def test_evaluate(self): mcgsm = MCGSM(5, 3, 4, 2, 10) inputs = randn(mcgsm.dim_in, 100) outputs = mcgsm.sample(inputs) pre = WhiteningPreconditioner(inputs, outputs) loglik1 = -mcgsm.evaluate(inputs, outputs, pre) loglik2 = (mcgsm.loglikelihood(*pre(inputs, outputs)).mean() + pre.logjacobian(inputs, outputs).mean()) / log(2.) / mcgsm.dim_out self.assertAlmostEqual(loglik1, loglik2, 8)
def test_evaluate(self): mcgsm = MCGSM(5, 3, 4, 2, 10) inputs = randn(mcgsm.dim_in, 100) outputs = mcgsm.sample(inputs) pre = WhiteningPreconditioner(inputs, outputs) loglik1 = -mcgsm.evaluate(inputs, outputs, pre) loglik2 = ( mcgsm.loglikelihood(*pre(inputs, outputs)).mean() + pre.logjacobian(inputs, outputs).mean()) / log(2.) / mcgsm.dim_out self.assertAlmostEqual(loglik1, loglik2, 8)
class RIDE_BSDS300(object): """ Basically the same model as L{RIDE} but for the BSDS300 dataset where the bottom-right pixel is commonly ignored. This model should be used in combination with L{PatchRIDE}. """ MAX_BATCH_SIZE = 10000 def __init__(self, num_channels=1, num_hiddens=10, num_components=4, num_scales=4, num_features=16, num_layers=1, nb_size=3, nonlinearity='TanH', verbosity=1, extended=False, input_mask=None, output_mask=None): self.verbosity = verbosity self.num_channels = num_channels self.num_hiddens = num_hiddens self.num_layers = num_layers self.nonlinearity = nonlinearity self.extended = extended self.input_mask, self.output_mask = generate_masks([nb_size] * num_channels) if input_mask: self.input_mask = input_mask if output_mask: self.output_mask = output_mask self.num_channels = sum(self.output_mask) self.slstm = [None] * num_layers self.mcgsm = MCGSM(dim_in=num_hiddens, dim_out=num_channels, num_components=num_components, num_scales=num_scales, num_features=num_features) self.preconditioner = None # see PatchRIDE self._indicators = False def add_layer(self): """ Add another spatial LSTM to the network and reinitialize MCGSM. """ self.num_layers += 1 # reinitialize MCGSM self.mcgsm = MCGSM(dim_in=self.num_hiddens, dim_out=self.num_channels, num_components=self.mcgsm.num_components, num_scales=self.mcgsm.num_scales, num_features=self.mcgsm.num_features) # add slot for another layer self.slstm.append(None) def _precondition(self, inputs, outputs=None): """ Remove any correlations within and between inputs and outputs. """ shape = inputs.shape if outputs is None: if self.preconditioner is None: raise RuntimeError('No preconditioning possible.') inputs = inputs.reshape(-1, inputs.shape[-1]).T inputs = self.preconditioner(inputs) inputs = inputs.T.reshape(*shape) return inputs else: inputs = inputs.reshape(-1, inputs.shape[-1]).T outputs = outputs.reshape(-1, outputs.shape[-1]).T # avoids memory issues MAX_SAMPLES = 5000000 if self.preconditioner is None: inputs_ = inputs if self._indicators: # half of the inputs are indicators, don't preprocess them inputs_ = inputs.copy() inputs_[inputs.shape[0] // 2:] = randn( inputs.shape[0] // 2, *inputs.shape[1:]) if inputs.shape[1] > MAX_SAMPLES: idx = random_select(MAX_SAMPLES, inputs.shape[1]) self.preconditioner = WhiteningPreconditioner( inputs_[:, idx], outputs[:, idx]) else: self.preconditioner = WhiteningPreconditioner( inputs_, outputs) # precondition for b in range(0, inputs.shape[1], MAX_SAMPLES): inputs[:, b:b + MAX_SAMPLES], outputs[:, b:b + MAX_SAMPLES] = \ self.preconditioner(inputs[:, b:b + MAX_SAMPLES], outputs[:, b:b + MAX_SAMPLES]) inputs = inputs.T.reshape(*shape) outputs = outputs.T.reshape(shape[0], shape[1], shape[2], -1) return inputs, outputs def _precondition_inverse(self, inputs, outputs=None): """ Remove any correlations within and between inputs and outputs. """ if self.preconditioner is None: raise RuntimeError('No preconditioner set.') shape = inputs.shape if outputs is None: inputs = inputs.reshape(-1, inputs.shape[-1]).T inputs = self.preconditioner.inverse(inputs) inputs = inputs.T.reshape(*shape) return inputs else: inputs = inputs.reshape(-1, inputs.shape[-1]).T outputs = outputs.reshape(-1, outputs.shape[-1]).T inputs, outputs = self.preconditioner.inverse(inputs, outputs) inputs = inputs.T.reshape(*shape) outputs = outputs.T.reshape(shape[0], shape[1], shape[2], -1) return inputs, outputs def _preprocess(self, images): """ Extract causal neighborhoods from images. """ def process(image): inputs, outputs = generate_data_from_image(image, self.input_mask, self.output_mask) inputs = asarray(inputs.T.reshape( image.shape[0] - self.input_mask.shape[0] + 1, image.shape[1] - self.input_mask.shape[1] + 1, -1), dtype='float32') outputs = asarray(outputs.T.reshape( image.shape[0] - self.input_mask.shape[0] + 1, image.shape[1] - self.input_mask.shape[1] + 1, -1), dtype='float32') return inputs, outputs inputs, outputs = zip(*mapp(process, images)) return asarray(inputs), asarray(outputs) def loglikelihood(self, images): """ Returns a log-likelihood for each pixel except the bottom-right pixel (in nats). """ inputs, outputs = self._preprocess(images) if self.preconditioner is not None: if self.verbosity > 0: print 'Computing Jacobian...' logjacobian = self.preconditioner.logjacobian( inputs.reshape(-1, sum(self.input_mask)).T, outputs.reshape(-1, self.num_channels).T) if self.verbosity > 0: print 'Preconditioning...' # remove correlations inputs, outputs = self._precondition(inputs, outputs) else: logjacobian = 0. # compute hidden unit activations hiddens = inputs for l in range(self.num_layers): # create SLSTM self.slstm[l] = SLSTM(num_rows=hiddens.shape[1], num_cols=hiddens.shape[2], num_channels=hiddens.shape[3], num_hiddens=self.num_hiddens, batch_size=min( [hiddens.shape[0], self.MAX_BATCH_SIZE]), nonlinearity=self.nonlinearity, extended=self.extended, slstm=self.slstm[l], verbosity=self.verbosity) hiddens = self.slstm[l].forward(hiddens) if self.verbosity > 0: print 'Computing likelihood...' # evaluate log-likelihood loglik = self.mcgsm.loglikelihood( hiddens.reshape(-1, self.num_hiddens).T, outputs.reshape(-1, self.num_channels).T) + logjacobian # remove bottom-right pixel loglik = loglik.reshape(hiddens.shape[0], -1) loglik = loglik[:, :-1] return loglik def evaluate(self, images): """ Computes the average negative log-likelihood in bits per pixel. """ MAX_IMAGES = 100000 loglik = [] for b in range(0, len(images), MAX_IMAGES): loglik.append(mean(self.loglikelihood(images[b:b + MAX_IMAGES]))) return -mean(loglik) / log(2.) def train(self, images, batch_size=50, num_epochs=20, method='SGD', train_means=False, train_top_layer=False, momentum=0.9, learning_rate=1., decay1=0.9, decay2=0.999, precondition=True): """ @type images: C{ndarray}/C{list} @param images: an array or a list of images """ print 'Preprocessing...' inputs, outputs = self._preprocess(images) if precondition: print 'Preconditioning...' # remove correlations inputs, outputs = self._precondition(inputs, outputs) # indicates which layers will be trained train_layers = [self.num_layers - 1] if train_top_layer else range(self.num_layers) print 'Creating SLSTMs...' # create SLSTMs for l in range(self.num_layers): self.slstm[l] = SLSTM( num_rows=inputs.shape[1], num_cols=inputs.shape[2], num_channels=inputs.shape[3] if l < 1 else self.num_hiddens, num_hiddens=self.num_hiddens, batch_size=min([batch_size, self.MAX_BATCH_SIZE]), nonlinearity=self.nonlinearity, extended=self.extended, slstm=self.slstm[l], verbosity=self.verbosity) # compute loss function and its gradient def f_df(params, idx): # set model parameters for l in train_layers: self.slstm[l].set_parameters(params['slstm'][l]) self.mcgsm._set_parameters(params['mcgsm'], {'train_means': train_means}) # select batch and compute hidden activations Y = outputs[idx:idx + batch_size] H = inputs[idx:idx + batch_size] for l in range(self.num_layers): H = self.slstm[l].forward(H) # form inputs to MCGSM H_flat = H.reshape(-1, self.num_hiddens).T Y_flat = Y.reshape(-1, self.num_channels).T norm_const = -H_flat.shape[1] # compute gradients df_dh, _, loglik = self.mcgsm._data_gradient(H_flat, Y_flat) df_dh = df_dh.T.reshape(*H.shape) / norm_const # ignore bottom-right pixel (BSDS300) df_dh[:, -1, -1] = 0. # average negative log-likelihood f = sum(loglik) / norm_const df_dtheta = {} df_dtheta['slstm'] = [0.] * self.num_layers for l in range(self.num_layers)[::-1]: if l not in train_layers: break if l > min(train_layers): # derivative with respect to inputs of layer l are derivatives # of hidden states of layer l - 1 df_dtheta['slstm'][l] = self.slstm[l].backward( df_dh, force_backward=True) df_dh = df_dtheta['slstm'][l]['inputs'] del df_dtheta['slstm'][l]['inputs'] else: # no need to compute derivatives with respect to input units df_dtheta['slstm'][l] = self.slstm[l].backward(df_dh) # compute gradient of MCGSM df_dtheta['mcgsm'] = self.mcgsm._parameter_gradient( H_flat, Y_flat, parameters={'train_means': train_means }) * log(2.) * self.mcgsm.dim_out return f, df_dtheta # collect current parameters params = {} params['slstm'] = [0.] * self.num_layers for l in range(self.num_layers)[::-1]: if l not in train_layers: break params['slstm'][l] = self.slstm[l].parameters() params['mcgsm'] = self.mcgsm._parameters({'train_means': train_means}) # a start index for each batch start_indices = range(0, inputs.shape[0] - batch_size + 1, batch_size) print 'Training...' if method.upper() == 'SFO': try: # optimize using sum-of-functions optimizer optimizer = SFO(f_df, params, start_indices, display=self.verbosity) params_opt = optimizer.optimize(num_passes=num_epochs) # set