txt``.

        :param algorithm: Algorithm to use. One of: "meanfield", "fullrank".

        :param iter: Maximum number of ADVI iterations.

        :param grad_samples: Number of MC draws for computing the gradient.

        :param elbo_samples: Number of MC draws for estimate of ELBO.

        :param eta: Stepsize scaling parameter.

        :param adapt_iter: Number of iterations for eta adaptation.

        :param tol_rel_obj: Relative tolerance parameter for convergence.

        :param eval_elbo: Number of interations between ELBO evaluations.

        :param output_samples: Number of approximate posterior output draws
            to save.

        :return: CmdStanVB object
        """
        variational_args = VariationalArgs(
            algorithm=algorithm,
            iter=iter,
            grad_samples=grad_samples,
            elbo_samples=elbo_samples,
            eta=eta,
            adapt_iter=adapt_iter,
            tol_rel_obj=tol_rel_obj,
            eval_elbo=eval_elbo,
            output_samples=output_samples,
        )

        with MaybeDictToFilePath(data, inits) as (_data, _inits):
            args = CmdStanArgs(
                self._name,
                self._exe_file,
                chain_ids=None,
                data=_data,
                seed=seed,
                inits=_inits,
                output_basename=csv_basename,
                method_args=variational_args,
            )

            dummy_chain_id = 0
            runset = RunSet(args=args, chains=1)
            self._run_cmdstan(runset, dummy_chain_id)

        # treat failure to converge as failure
        transcript_file = runset.console_files[dummy_chain_id]
        valid = True
        pat = re.compile(r'The algorithm may not have converged.', re.M)
        with open(transcript_file, 'r') as transcript:
            contents = transcript.read()
            errors = re.findall(pat, contents)
            if len(errors) > 0:
                valid = False
        if not valid:
            raise RuntimeError('The algorithm may not have converged.')
        if not runset._check_retcodes():
            msg = 'Error during variational inference'
            if runset._retcode(dummy_chain_id) != 0:
                msg = '{}, error code {}'.format(
                    msg, runset._retcode(dummy_chain_id)
                )
                raise RuntimeError(msg)
        # pylint: disable=invalid-name
        vb = CmdStanVB(runset)
        vb._set_variational_attrs(runset.csv_files[0])
        return vb
示例#13
0
    def generate_quantities(
        self,
        data: Union[Dict, str] = None,
        mcmc_sample: Union[CmdStanMCMC, List[str]] = None,
        seed: int = None,
        gq_csv_basename: str = None,
    ) -> CmdStanGQ:
        """
        Wrapper for generated quantities call.  Given a CmdStanMCMC object
        containing a sample from the fitted model, along with the
        corresponding dataset for that fit, run just the generated quantities
        block of the model in order to get additional quantities of interest.

        :param data: Values for all data variables in the model, specified
            either as a dictionary with entries matching the data variables,
            or as the path of a data file in JSON or Rdump format.

        :param mcmc_sample: Can be either a CmdStanMCMC object returned by
            CmdStanPy's `sample` method or a list of stan-csv files generated
            by fitting the model to the data using any Stan interface.

        :param seed: The seed for random number generator. Must be an integer
            between ``0`` and ``2^32 - 1``. If unspecified,
            ``numpy.random.RandomState()``
            is used to generate a seed which will be used for all chains.
            *NOTE: Specifying the seed will guarantee the same result for
            multiple invocations of this method with the same inputs.  However
            this will not reproduce results from the sample method given
            the same inputs because the RNG will be in a different state.*

        :param gq_csv_basename: A path or file name which will be used as the
            basename for the sampler output files.  The csv output files
            for each chain are written to file ``<basename>-<chain_id>.csv``
            and the console output and error messages are written to file
            ``<basename>-<chain_id>.txt``.

        :return: CmdStanGQ object
        """
        sample_csv_files = []
        sample_drawset = None
        chains = 0

        if isinstance(mcmc_sample, CmdStanMCMC):
            sample_csv_files = mcmc_sample.runset.csv_files
            sample_drawset = mcmc_sample.get_drawset()
            chains = mcmc_sample.chains
        elif isinstance(mcmc_sample, list):
            sample_csv_files = mcmc_sample
        else:
            raise ValueError(
                'mcmc_sample must be either CmdStanMCMC object'
                ' or list of paths to sample csv_files'
            )

        try:
            chains = len(sample_csv_files)
            if sample_drawset is None:  # assemble sample from csv files
                sampler_args = SamplerArgs()
                args = CmdStanArgs(
                    self._name,
                    self._exe_file,
                    chain_ids=[x + 1 for x in range(chains)],
                    method_args=sampler_args,
                )
                runset = RunSet(args=args, chains=chains)
                runset._csv_files = sample_csv_files
                sample_fit = CmdStanMCMC(runset)
                sample_fit._validate_csv_files()
                sample_drawset = sample_fit.get_drawset()
        except ValueError as e:
            raise ValueError(
                'Invalid mcmc_sample, error:\n\t{}\n\t'
                ' while processing files\n\t{}'.format(
                    repr(e), '\n\t'.join(sample_csv_files))
            )

        generate_quantities_args = GenerateQuantitiesArgs(
            csv_files=sample_csv_files
        )
        generate_quantities_args.validate(chains)
        with MaybeDictToFilePath(data, None) as (_data, _inits):
            args = CmdStanArgs(
                self._name,
                self._exe_file,
                chain_ids=[x + 1 for x in range(chains)],
                data=_data,
                seed=seed,
                output_basename=gq_csv_basename,
                method_args=generate_quantities_args,
            )
            runset = RunSet(args=args, chains=chains)

            cores_avail = cpu_count()
            cores = max(min(cores_avail - 2, chains), 1)
            with ThreadPoolExecutor(max_workers=cores) as executor:
                for i in range(chains):
                    executor.submit(self._run_cmdstan, runset, i)

            if not runset._check_retcodes():
                msg = 'Error during generate_quantities'
                for i in range(chains):
                    if runset._retcode(i) != 0:
                        msg = '{}, chain {} returned error code {}'.format(
                            msg, i, runset._retcode(i)
                        )
                raise RuntimeError(msg)
            quantities = CmdStanGQ(runset=runset, mcmc_sample=sample_drawset)
            quantities._set_attrs_gq_csv_files(sample_csv_files[0])
        return quantities