model parameters for l in range(self.num_layers): self.slstm[l].set_parameters(params_opt['slstm'][l]) self.mcgsm._set_parameters(params_opt['mcgsm'], {'train_means': train_means}) except KeyboardInterrupt: pass return optimizer.hist_f_flat elif method.upper() == 'SGD': loss = [] diff = { 'slstm': [0.] * self.num_layers, 'mcgsm': zeros_like(params['mcgsm']) } for l in train_layers: diff['slstm'][l] = {} for key in params['slstm'][l]: diff['slstm'][l][key] = zeros_like(params['slstm'][l][key]) for n in range(num_epochs): for b in range(0, inputs.shape[0] - batch_size + 1, batch_size): # compute gradients f, df = f_df(params, b) loss.append(f) # update SLSTM parameters for l in train_layers: for key in params['slstm'][l]: diff['slstm'][l][key] = momentum * diff['slstm'][ l][key] - df['slstm'][l][key] params['slstm'][l][key] = params['slstm'][l][ key] + learning_rate * diff['slstm'][l][key] # update MCGSM parameters diff['mcgsm'] = momentum * diff['mcgsm'] - df['mcgsm'] params['mcgsm'] = params[ 'mcgsm'] + learning_rate * diff['mcgsm'] if self.verbosity > 0: print '{0:>5} {1:>10.4f} {2:>10.4f}'.format( n, loss[-1], mean(loss[-max([10, 20000 // batch_size]):])) return loss elif method.upper() == 'ADAM': loss = [] diff_mean = { 'slstm': [0.] * self.num_layers, 'mcgsm': zeros_like(params['mcgsm']) } diff_sqrd = { 'slstm': [0.] * self.num_layers, 'mcgsm': zeros_like(params['mcgsm']) } for l in train_layers: diff_mean['slstm'][l] = {} diff_sqrd['slstm'][l] = {} for key in params['slstm'][l]: diff_mean['slstm'][l][key] = zeros_like( params['slstm'][l][key]) diff_sqrd['slstm'][l][key] = zeros_like( params['slstm'][l][key]) # step counter t = 1 for n in range(num_epochs): for b in range(0, inputs.shape[0] - batch_size + 1, batch_size): # compute gradients f, df = f_df(params, b) loss.append(f) # include bias correction in step width step_width = learning_rate / ( 1. - power(decay1, t)) * sqrt(1. - power(decay2, t)) t += 1 # update SLSTM parameters for l in train_layers: for key in params['slstm'][l]: diff_mean['slstm'][l][key] = decay1 * diff_mean['slstm'][l][key] \ + (1. - decay1) * df['slstm'][l][key] diff_sqrd['slstm'][l][key] = decay2 * diff_sqrd['slstm'][l][key] \ + (1. - decay2) * square(df['slstm'][l][key]) params['slstm'][l][key] = params['slstm'][l][key] - \ step_width * diff_mean['slstm'][l][key] / (1e-8 + sqrt(diff_sqrd['slstm'][l][key])) # update MCGSM parameters diff_mean['mcgsm'] = decay1 * diff_mean['mcgsm'] + ( 1. - decay1) * df['mcgsm'] diff_sqrd['mcgsm'] = decay2 * diff_sqrd['mcgsm'] + ( 1. - decay2) * square(df['mcgsm']) params['mcgsm'] = params['mcgsm'] - \ step_width * diff_mean['mcgsm'] / (1e-8 + sqrt(diff_sqrd['mcgsm'])) if self.verbosity > 0: print '{0:>5} {1:>10.4f} {2:>10.4f}'.format( n, loss[-1], mean(loss[-max([10, 20000 // batch_size]):])) return loss else: raise ValueError('Unknown method \'{0}\'.'.format(method)) def finetune(self, images, max_iter=1000, train_means=False, num_samples_train=500000, num_samples_valid=100000): """ Train MCGSM using L-BFGS while keeping parameters of SLSTM fixed. @type images: C{ndarray}/C{list} @param images: an array or a list of images """ if images.shape[0] > num_samples_train: images = images[random_select(num_samples_train, images.shape[0])] print 'Preprocessing...' inputs, outputs = self._preprocess(images) if self.preconditioner: print 'Preconditioning...' # remove correlations inputs, outputs = self._precondition(inputs, outputs) # compute hidden unit activations hiddens = inputs print 'Forward...' for l in range(self.num_layers): self.slstm[l] = SLSTM(num_rows=hiddens.shape[1], num_cols=hiddens.shape[2], num_channels=hiddens.shape[3], num_hiddens=self.num_hiddens, batch_size=min( [hiddens.shape[0], self.MAX_BATCH_SIZE]), nonlinearity=self.nonlinearity, extended=self.extended, slstm=self.slstm[l], verbosity=self.verbosity) hiddens = self.slstm[l].forward(hiddens) print 'Reshape...' # remove bottom-right pixels (BSDS300) hiddens = hiddens.reshape(hiddens.shape[0], -1, self.num_hiddens) outputs = outputs.reshape(outputs.shape[0], -1, self.num_channels) hiddens = hiddens[:, :-1] outputs = outputs[:, :-1] # form inputs to MCGSM hiddens = hiddens.reshape(-1, self.num_hiddens).T outputs = outputs.reshape(-1, self.num_channels).T print 'Finetuning...' if hiddens.shape[1] > num_samples_train: num_samples_valid = min( [num_samples_valid, hiddens.shape[1] - num_samples_train]) # select subset of data points for finetuning idx = random_select(num_samples_train + num_samples_valid, hiddens.shape[1]) if num_samples_valid > 0: # split data into training and validation set hiddens_train = asarray(hiddens[:, idx[:num_samples_train]], order='F') outputs_train = asarray(outputs[:, idx[:num_samples_train]], order='F') hiddens_valid = asarray(hiddens[:, idx[num_samples_train:]], order='F') outputs_valid = asarray(outputs[:, idx[num_samples_train:]], order='F') # finetune with early stopping based on validation performance return self.mcgsm.train(hiddens_train, outputs_train, hiddens_valid, outputs_valid, parameters={ 'verbosity': self.verbosity, 'train_means': train_means, 'max_iter': max_iter }) else: hiddens = asarray(hiddens[:, idx], order='F') outputs = asarray(outputs[:, idx], order='F') return self.mcgsm.train(hiddens, outputs, parameters={ 'verbosity': self.verbosity, 'train_means': train_means, 'max_iter': max_iter }) def hidden_states(self, images, return_all=False): print 'Preprocessing...' inputs, outputs = self._preprocess(images) if self.preconditioner: print 'Preconditioning...' # remove correlations inputs, outputs = self._precondition(inputs, outputs) # compute hidden unit activations hiddens = inputs for l in range(self.num_layers): self.slstm[l] = SLSTM(num_rows=hiddens.shape[1], num_cols=hiddens.shape[2], num_channels=hiddens.shape[3], num_hiddens=self.num_hiddens, batch_size=min( [hiddens.shape[0], self.MAX_BATCH_SIZE]), nonlinearity=self.nonlinearity, extended=self.extended, slstm=self.slstm[l], verbosity=self.verbosity) hiddens = self.slstm[l].forward(hiddens) if return_all: return inputs, hiddens, outputs return hiddens def sample(self, images, min_values=None, max_values=None): """ Sample one or several images. @type images: C{ndarray} @param images: an array or a list of images to initialize pixels at boundaries """ if min_values is not None: min_values = asarray(min_values).reshape(1, 1, 1, -1) if max_values is not None: max_values = asarray(max_values).reshape(1, 1, 1, -1) # reshape images into four-dimensional arrays shape = images.shape if images.ndim == 2: images = images[None, :, :, None] elif images.ndim == 3: if self.num_channels > 1: images = images[None] else: images = images[:, :, :, None] # create spatial LSTMs for sampling slstm = [] for l in range(self.num_layers): slstm.append( SLSTM(num_rows=1, num_cols=1, num_channels=sum(self.input_mask) if l < 1 else self.num_hiddens, num_hiddens=self.num_hiddens, batch_size=images.shape[0], nonlinearity=self.nonlinearity, extended=self.extended, slstm=self.slstm[l], verbosity=self.verbosity)) # container for hidden and memory unit activations hiddens = [] memory = [] for l in range(self.num_layers): hiddens.append(defaultdict(lambda: 0.)) memory.append(defaultdict(lambda: 0.)) # locate output pixel for i_off, j_off in zip(range(self.output_mask.shape[0]), range(self.output_mask.shape[1])): if any(self.output_mask[i_off, j_off]): break for i in range(images.shape[1] - self.input_mask.shape[0] + 1): for j in range(images.shape[2] - self.input_mask.shape[1] + 1): # extract patches from images patches = images[:, i:i + self.input_mask.shape[0], j:j + self.input_mask.shape[1]] # extract causal neighborhoods from patches inputs = [] for k in range(images.shape[0]): inputs.append( generate_data_from_image(patches[k, :, :], self.input_mask, self.output_mask)[0]) inputs = asarray(inputs) inputs = inputs.reshape(inputs.shape[0], 1, 1, -1) if self.preconditioner: inputs = self._precondition(inputs) # set hidden unit activations for l in range(self.num_layers): slstm[l].net.blobs['h_init_i_jm1'].data[:] = hiddens[l][i, j - 1] slstm[l].net.blobs['h_init_im1_j'].data[:] = hiddens[l][i - 1, j] slstm[l].net.blobs['c_init_i_jm1'].data[:] = memory[l][i, j - 1] slstm[l].net.blobs['c_init_im1_j'].data[:] = memory[l][i - 1, j] # compute hidden unit activations activations = inputs for l in range(self.num_layers): activations = slstm[l].forward(activations) # store hidden unit activations for l in range(self.num_layers): hiddens[l][i, j] = slstm[l].net.blobs['outputs'].data.copy() memory[l][i, j] = slstm[l].net.blobs['c_0_0'].data.copy() for _ in range(10): # sample MCGSM outputs = self.mcgsm.sample(hiddens[-1][i, j].reshape( -1, self.num_hiddens).T) outputs = outputs.T.reshape(outputs.shape[1], 1, 1, outputs.shape[0]) if not any(isnan(outputs)): break print 'Warning: NaNs detected.' if self.preconditioner: inputs, outputs = self._precondition_inverse( inputs, outputs) if max_values is not None: outputs[outputs > max_values] = max_values[ outputs > max_values] if min_values is not None: outputs[outputs < min_values] = min_values[ outputs < min_values] # insert sampled pixels into images images[:, i + i_off, j + j_off][self.output_mask[i_off, j_off]] = outputs return images.reshape(*shape) def __setstate__(self, state): self.__dict__ = state if not hasattr(self, 'nonlinearity'): self.nonlinearity = 'TanH' if not hasattr(self, 'extended'): self.extended = False
class RIDE_BSDS300(object): """ Basically the same model as L{RIDE} but for the BSDS300 dataset where the bottom-right pixel is commonly ignored. This model should be used in combination with L{PatchRIDE}. """ MAX_BATCH_SIZE = 10000 def __init__(self, num_channels=1, num_hiddens=10, num_components=4, num_scales=4, num_features=16, num_layers=1, nb_size=3, nonlinearity='TanH', verbosity=1, extended=False, input_mask=None, output_mask=None): self.verbosity = verbosity self.num_channels = num_channels self.num_hiddens = num_hiddens self.num_layers = num_layers self.nonlinearity = nonlinearity self.extended = extended self.input_mask, self.output_mask = generate_masks([nb_size] * num_channels) if input_mask: self.input_mask = input_mask if output_mask: self.output_mask = output_mask self.num_channels = sum(self.output_mask) self.slstm = [None] * num_layers self.mcgsm = MCGSM( dim_in=num_hiddens, dim_out=num_channels, num_components=num_components, num_scales=num_scales, num_features=num_features) self.preconditioner = None # see PatchRIDE self._indicators = False def add_layer(self): """ Add another spatial LSTM to the network and reinitialize MCGSM. """ self.num_layers += 1 # reinitialize MCGSM self.mcgsm = MCGSM( dim_in=self.num_hiddens, dim_out=self.num_channels, num_components=self.mcgsm.num_components, num_scales=self.mcgsm.num_scales, num_features=self.mcgsm.num_features) # add slot for another layer self.slstm.append(None) def _precondition(self, inputs, outputs=None): """ Remove any correlations within and between inputs and outputs. """ shape = inputs.shape if outputs is None: if self.preconditioner is None: raise RuntimeError('No preconditioning possible.') inputs = inputs.reshape(-1, inputs.shape[-1]).T inputs = self.preconditioner(inputs) inputs = inputs.T.reshape(*shape) return inputs else: inputs = inputs.reshape(-1, inputs.shape[-1]).T outputs = outputs.reshape(-1, outputs.shape[-1]).T # avoids memory issues MAX_SAMPLES = 5000000 if self.preconditioner is None: inputs_ = inputs if self._indicators: # half of the inputs are indicators, don't preprocess them inputs_ = inputs.copy() inputs_[inputs.shape[0] // 2:] = randn(inputs.shape[0] // 2, *inputs.shape[1:]) if inputs.shape[1] > MAX_SAMPLES: idx = random_select(MAX_SAMPLES, inputs.shape[1]) self.preconditioner = WhiteningPreconditioner(inputs_[:, idx], outputs[:, idx]) else: self.preconditioner = WhiteningPreconditioner(inputs_, outputs) # precondition for b in range(0, inputs.shape[1], MAX_SAMPLES): inputs[:, b:b + MAX_SAMPLES], outputs[:, b:b + MAX_SAMPLES] = \ self.preconditioner(inputs[:, b:b + MAX_SAMPLES], outputs[:, b:b + MAX_SAMPLES]) inputs = inputs.T.reshape(*shape) outputs = outputs.T.reshape(shape[0], shape[1], shape[2], -1) return inputs, outputs def _precondition_inverse(self, inputs, outputs=None): """ Remove any correlations within and between inputs and outputs. """ if self.preconditioner is None: raise RuntimeError('No preconditioner set.') shape = inputs.shape if outputs is None: inputs = inputs.reshape(-1, inputs.shape[-1]).T inputs = self.preconditioner.inverse(inputs) inputs = inputs.T.reshape(*shape) return inputs else: inputs = inputs.reshape(-1, inputs.shape[-1]).T outputs = outputs.reshape(-1, outputs.shape[-1]).T inputs, outputs = self.preconditioner.inverse(inputs, outputs) inputs = inputs.T.reshape(*shape) outputs = outputs.T.reshape(shape[0], shape[1], shape[2], -1) return inputs, outputs def _preprocess(self, images): """ Extract causal neighborhoods from images. """ def process(image): inputs, outputs = generate_data_from_image( image, self.input_mask, self.output_mask) inputs = asarray( inputs.T.reshape( image.shape[0] - self.input_mask.shape[0] + 1, image.shape[1] - self.input_mask.shape[1] + 1, -1), dtype='float32') outputs = asarray( outputs.T.reshape( image.shape[0] - self.input_mask.shape[0] + 1, image.shape[1] - self.input_mask.shape[1] + 1, -1), dtype='float32') return inputs, outputs inputs, outputs = zip(*mapp(process, images)) return asarray(inputs), asarray(outputs) def loglikelihood(self, images): """ Returns a log-likelihood for each pixel except the bottom-right pixel (in nats). """ inputs, outputs = self._preprocess(images) if self.preconditioner is not None: if self.verbosity > 0: print 'Computing Jacobian...' logjacobian = self.preconditioner.logjacobian( inputs.reshape(-1, sum(self.input_mask)).T, outputs.reshape(-1, self.num_channels).T) if self.verbosity > 0: print 'Preconditioning...' # remove correlations inputs, outputs = self._precondition(inputs, outputs) else: logjacobian = 0. # compute hidden unit activations hiddens = inputs for l in range(self.num_layers): # create SLSTM self.slstm[l] = SLSTM( num_rows=hiddens.shape[1], num_cols=hiddens.shape[2], num_channels=hiddens.shape[3], num_hiddens=self.num_hiddens, batch_size=min([hiddens.shape[0], self.MAX_BATCH_SIZE]), nonlinearity=self.nonlinearity, extended=self.extended, slstm=self.slstm[l], verbosity=self.verbosity) hiddens = self.slstm[l].forward(hiddens) if self.verbosity > 0: print 'Computing likelihood...' # evaluate log-likelihood loglik = self.mcgsm.loglikelihood( hiddens.reshape(-1, self.num_hiddens).T, outputs.reshape(-1, self.num_channels).T) + logjacobian # remove bottom-right pixel loglik = loglik.reshape(hiddens.shape[0], -1) loglik = loglik[:, :-1] return loglik def evaluate(self, images): """ Computes the average negative log-likelihood in bits per pixel. """ MAX_IMAGES = 100000 loglik = [] for b in range(0, len(images), MAX_IMAGES): loglik.append(mean(self.loglikelihood(images[b:b + MAX_IMAGES]))) return -mean(loglik) / log(2.) def train(self, images, batch_size=50, num_epochs=20, method='SGD', train_means=False, train_top_layer=False, momentum=0.9, learning_rate=1., decay1=0.9, decay2=0.999, precondition=True): """ @type images: C{ndarray}/C{list} @param images: an array or a list of images """ print 'Preprocessing...' inputs, outputs = self._preprocess(images) if precondition: print 'Preconditioning...' # remove correlations inputs, outputs = self._precondition(inputs, outputs) # indicates which layers will be trained train_layers = [self.num_layers - 1] if train_top_layer else range(self.num_layers) print 'Creating SLSTMs...' # create SLSTMs for l in range(self.num_layers): self.slstm[l] = SLSTM( num_rows=inputs.shape[1], num_cols=inputs.shape[2], num_channels=inputs.shape[3] if l < 1 else self.num_hiddens, num_hiddens=self.num_hiddens, batch_size=min([batch_size, self.MAX_BATCH_SIZE]), nonlinearity=self.nonlinearity, extended=self.extended, slstm=self.slstm[l], verbosity=self.verbosity) # compute loss function and its gradient def f_df(params, idx): # set model parameters for l in train_layers: self.slstm[l].set_parameters(params['slstm'][l]) self.mcgsm._set_parameters(params['mcgsm'], {'train_means': train_means}) # select batch and compute hidden activations Y = outputs[idx:idx + batch_size] H = inputs[idx:idx + batch_size] for l in range(self.num_layers): H = self.slstm[l].forward(H) # form inputs to MCGSM H_flat = H.reshape(-1, self.num_hiddens).T Y_flat = Y.reshape(-1, self.num_channels).T norm_const = -H_flat.shape[1] # compute gradients df_dh, _, loglik = self.mcgsm._data_gradient(H_flat, Y_flat) df_dh = df_dh.T.reshape(*H.shape) / norm_const # ignore bottom-right pixel (BSDS300) df_dh[:, -1, -1] = 0. # average negative log-likelihood f = sum(loglik) / norm_const df_dtheta = {} df_dtheta['slstm'] = [0.] * self.num_layers for l in range(self.num_layers)[::-1]: if l not in train_layers: break if l > min(train_layers): # derivative with respect to inputs of layer l are derivatives # of hidden states of layer l - 1 df_dtheta['slstm'][l] = self.slstm[l].backward(df_dh, force_backward=True) df_dh = df_dtheta['slstm'][l]['inputs'] del df_dtheta['slstm'][l]['inputs'] else: # no need to compute derivatives with respect to input units df_dtheta['slstm'][l] = self.slstm[l].backward(df_dh) # compute gradient of MCGSM df_dtheta['mcgsm'] = self.mcgsm._parameter_gradient(H_flat, Y_flat, parameters={'train_means': train_means}) * log(2.) * self.mcgsm.dim_out return f, df_dtheta # collect current parameters params = {} params['slstm'] = [0.] * self.num_layers for l in range(self.num_layers)[::-1]: if l not in train_layers: break params['slstm'][l] = self.slstm[l].parameters() params['mcgsm'] = self.mcgsm._parameters({'train_means': train_means}) # a start index for each batch start_indices = range( 0, inputs.shape[0] - batch_size + 1, batch_size) print 'Training...' if method.upper() == 'SFO': try: # optimize using sum-of-functions optimizer optimizer = SFO(f_df, params, start_indices, display=self.verbosity) params_opt = optimizer.optimize(num_passes=num_epochs) # set model parameters for l in range(self.num_layers): self.slstm[l].set_parameters(params_opt['slstm'][l]) self.mcgsm._set_parameters(params_opt['mcgsm'], {'train_means': train_means}) except KeyboardInterrupt: pass return optimizer.hist_f_flat elif method.upper() == 'SGD': loss = [] diff = { 'slstm': [0.] * self.num_layers, 'mcgsm': zeros_like(params['mcgsm'])} for l in train_layers: diff['slstm'][l] = {} for key in params['slstm'][l]: diff['slstm'][l][key] = zeros_like(params['slstm'][l][key]) for n in range(num_epochs): for b in range(0, inputs.shape[0] - batch_size + 1, batch_size): # compute gradients f, df = f_df(params, b) loss.append(f) # update SLSTM parameters for l in train_layers: for key in params['slstm'][l]: diff['slstm'][l][key] = momentum * diff['slstm'][l][key] - df['slstm'][l][key] params['slstm'][l][key] = params['slstm'][l][key] + learning_rate * diff['slstm'][l][key] # update MCGSM parameters diff['mcgsm'] = momentum * diff['mcgsm'] - df['mcgsm'] params['mcgsm'] = params['mcgsm'] + learning_rate * diff['mcgsm'] if self.verbosity > 0: print '{0:>5} {1:>10.4f} {2:>10.4f}'.format( n, loss[-1], mean(loss[-max([10, 20000 // batch_size]):])) return loss elif method.upper() == 'ADAM': loss = [] diff_mean = { 'slstm': [0.] * self.num_layers, 'mcgsm': zeros_like(params['mcgsm'])} diff_sqrd = { 'slstm': [0.] * self.num_layers, 'mcgsm': zeros_like(params['mcgsm'])} for l in train_layers: diff_mean['slstm'][l] = {} diff_sqrd['slstm'][l] = {} for key in params['slstm'][l]: diff_mean['slstm'][l][key] = zeros_like(params['slstm'][l][key]) diff_sqrd['slstm'][l][key] = zeros_like(params['slstm'][l][key]) # step counter t = 1 for n in range(num_epochs): for b in range(0, inputs.shape[0] - batch_size + 1, batch_size): # compute gradients f, df = f_df(params, b) loss.append(f) # include bias correction in step width step_width = learning_rate / (1. - power(decay1, t)) * sqrt(1. - power(decay2, t)) t += 1 # update SLSTM parameters for l in train_layers: for key in params['slstm'][l]: diff_mean['slstm'][l][key] = decay1 * diff_mean['slstm'][l][key] \ + (1. - decay1) * df['slstm'][l][key] diff_sqrd['slstm'][l][key] = decay2 * diff_sqrd['slstm'][l][key] \ + (1. - decay2) * square(df['slstm'][l][key]) params['slstm'][l][key] = params['slstm'][l][key] - \ step_width * diff_mean['slstm'][l][key] / (1e-8 + sqrt(diff_sqrd['slstm'][l][key])) # update MCGSM parameters diff_mean['mcgsm'] = decay1 * diff_mean['mcgsm'] + (1. - decay1) * df['mcgsm'] diff_sqrd['mcgsm'] = decay2 * diff_sqrd['mcgsm'] + (1. - decay2) * square(df['mcgsm']) params['mcgsm'] = params['mcgsm'] - \ step_width * diff_mean['mcgsm'] / (1e-8 + sqrt(diff_sqrd['mcgsm'])) if self.verbosity > 0: print '{0:>5} {1:>10.4f} {2:>10.4f}'.format( n, loss[-1], mean(loss[-max([10, 20000 // batch_size]):])) return loss else: raise ValueError('Unknown method \'{0}\'.'.format(method)) def finetune(self, images, max_iter=1000, train_means=False, num_samples_train=500000, num_samples_valid=100000): """ Train MCGSM using L-BFGS while keeping parameters of SLSTM fixed. @type images: C{ndarray}/C{list} @param images: an array or a list of images """ if images.shape[0] > num_samples_train: images = images[random_select(num_samples_train, images.shape[0])] print 'Preprocessing...' inputs, outputs = self._preprocess(images) if self.preconditioner: print 'Preconditioning...' # remove correlations inputs, outputs = self._precondition(inputs, outputs) # compute hidden unit activations hiddens = inputs print 'Forward...' for l in range(self.num_layers): self.slstm[l] = SLSTM( num_rows=hiddens.shape[1], num_cols=hiddens.shape[2], num_channels=hiddens.shape[3], num_hiddens=self.num_hiddens, batch_size=min([hiddens.shape[0], self.MAX_BATCH_SIZE]), nonlinearity=self.nonlinearity, extended=self.extended, slstm=self.slstm[l], verbosity=self.verbosity) hiddens = self.slstm[l].forward(hiddens) print 'Reshape...' # remove bottom-right pixels (BSDS300) hiddens = hiddens.reshape(hiddens.shape[0], -1, self.num_hiddens) outputs = outputs.reshape(outputs.shape[0], -1, self.num_channels) hiddens = hiddens[:, :-1] outputs = outputs[:, :-1] # form inputs to MCGSM hiddens = hiddens.reshape(-1, self.num_hiddens).T outputs = outputs.reshape(-1, self.num_channels).T print 'Finetuning...' if hiddens.shape[1] > num_samples_train: num_samples_valid = min([num_samples_valid, hiddens.shape[1] - num_samples_train]) # select subset of data points for finetuning idx = random_select(num_samples_train + num_samples_valid, hiddens.shape[1]) if num_samples_valid > 0: # split data into training and validation set hiddens_train = asarray(hiddens[:, idx[:num_samples_train]], order='F') outputs_train = asarray(outputs[:, idx[:num_samples_train]], order='F') hiddens_valid = asarray(hiddens[:, idx[num_samples_train:]], order='F') outputs_valid = asarray(outputs[:, idx[num_samples_train:]], order='F') # finetune with early stopping based on validation performance return self.mcgsm.train( hiddens_train, outputs_train, hiddens_valid, outputs_valid, parameters={ 'verbosity': self.verbosity, 'train_means': train_means, 'max_iter': max_iter}) else: hiddens = asarray(hiddens[:, idx], order='F') outputs = asarray(outputs[:, idx], order='F') return self.mcgsm.train(hiddens, outputs, parameters={ 'verbosity': self.verbosity, 'train_means': train_means, 'max_iter': max_iter}) def hidden_states(self, images, return_all=False): print 'Preprocessing...' inputs, outputs = self._preprocess(images) if self.preconditioner: print 'Preconditioning...' # remove correlations inputs, outputs = self._precondition(inputs, outputs) # compute hidden unit activations hiddens = inputs for l in range(self.num_layers): self.slstm[l] = SLSTM( num_rows=hiddens.shape[1], num_cols=hiddens.shape[2], num_channels=hiddens.shape[3], num_hiddens=self.num_hiddens, batch_size=min([hiddens.shape[0], self.MAX_BATCH_SIZE]), nonlinearity=self.nonlinearity, extended=self.extended, slstm=self.slstm[l], verbosity=self.verbosity) hiddens = self.slstm[l].forward(hiddens) if return_all: return inputs, hiddens, outputs return hiddens def sample(self, images, min_values=None, max_values=None): """ Sample one or several images. @type images: C{ndarray} @param images: an array or a list of images to initialize pixels at boundaries """ if min_values is not None: min_values = asarray(min_values).reshape(1, 1, 1, -1) if max_values is not None: max_values = asarray(max_values).reshape(1, 1, 1, -1) # reshape images into four-dimensional arrays shape = images.shape if images.ndim == 2: images = images[None, :, :, None] elif images.ndim == 3: if self.num_channels > 1: images = images[None] else: images = images[:, :, :, None] # create spatial LSTMs for sampling slstm = [] for l in range(self.num_layers): slstm.append(SLSTM( num_rows=1, num_cols=1, num_channels=sum(self.input_mask) if l < 1 else self.num_hiddens, num_hiddens=self.num_hiddens, batch_size=images.shape[0], nonlinearity=self.nonlinearity, extended=self.extended, slstm=self.slstm[l], verbosity=self.verbosity)) # container for hidden and memory unit activations hiddens = [] memory = [] for l in range(self.num_layers): hiddens.append(defaultdict(lambda: 0.)) memory.append(defaultdict(lambda: 0.)) # locate output pixel for i_off, j_off in zip( range(self.output_mask.shape[0]), range(self.output_mask.shape[1])): if any(self.output_mask[i_off, j_off]): break for i in range(images.shape[1] - self.input_mask.shape[0] + 1): for j in range(images.shape[2] - self.input_mask.shape[1] + 1): # extract patches from images patches = images[:, i:i + self.input_mask.shape[0], j:j + self.input_mask.shape[1]] # extract causal neighborhoods from patches inputs = [] for k in range(images.shape[0]): inputs.append( generate_data_from_image( patches[k, :, :], self.input_mask, self.output_mask)[0]) inputs = asarray(inputs) inputs = inputs.reshape(inputs.shape[0], 1, 1, -1) if self.preconditioner: inputs = self._precondition(inputs) # set hidden unit activations for l in range(self.num_layers): slstm[l].net.blobs['h_init_i_jm1'].data[:] = hiddens[l][i, j - 1] slstm[l].net.blobs['h_init_im1_j'].data[:] = hiddens[l][i - 1, j] slstm[l].net.blobs['c_init_i_jm1'].data[:] = memory[l][i, j - 1] slstm[l].net.blobs['c_init_im1_j'].data[:] = memory[l][i - 1, j] # compute hidden unit activations activations = inputs for l in range(self.num_layers): activations = slstm[l].forward(activations) # store hidden unit activations for l in range(self.num_layers): hiddens[l][i, j] = slstm[l].net.blobs['outputs'].data.copy() memory[l][i, j] = slstm[l].net.blobs['c_0_0'].data.copy() for _ in range(10): # sample MCGSM outputs = self.mcgsm.sample( hiddens[-1][i, j].reshape(-1, self.num_hiddens).T) outputs = outputs.T.reshape(outputs.shape[1], 1, 1, outputs.shape[0]) if not any(isnan(outputs)): break print 'Warning: NaNs detected.' if self.preconditioner: inputs, outputs = self._precondition_inverse(inputs, outputs) if max_values is not None: outputs[outputs > max_values] = max_values[outputs > max_values] if min_values is not None: outputs[outputs < min_values] = min_values[outputs < min_values] # insert sampled pixels into images images[:, i + i_off, j + j_off][self.output_mask[i_off, j_off]] = outputs return images.reshape(*shape) def __setstate__(self, state): self.__dict__ = state if not hasattr(self, 'nonlinearity'): self.nonlinearity = 'TanH' if not hasattr(self, 'extended'): self.extended = False
class RIDE(object): """ An implementation of the recurrent image density estimator (RIDE). B{References:} - Theis, L. and Bethge, M. (2015). I{Generative Image Modeling Using Spatial LSTMs.} """ # maximum batch size used by Caffe internally MAX_BATCH_SIZE = 200 def __init__( self, num_channels=1, num_hiddens=10, num_components=8, num_scales=4, num_features=16, num_layers=1, nb_size=5, nonlinearity="TanH", verbosity=1, extended=False, input_mask=None, output_mask=None, ): """ @type num_channels: C{int} @param num_channels: dimensionality of each pixel @type num_hiddens: C{int} @param num_hiddens: number of LSTM units in each spatial LSTM layer @type num_components: C{int} @param num_components: number of mixture components used by the MCGSM @type num_scales: C{int} @param num_scales: number of scales used by the MCGSM @type num_features: C{int} @param num_features: number of quadratic features used by the MCGSM @type num_layers: C{int} @param num_layers: number of layers of spatial LSTM units @type nb_size: C{int} @param nb_size: controls the neighborhood of pixels read from an image @type nonlinearity: C{str} @param nonlinearity: nonlinearity used by spatial LSTM (e.g., TanH, ReLU) @type verbosity: C{int} @param verbosity: controls how much information is printed during training, etc. @type extended: C{bool} @param extended: use previous memory states as additional inputs to LSTM (more parameters) @type input_mask C{ndarray} @param input_mask: Boolean mask used to define custom input neighborhood of pixels @type output_mask C{ndarray} @param output_mask: determines the position of the output pixel relative to the neighborhood """ self.verbosity = verbosity self.num_channels = num_channels self.num_hiddens = num_hiddens self.num_layers = num_layers self.nonlinearity = nonlinearity self.extended = extended self.input_mask, self.output_mask = generate_masks([nb_size] * num_channels) if input_mask is not None: self.input_mask = input_mask if output_mask is not None: self.output_mask = output_mask self.num_channels = sum(self.output_mask) self.slstm = [None] * num_layers self.mcgsm = MCGSM( dim_in=self.num_hiddens, dim_out=self.num_channels, num_components=num_components, num_scales=num_scales, num_features=num_features, ) self.preconditioner = None def add_layer(self): """ Add another spatial LSTM to the network and reinitialize MCGSM. """ self.num_layers += 1 # reinitialize MCGSM self.mcgsm = MCGSM( dim_in=self.num_hiddens, dim_out=self.num_channels, num_components=self.mcgsm.num_components, num_scales=self.mcgsm.num_scales, num_features=self.mcgsm.num_features, ) # add slot for another layer self.slstm.append(None) def _precondition(self, inputs, outputs=None): """ Remove any correlations within and between inputs and outputs (conditional whitening). @type inputs: C{ndarray} @param inputs: pixel neighborhoods stored column-wise @type outputs: C{ndarray} @param outputs: output pixels stored column-wise """ shape = inputs.shape if outputs is None: if self.preconditioner is None: raise RuntimeError("No preconditioning possible.") inputs = inputs.reshape(-1, inputs.shape[-1]).T inputs = self.preconditioner(inputs) inputs = inputs.T.reshape(*shape) return inputs else: inputs = inputs.reshape(-1, inputs.shape[-1]).T outputs = outputs.reshape(-1, outputs.shape[-1]).T # avoids memory issues MAX_SAMPLES = 500000 if self.preconditioner is None: if inputs.shape[1] > MAX_SAMPLES: idx = random_select(MAX_SAMPLES, inputs.shape[1]) self.preconditioner = WhiteningPreconditioner(inputs[:, idx], outputs[:, idx]) else: self.preconditioner = WhiteningPreconditioner(inputs, outputs) for b in range(0, inputs.shape[1], MAX_SAMPLES): inputs[:, b : b + MAX_SAMPLES], outputs[:, b : b + MAX_SAMPLES] = self.preconditioner( inputs[:, b : b + MAX_SAMPLES], outputs[:, b : b + MAX_SAMPLES] ) inputs = inputs.T.reshape(*shape) outputs = outputs.T.reshape(shape[0], shape[1], shape[2], -1) return inputs, outputs def _precondition_inverse(self, inputs, outputs=None): """ Reintroduce correlations removed by conditional whitening. @type inputs: C{ndarray} @param inputs: pixel neighborhoods stored column-wise @type outputs: C{ndarray} @param outputs: output pixels stored column-wise """ if self.preconditioner is None: raise RuntimeError("No preconditioner set.") shape = inputs.shape if outputs is None: inputs = inputs.reshape(-1, inputs.shape[-1]).T inputs = self.preconditioner.inverse(inputs) inputs = inputs.T.reshape(*shape) return inputs else: inputs = inputs.reshape(-1, inputs.shape[-1]).T outputs = outputs.reshape(-1, outputs.shape[-1]).T inputs, outputs = self.preconditioner.inverse(inputs, outputs) inputs = inputs.T.reshape(*shape) outputs = outputs.T.reshape(shape[0], shape[1], shape[2], -1) return inputs, outputs def _adjust_gradient(self, inputs, outputs): """ Adjust gradients to take into account preconditioning. @type inputs: C{ndarray} @param inputs: gradient with respect to conditionally whitened inputs @type outputs: C{ndarray} @param outputs: gradient with respect to conditionally whitened outputs """ if self.preconditioner is None: raise RuntimeError("No preconditioner set.") shape = inputs.shape inputs = inputs.reshape(-1, inputs.shape[-1]).T outputs = outputs.reshape(-1, outputs.shape[-1]).T inputs, outputs = self.preconditioner.adjust_gradient(inputs, outputs) inputs = inputs.T.reshape(*shape) outputs = outputs.T.reshape(shape[0], shape[1], shape[2], -1) return inputs, outputs def _preprocess(self, images): """ Extract causal neighborhoods from images. @type images: C{ndarray}/C{list} @param images: array or list of images to process @rtype: C{tuple} @return: one array storing inputs (neighborhoods) and one array storing outputs (pixels) """ def process(image): inputs, outputs = generate_data_from_image(image, self.input_mask, self.output_mask) inputs = asarray( inputs.T.reshape( image.shape[0] - self.input_mask.shape[0] + 1, image.shape[1] - self.input_mask.shape[1] + 1, -1 ), dtype="float32", ) outputs = asarray( outputs.T.reshape( image.shape[0] - self.input_mask.shape[0] + 1, image.shape[1] - self.input_mask.shape[1] + 1, -1 ), dtype="float32", ) return inputs, outputs inputs, outputs = zip(*mapp(process, images)) return asarray(inputs), asarray(outputs) def loglikelihood(self, images): """ Returns a log-likelihood for each reachable pixel (in nats). @type images: C{ndarray}/C{list} @param images: array or list of images for which to evaluate log-likelihood @rtype: C{ndarray} @return: an array of log-likelihoods for each image and predicted pixel """ inputs, outputs = self._preprocess(images) if self.preconditioner is not None: if self.verbosity > 0: print "Computing Jacobian..." logjacobian = self.preconditioner.logjacobian( inputs.reshape(-1, sum(self.input_mask)).T, outputs.reshape(-1, self.num_channels).T ) if self.verbosity > 0: print "Preconditioning..." # remove correlations inputs, outputs = self._precondition(inputs, outputs) else: logjacobian = 0.0 # compute hidden unit activations hiddens = inputs batch_size = min([hiddens.shape[0], self.MAX_BATCH_SIZE]) if self.verbosity > 0: print "Computing hidden states..." for l in range(self.num_layers): # create SLSTM if ( self.slstm[l].num_rows != hiddens.shape[1] or self.slstm[l].num_cols != hiddens.shape[2] or self.slstm[l].batch_size != batch_size ): self.slstm[l] = SLSTM( num_rows=hiddens.shape[1], num_cols=hiddens.shape[2], num_channels=hiddens.shape[3], num_hiddens=self.num_hiddens, batch_size=batch_size, nonlinearity=self.nonlinearity, extended=self.extended, slstm=self.slstm[l], verbosity=self.verbosity, ) hiddens = self.slstm[l].forward(hiddens) if self.verbosity > 0: print "Computing likelihood..." # evaluate log-likelihood loglik = ( self.mcgsm.loglikelihood(hiddens.reshape(-1, self.num_hiddens).T, outputs.reshape(-1, self.num_channels).T) + logjacobian ) return loglik.reshape(hiddens.shape[0], hiddens.shape[1], hiddens.shape[2]) def evaluate(self, images): """ Computes the average negative log-likelihood in bits per pixel. @type images: C{ndarray}/C{list} @param images: an array or list of test images @rtype: C{float} @return: average negative log-likelihood in bits per pixel """ return -mean(self.loglikelihood(images)) / log(2.0) / self.num_channels def train( self, images, batch_size=50, num_epochs=20, method="SGD", train_means=False, train_top_layer=False, momentum=0.9, learning_rate=1.0, decay1=0.9, decay2=0.999, precondition=True, ): """ Train model via stochastic gradient descent (SGD) or sum-of-functions optimizer (SFO). @type images: C{ndarray}/C{list} @param images: an array or a list of training images (e.g., Nx32x32x3) @type batch_size: C{int} @param batch_size: batch size used by SGD @type num_epochs: C{int} @param num_epochs: number of passes through the training set @type method: C{str} @param method: either 'SGD', 'SFO', or 'ADAM' @type train_means: C{bool} @param train_means: whether or not to optimize the mean parameters of the MCGSM @type train_top_layer: C{bool} @param train_top_layer: if true, only the MCGSM and spatial LSTM at the top layer is trained @type momentum: C{float} @param momentum: momentum rate used by SGD @type learning_rate: C{float} @param learning_rate: learning rate used by SGD @type decay1: C{float} @param decay1: hyperparameter used by ADAM @type decay2: C{float} @param decay2: hyperparameter used by ADAM @type precondition: C{bool} @param precondition: whether or not to perform conditional whitening @rtype: C{list} @return: evolution of negative log-likelihood (bits per pixel) over the training """ if images.shape[1] < self.input_mask.shape[0] or images.shape[2] < self.input_mask.shape[1]: raise ValueError("Images too small.") if self.verbosity > 0: print "Preprocessing..." inputs, outputs = self._preprocess(images) if precondition: if self.verbosity > 0: print "Preconditioning..." # remove correlations inputs, outputs = self._precondition(inputs, outputs) # indicates which layers will be trained train_layers = [self.num_layers - 1] if train_top_layer else range(self.num_layers) if self.verbosity > 0: print "Creating SLSTMs..." # create SLSTMs for l in range(self.num_layers): self.slstm[l] = SLSTM( num_rows=inputs.shape[1], num_cols=inputs.shape[2], num_channels=inputs.shape[3] if l < 1 else self.num_hiddens, num_hiddens=self.num_hiddens, batch_size=min([batch_size, self.MAX_BATCH_SIZE]), nonlinearity=self.nonlinearity, extended=self.extended, slstm=self.slstm[l], verbosity=self.verbosity, ) # compute loss function and its gradient def f_df(params, idx): # set model parameters for l in train_layers: self.slstm[l].set_parameters(params["slstm"][l]) self.mcgsm._set_parameters(params["mcgsm"], {"train_means": train_means}) # select batch and compute hidden activations Y = outputs[idx : idx + batch_size] H = inputs[idx : idx + batch_size] for l in range(self.num_layers): H = self.slstm[l].forward(H) # form inputs to MCGSM H_flat = H.reshape(-1, self.num_hiddens).T Y_flat = Y.reshape(-1, self.num_channels).T norm_const = -H_flat.shape[1] # compute gradients df_dh, _, loglik = self.mcgsm._data_gradient(H_flat, Y_flat) df_dh = df_dh.T.reshape(*H.shape) / norm_const # average log-likelihood f = sum(loglik) / norm_const df_dtheta = {} df_dtheta["slstm"] = [0.0] * self.num_layers for l in range(self.num_layers)[::-1]: if l not in train_layers: break if l > min(train_layers): # derivative with respect to inputs of layer l are derivatives # of hidden states of layer l - 1 df_dtheta["slstm"][l] = self.slstm[l].backward(df_dh, force_backward=True) df_dh = df_dtheta["slstm"][l]["inputs"] del df_dtheta["slstm"][l]["inputs"] else: # no need to compute derivatives with respect to input units df_dtheta["slstm"][l] = self.slstm[l].backward(df_dh) # compute gradient of MCGSM df_dtheta["mcgsm"] = ( self.mcgsm._parameter_gradient(H_flat, Y_flat, parameters={"train_means": train_means}) * log(2.0) * self.mcgsm.dim_out ) return f, df_dtheta # collect current parameters params = {} params["slstm"] = [0.0] * self.num_layers for l in range(self.num_layers)[::-1]: if l not in train_layers: break params["slstm"][l] = self.slstm[l].parameters() params["mcgsm"] = self.mcgsm._parameters({"train_means": train_means}) # a start index for each batch start_indices = range(0, inputs.shape[0] - batch_size + 1, batch_size) if self.verbosity > 0: print "Training..." if method.upper() == "SFO": try: # optimize using sum-of-functions optimizer optimizer = SFO(f_df, params, start_indices, display=self.verbosity) params_opt = optimizer.optimize(num_passes=num_epochs) # set model parameters for l in range(self.num_layers): self.slstm[l].set_parameters(params_opt["slstm"][l]) self.mcgsm._set_parameters(params_opt["mcgsm"], {"train_means": train_means}) except KeyboardInterrupt: pass return optimizer.hist_f_flat elif method.upper() == "SGD": loss = [] diff = {"slstm": [0.0] * self.num_layers, "mcgsm": zeros_like(params["mcgsm"])} for l in train_layers: diff["slstm"][l] = {} for key in params["slstm"][l]: diff["slstm"][l][key] = zeros_like(params["slstm"][l][key]) for n in range(num_epochs): for b in range(0, inputs.shape[0] - batch_size + 1, batch_size): # compute gradients f, df = f_df(params, b) loss.append(f / log(2.0) / self.num_channels) # update SLSTM parameters for l in train_layers: for key in params["slstm"][l]: diff["slstm"][l][key] = momentum * diff["slstm"][l][key] - df["slstm"][l][key] params["slstm"][l][key] = params["slstm"][l][key] + learning_rate * diff["slstm"][l][key] # update MCGSM parameters diff["mcgsm"] = momentum * diff["mcgsm"] - df["mcgsm"] params["mcgsm"] = params["mcgsm"] + learning_rate * diff["mcgsm"] if self.verbosity > 0: print "{0:>5} {1:>10.4f} {2:>10.4f}".format( n, loss[-1], mean(loss[-max([10, 20000 // batch_size]) :]) ) return loss elif method.upper() == "ADAM": loss = [] diff_mean = {"slstm": [0.0] * self.num_layers, "mcgsm": zeros_like(params["mcgsm"])} diff_sqrd = {"slstm": [0.0] * self.num_layers, "mcgsm": zeros_like(params["mcgsm"])} for l in train_layers: diff_mean["slstm"][l] = {} diff_sqrd["slstm"][l] = {} for key in params["slstm"][l]: diff_mean["slstm"][l][key] = zeros_like(params["slstm"][l][key]) diff_sqrd["slstm"][l][key] = zeros_like(params["slstm"][l][key]) # step counter t = 1 for n in range(num_epochs): for b in range(0, inputs.shape[0] - batch_size + 1, batch_size): # compute gradients f, df = f_df(params, b) loss.append(f / log(2.0) / self.num_channels) # include bias correction in step width step_width = learning_rate / (1.0 - power(decay1, t)) * sqrt(1.0 - power(decay2, t)) t += 1 # update SLSTM parameters for l in train_layers: for key in params["slstm"][l]: diff_mean["slstm"][l][key] = ( decay1 * diff_mean["slstm"][l][key] + (1.0 - decay1) * df["slstm"][l][key] ) diff_sqrd["slstm"][l][key] = decay2 * diff_sqrd["slstm"][l][key] + (1.0 - decay2) * square( df["slstm"][l][key] ) params["slstm"][l][key] = params["slstm"][l][key] - step_width * diff_mean["slstm"][l][ key ] / (1e-8 + sqrt(diff_sqrd["slstm"][l][key])) # update MCGSM parameters diff_mean["mcgsm"] = decay1 * diff_mean["mcgsm"] + (1.0 - decay1) * df["mcgsm"] diff_sqrd["mcgsm"] = decay2 * diff_sqrd["mcgsm"] + (1.0 - decay2) * square(df["mcgsm"]) params["mcgsm"] = params["mcgsm"] - step_width * diff_mean["mcgsm"] / ( 1e-8 + sqrt(diff_sqrd["mcgsm"]) ) if self.verbosity > 0: print "{0:>5} {1:>10.4f} {2:>10.4f}".format( n, loss[-1], mean(loss[-max([10, 20000 // batch_size]) :]) ) return loss else: raise ValueError("Unknown method '{0}'.".format(method)) def finetune(self, images, max_iter=1000, train_means=False, num_samples_train=500000, num_samples_valid=100000): """ Train MCGSM using L-BFGS while keeping parameters of spatial LSTMs fixed. @type images: C{ndarray}/C{list} @param images: an array or a list of images @type max_iter: C{int} @param max_iter: maximum number of L-BFGS iterations @type train_means: C{bool} @param train_means: whether or not to optimize the mean parameters of the MCGSM @type num_samples_train: C{int} @param num_samples_train: number of training examples extracted from images @type num_samples_valid: C{int} @type num_samples_valid: number of validation examples used for early stopping @rtype: C{bool} @return: true if training converged, false otherwise """ if images.shape[0] > min([200000, num_samples_train]): images = images[random_select(min([200000, num_samples_train]), images.shape[0])] if self.verbosity > 0: print "Preprocessing..." inputs, outputs = self._preprocess(images) if self.preconditioner: if self.verbosity > 0: print "Preconditioning..." # remove correlations inputs, outputs = self._precondition(inputs, outputs) # compute hidden unit activations hiddens = inputs if self.verbosity > 0: print "Computing hidden states..." for l in range(self.num_layers): self.slstm[l] = SLSTM( num_rows=hiddens.shape[1], num_cols=hiddens.shape[2], num_channels=hiddens.shape[3], num_hiddens=self.num_hiddens, batch_size=min([hiddens.shape[0], self.MAX_BATCH_SIZE]), nonlinearity=self.nonlinearity, extended=self.extended, slstm=self.slstm[l], verbosity=self.verbosity, ) hiddens = self.slstm[l].forward(hiddens) if self.verbosity > 0: print "Preparing inputs and outputs..." # form inputs to MCGSM hiddens = hiddens.reshape(-1, self.num_hiddens).T outputs = outputs.reshape(-1, self.num_channels).T if hiddens.shape[1] > num_samples_train: num_samples_valid = min([num_samples_valid, hiddens.shape[1] - num_samples_train]) # select subset of data points for finetuning idx = random_select(num_samples_train + num_samples_valid, hiddens.shape[1]) if num_samples_valid > 0: # split data into training and validation set hiddens_train = asarray(hiddens[:, idx[:num_samples_train]], order="F") outputs_train = asarray(outputs[:, idx[:num_samples_train]], order="F") hiddens_valid = asarray(hiddens[:, idx[num_samples_train:]], order="F") outputs_valid = asarray(outputs[:, idx[num_samples_train:]], order="F") # finetune with early stopping based on validation performance return self.mcgsm.train( hiddens_train, outputs_train, hiddens_valid, outputs_valid, parameters={"verbosity": self.verbosity, "train_means": train_means, "max_iter": max_iter}, ) else: hiddens = asarray(hiddens[:, idx], order="F") outputs = asarray(outputs[:, idx], order="F") if self.verbosity > 0: print "Finetuning..." return self.mcgsm.train( hiddens, outputs, parameters={"verbosity": self.verbosity, "train_means": train_means, "max_iter": max_iter} ) def hidden_states(self, images, return_all=False, layer=None): """ Compute hidden states of LSTM units for given images. By default, the last layer's hidden units are computed. @type images: C{ndarray}/C{list} @param images: array or list of images to process @type return_all: C{bool} @param return_all: if true, also return preconditioned inputs and outputs @type layer: C{int} @param layer: a positive integer controlling which layer's hidden units to compute @rtype: C{ndarray}/C{tuple} @return: hidden states or a tuple of inputs, hidden states, and outputs """ if self.verbosity > 0: print "Preprocessing..." inputs, outputs = self._preprocess(images) if self.preconditioner is not None: if self.verbosity > 0: print "Preconditioning..." # remove correlations inputs, outputs = self._precondition(inputs, outputs) # compute hidden unit activations hiddens = inputs batch_size = min([hiddens.shape[0], self.MAX_BATCH_SIZE]) if layer is None or layer < 1: layer = self.num_layers for l in range(layer): if ( self.slstm[l].num_rows != hiddens.shape[1] or self.slstm[l].num_cols != hiddens.shape[2] or self.slstm[l].batch_size != batch_size ): self.slstm[l] = SLSTM( num_rows=hiddens.shape[1], num_cols=hiddens.shape[2], num_channels=hiddens.shape[3], num_hiddens=self.num_hiddens, batch_size=batch_size, nonlinearity=self.nonlinearity, extended=self.extended, slstm=self.slstm[l], verbosity=self.verbosity, ) hiddens = self.slstm[l].forward(hiddens) if return_all: return inputs, hiddens, outputs return hiddens def gradient(self, images): """ Returns the average log-likelihood [nat] and its gradient with respect to pixel values. @type images: C{ndarray} @param images: images at which to evaluate the density's gradient @rtype: C{tuple} @return: average log-likelihood and gradient with respect to images """ if self.verbosity > 0: print "Preprocessing..." inputs, outputs = self._preprocess(images) if self.preconditioner: if self.verbosity > 0: print "Preconditioning..." # remove correlations inputs, outputs = self._precondition(inputs, outputs) if self.verbosity > 0: print "Creating SLSTMs..." # create SLSTMs batch_size = min([images.shape[0], self.MAX_BATCH_SIZE]) for l in range(self.num_layers): if ( self.slstm[l] is None or self.slstm[l].batch_size != batch_size or self.slstm[l].num_rows != inputs.shape[1] or self.slstm[l].num_cols != inputs.shape[2] ): self.slstm[l] = SLSTM( num_rows=inputs.shape[1], num_cols=inputs.shape[2], num_channels=inputs.shape[3] if l < 1 else self.num_hiddens, num_hiddens=self.num_hiddens, batch_size=batch_size, nonlinearity=self.nonlinearity, extended=self.extended, slstm=self.slstm[l], verbosity=self.verbosity, ) # compute hidden unit activations hiddens = inputs for l in range(self.num_layers): hiddens = self.slstm[l].forward(hiddens) # form inputs to MCGSM H_flat = hiddens.reshape(-1, self.num_hiddens).T Y_flat = outputs.reshape(-1, self.num_channels).T # compute gradients df_dh, df_dy, loglik = self.mcgsm._data_gradient(H_flat, Y_flat) df_dh = df_dh.T.reshape(*hiddens.shape) / H_flat.shape[1] df_dy = df_dy.T.reshape(*outputs.shape) / H_flat.shape[1] # average log-likelihood f = sum(loglik) / H_flat.shape[1] for l in range(self.num_layers)[::-1]: df_dh = self.slstm[l].backward(df_dh, force_backward=True)["inputs"] if self.preconditioner: df_dh, df_dy = self._adjust_gradient(df_dh, df_dy) # locate output pixel in output mask for i_off, j_off in zip(range(self.output_mask.shape[0]), range(self.output_mask.shape[1])): if any(self.output_mask[i_off, j_off]): break gradient = zeros_like(images) # make sure mask and gradient have compatible dimensionality if gradient.ndim == 4 and self.input_mask.ndim == 2: gradient = gradient[:, :, :, 0] for i in range(images.shape[1] - self.input_mask.shape[0] + 1): for j in range(images.shape[2] - self.input_mask.shape[1] + 1): patch = gradient[:, i : i + self.input_mask.shape[0], j : j + self.output_mask.shape[1]] patch[:, self.input_mask] += df_dh[:, i, j] patch[:, self.output_mask] += df_dy[:, i, j] return f, gradient.reshape(*images.shape) def sample(self, images, min_values=None, max_values=None, mask=None, return_loglik=False): """ Sample one or several images. @type images: C{ndarray}/C{list} @param images: an array or a list of images to initialize pixels at boundaries @type min_values: C{ndarray}/C{list} @param min_values: list of lower bounds for each channel (for increased stability) @type max_values: C{ndarray}/C{list} @param max_values: list of upper bounds for each channel (for increased stability) @type mask: C{ndarray} @param mask: replace only certain pixels indicated by this Boolean mask @rtype: C{ndarray} @return: sampled images of the size of the images given as input """ # reshape images into four-dimensional arrays shape = images.shape if images.ndim == 2: images = images[None, :, :, None] elif images.ndim == 3: if self.num_channels > 1: images = images[None] else: images = images[:, :, :, None] # create spatial LSTMs for sampling for l in range(self.num_layers): if ( self.slstm[l].num_rows != 1 or self.slstm[l].num_cols != 1 or self.slstm[l].batch_size != images.shape[0] ): self.slstm[l] = SLSTM( num_rows=1, num_cols=1, num_channels=sum(self.input_mask) if l < 1 else self.num_hiddens, num_hiddens=self.num_hiddens, batch_size=images.shape[0], nonlinearity=self.nonlinearity, slstm=self.slstm[l], extended=self.extended, ) # container for hidden and memory unit activations hiddens = [] memory = [] for l in range(self.num_layers): hiddens.append(defaultdict(lambda: 0.0)) memory.append(defaultdict(lambda: 0.0)) # locate output pixel for i_off, j_off in zip(range(self.output_mask.shape[0]), range(self.output_mask.shape[1])): if any(self.output_mask[i_off, j_off]): break if min_values is not None: min_values = asarray(min_values).reshape(1, 1, 1, -1) if self.output_mask.ndim > 2: min_values = min_values[:, :, :, self.output_mask[i_off, j_off]] if max_values is not None: max_values = asarray(max_values).reshape(1, 1, 1, -1) if self.output_mask.ndim > 2: max_values = max_values[:, :, :, self.output_mask[i_off, j_off]] # unnormalized log-density of generated sample logq = 0.0 for i in range(images.shape[1] - self.input_mask.shape[0] + 1): for j in range(images.shape[2] - self.input_mask.shape[1] + 1): # extract patches from images patches = images[:, i : i + self.input_mask.shape[0], j : j + self.input_mask.shape[1]] # extract causal neighborhoods from patches inputs = [] for k in range(images.shape[0]): inputs.append(generate_data_from_image(patches[k, :, :], self.input_mask, self.output_mask)[0]) inputs = asarray(inputs) inputs = inputs.reshape(inputs.shape[0], 1, 1, -1) if self.preconditioner: inputs = self._precondition(inputs) # set hidden unit activations for l in range(self.num_layers): self.slstm[l].net.blobs["h_init_i_jm1"].data[:] = hiddens[l][i, j - 1] self.slstm[l].net.blobs["h_init_im1_j"].data[:] = hiddens[l][i - 1, j] self.slstm[l].net.blobs["c_init_i_jm1"].data[:] = memory[l][i, j - 1] self.slstm[l].net.blobs["c_init_im1_j"].data[:] = memory[l][i - 1, j] # compute hidden unit activations activations = inputs for l in range(self.num_layers): activations = self.slstm[l].forward(activations) # store hidden unit activations for l in range(self.num_layers): hiddens[l][i, j] = self.slstm[l].net.blobs["outputs"].data.copy() memory[l][i, j] = self.slstm[l].net.blobs["c_0_0"].data.copy() if mask is not None and not mask[i + i_off, j + j_off]: # skip sampling of this pixel continue for _ in range(10): # sample MCGSM outputs = self.mcgsm.sample(hiddens[-1][i, j].reshape(-1, self.num_hiddens).T) if not any(isnan(outputs)): break print "Warning: NaNs detected." if return_loglik: logq += self.mcgsm.loglikelihood(hiddens[-1][i, j].reshape(-1, self.num_hiddens).T, outputs) outputs = outputs.T.reshape(outputs.shape[1], 1, 1, outputs.shape[0]) if self.preconditioner: inputs, outputs = self._precondition_inverse(inputs, outputs) if max_values is not None: outputs[outputs > max_values] = max_values[outputs > max_values] if min_values is not None: outputs[outputs < min_values] = min_values[outputs < min_values] # insert sampled pixels into images if self.output_mask.ndim > 2: images[:, i + i_off, j + j_off][:, self.output_mask[i_off, j_off]] = outputs else: images[:, i + i_off, j + j_off] = outputs images = images.reshape(*shape) if return_loglik: return images, logq return images def _logq(self, images, mask): """ Computes an unnormalized conditional log-likelihood used by Metropolis-Hastings (e.g., for inpainting). """ inputs, hiddens, outputs = self.hidden_states(images, return_all=True) # locate output pixel for i_off, j_off in zip(range(self.output_mask.shape[0]), range(self.output_mask.shape[1])): if any(self.output_mask[i_off, j_off]): break # unnormalized log-density of generated sample logq = 0.0 for i in range(images.shape[1] - self.input_mask.shape[0] + 1): for j in range(images.shape[2] - self.input_mask.shape[1] + 1): if not mask[i + i_off, j + j_off]: # skip evaluation of this pixel continue logq += self.mcgsm.loglikelihood( hiddens[:, i, j, :].reshape(-1, self.num_hiddens).T, outputs[:, i, j, :] ) return logq def __setstate__(self, state): """ Method used by pickle module, for backwards compatibility reasons. """ self.__dict__ = state if not hasattr(self, "nonlinearity"): self.nonlinearity = "TanH" if not hasattr(self, "extended"): self.extended = False
class RIDE(object): """ An implementation of the recurrent image density estimator (RIDE). B{References:} - Theis, L. and Bethge, M. (2015). I{Generative Image Modeling Using Spatial LSTMs.} """ # maximum batch size used by Caffe internally MAX_BATCH_SIZE = 200 def __init__(self, num_channels=1, num_hiddens=10, num_components=8, num_scales=4, num_features=16, num_layers=1, nb_size=5, nonlinearity='TanH', verbosity=1, extended=False, input_mask=None, output_mask=None): """ @type num_channels: C{int} @param num_channels: dimensionality of each pixel @type num_hiddens: C{int} @param num_hiddens: number of LSTM units in each spatial LSTM layer @type num_components: C{int} @param num_components: number of mixture components used by the MCGSM @type num_scales: C{int} @param num_scales: number of scales used by the MCGSM @type num_features: C{int} @param num_features: number of quadratic features used by the MCGSM @type num_layers: C{int} @param num_layers: number of layers of spatial LSTM units @type nb_size: C{int} @param nb_size: controls the neighborhood of pixels read from an image @type nonlinearity: C{str} @param nonlinearity: nonlinearity used by spatial LSTM (e.g., TanH, ReLU) @type verbosity: C{int} @param verbosity: controls how much information is printed during training, etc. @type extended: C{bool} @param extended: use previous memory states as additional inputs to LSTM (more parameters) @type input_mask C{ndarray} @param input_mask: Boolean mask used to define custom input neighborhood of pixels @type output_mask C{ndarray} @param output_mask: determines the position of the output pixel relative to the neighborhood """ self.verbosity = verbosity self.num_channels = num_channels self.num_hiddens = num_hiddens self.num_layers = num_layers self.nonlinearity = nonlinearity self.extended = extended self.input_mask, self.output_mask = generate_masks([nb_size] * num_channels) if input_mask is not None: self.input_mask = input_mask if output_mask is not None: self.output_mask = output_mask self.num_channels = sum(self.output_mask) self.slstm = [None] * num_layers self.mcgsm = MCGSM(dim_in=self.num_hiddens, dim_out=self.num_channels, num_components=num_components, num_scales=num_scales, num_features=num_features) self.preconditioner = None def add_layer(self): """ Add another spatial LSTM to the network and reinitialize MCGSM. """ self.num_layers += 1 # reinitialize MCGSM self.mcgsm = MCGSM(dim_in=self.num_hiddens, dim_out=self.num_channels, num_components=self.mcgsm.num_components, num_scales=self.mcgsm.num_scales, num_features=self.mcgsm.num_features) # add slot for another layer self.slstm.append(None) def _precondition(self, inputs, outputs=None): """ Remove any correlations within and between inputs and outputs (conditional whitening). @type inputs: C{ndarray} @param inputs: pixel neighborhoods stored column-wise @type outputs: C{ndarray} @param outputs: output pixels stored column-wise """ shape = inputs.shape if outputs is None: if self.preconditioner is None: raise RuntimeError('No preconditioning possible.') inputs = inputs.reshape(-1, inputs.shape[-1]).T inputs = self.preconditioner(inputs) inputs = inputs.T.reshape(*shape) return inputs else: inputs = inputs.reshape(-1, inputs.shape[-1]).T outputs = outputs.reshape(-1, outputs.shape[-1]).T # avoids memory issues MAX_SAMPLES = 500000 if self.preconditioner is None: if inputs.shape[1] > MAX_SAMPLES: idx = random_select(MAX_SAMPLES, inputs.shape[1]) self.preconditioner = WhiteningPreconditioner( inputs[:, idx], outputs[:, idx]) else: self.preconditioner = WhiteningPreconditioner( inputs, outputs) for b in range(0, inputs.shape[1], MAX_SAMPLES): inputs[:, b:b + MAX_SAMPLES], outputs[:, b:b + MAX_SAMPLES] = \ self.preconditioner(inputs[:, b:b + MAX_SAMPLES], outputs[:, b:b + MAX_SAMPLES]) inputs = inputs.T.reshape(*shape) outputs = outputs.T.reshape(shape[0], shape[1], shape[2], -1) return inputs, outputs def _precondition_inverse(self, inputs, outputs=None): """ Reintroduce correlations removed by conditional whitening. @type inputs: C{ndarray} @param inputs: pixel neighborhoods stored column-wise @type outputs: C{ndarray} @param outputs: output pixels stored column-wise """ if self.preconditioner is None: raise RuntimeError('No preconditioner set.') shape = inputs.shape if outputs is None: inputs = inputs.reshape(-1, inputs.shape[-1]).T inputs = self.preconditioner.inverse(inputs) inputs = inputs.T.reshape(*shape) return inputs else: inputs = inputs.reshape(-1, inputs.shape[-1]).T outputs = outputs.reshape(-1, outputs.shape[-1]).T inputs, outputs = self.preconditioner.inverse(inputs, outputs) inputs = inputs.T.reshape(*shape) outputs = outputs.T.reshape(shape[0], shape[1], shape[2], -1) return inputs, outputs def _adjust_gradient(self, inputs, outputs): """ Adjust gradients to take into account preconditioning. @type inputs: C{ndarray} @param inputs: gradient with respect to conditionally whitened inputs @type outputs: C{ndarray} @param outputs: gradient with respect to conditionally whitened outputs """ if self.preconditioner is None: raise RuntimeError('No preconditioner set.') shape = inputs.shape inputs = inputs.reshape(-1, inputs.shape[-1]).T outputs = outputs.reshape(-1, outputs.shape[-1]).T inputs, outputs = self.preconditioner.adjust_gradient(inputs, outputs) inputs = inputs.T.reshape(*shape) outputs = outputs.T.reshape(shape[0], shape[1], shape[2], -1) return inputs, outputs def _preprocess(self, images): """ Extract causal neighborhoods from images. @type images: C{ndarray}/C{list} @param images: array or list of images to process @rtype: C{tuple} @return: one array storing inputs (neighborhoods) and one array storing outputs (pixels) """ def process(image): inputs, outputs = generate_data_from_image(image, self.input_mask, self.output_mask) inputs = asarray(inputs.T.reshape( image.shape[0] - self.input_mask.shape[0] + 1, image.shape[1] - self.input_mask.shape[1] + 1, -1), dtype='float32') outputs = asarray(outputs.T.reshape( image.shape[0] - self.input_mask.shape[0] + 1, image.shape[1] - self.input_mask.shape[1] + 1, -1), dtype='float32') return inputs, outputs inputs, outputs = zip(*mapp(process, images)) return asarray(inputs), asarray(outputs) def loglikelihood(self, images): """ Returns a log-likelihood for each reachable pixel (in nats). @type images: C{ndarray}/C{list} @param images: array or list of images for which to evaluate log-likelihood @rtype: C{ndarray} @return: an array of log-likelihoods for each image and predicted pixel """ inputs, outputs = self._preprocess(images) if self.preconditioner is not None: if self.verbosity > 0: print 'Computing Jacobian...' logjacobian = self.preconditioner.logjacobian( inputs.reshape(-1, sum(self.input_mask)).T, outputs.reshape(-1, self.num_channels).T) if self.verbosity > 0: print 'Preconditioning...' # remove correlations inputs, outputs = self._precondition(inputs, outputs) else: logjacobian = 0. # compute hidden unit activations hiddens = inputs batch_size = min([hiddens.shape[0], self.MAX_BATCH_SIZE]) if self.verbosity > 0: print 'Computing hidden states...' for l in range(self.num_layers): # create SLSTM if self.slstm[l].num_rows != hiddens.shape[1] \ or self.slstm[l].num_cols != hiddens.shape[2] \ or self.slstm[l].batch_size != batch_size: self.slstm[l] = SLSTM(num_rows=hiddens.shape[1], num_cols=hiddens.shape[2], num_channels=hiddens.shape[3], num_hiddens=self.num_hiddens, batch_size=batch_size, nonlinearity=self.nonlinearity, extended=self.extended, slstm=self.slstm[l], verbosity=self.verbosity) hiddens = self.slstm[l].forward(hiddens) if self.verbosity > 0: print 'Computing likelihood...' # evaluate log-likelihood loglik = self.mcgsm.loglikelihood( hiddens.reshape(-1, self.num_hiddens).T, outputs.reshape(-1, self.num_channels).T) + logjacobian return loglik.reshape(hiddens.shape[0], hiddens.shape[1], hiddens.shape[2]) def evaluate(self, images): """ Computes the average negative log-likelihood in bits per pixel. @type images: C{ndarray}/C{list} @param images: an array or list of test images @rtype: C{float} @return: average negative log-likelihood in bits per pixel """ return -mean(self.loglikelihood(images)) / log(2.) / self.num_channels def train(self, images, batch_size=50, num_epochs=20, method='SGD', train_means=False, train_top_layer=False, momentum=0.9, learning_rate=1., decay1=0.9, decay2=0.999, precondition=True): """ Train model via stochastic gradient descent (SGD) or sum-of-functions optimizer (SFO). @type images: C{ndarray}/C{list} @param images: an array or a list of training images (e.g., Nx32x32x3) @type batch_size: C{int} @param batch_size: batch size used by SGD @type num_epochs: C{int} @param num_epochs: number of passes through the training set @type method: C{str} @param method: either 'SGD', 'SFO', or 'ADAM' @type train_means: C{bool} @param train_means: whether or not to optimize the mean parameters of the MCGSM @type train_top_layer: C{bool} @param train_top_layer: if true, only the MCGSM and spatial LSTM at the top layer is trained @type momentum: C{float} @param momentum: momentum rate used by SGD @type learning_rate: C{float} @param learning_rate: learning rate used by SGD @type decay1: C{float} @param decay1: hyperparameter used by ADAM @type decay2: C{float} @param decay2: hyperparameter used by ADAM @type precondition: C{bool} @param precondition: whether or not to perform conditional whitening @rtype: C{list} @return: evolution of negative log-likelihood (bits per pixel) over the training """ if images.shape[1] < self.input_mask.shape[0] or images.shape[ 2] < self.input_mask.shape[1]: raise ValueError('Images too small.') if self.verbosity > 0: print 'Preprocessing...' inputs, outputs = self._preprocess(images) if precondition: if self.verbosity > 0: print 'Preconditioning...' # remove correlations inputs, outputs = self._precondition(inputs, outputs) # indicates which layers will be trained train_layers = [self.num_layers - 1] if train_top_layer else range(self.num_layers) if self.verbosity > 0: print 'Creating SLSTMs...' # create SLSTMs for l in range(self.num_layers): self.slstm[l] = SLSTM( num_rows=inputs.shape[1], num_cols=inputs.shape[2], num_channels=inputs.shape[3] if l < 1 else self.num_hiddens, num_hiddens=self.num_hiddens, batch_size=min([batch_size, self.MAX_BATCH_SIZE]), nonlinearity=self.nonlinearity, extended=self.extended, slstm=self.slstm[l], verbosity=self.verbosity) # compute loss function and its gradient def f_df(params, idx): # set model parameters for l in train_layers: self.slstm[l].set_parameters(params['slstm'][l]) self.mcgsm._set_parameters(params['mcgsm'], {'train_means': train_means}) # select batch and compute hidden activations Y = outputs[idx:idx + batch_size] H = inputs[idx:idx + batch_size] for l in range(self.num_layers): H = self.slstm[l].forward(H) # form inputs to MCGSM H_flat = H.reshape(-1, self.num_hiddens).T Y_flat = Y.reshape(-1, self.num_channels).T norm_const = -H_flat.shape[1] # compute gradients df_dh, _, loglik = self.mcgsm._data_gradient(H_flat, Y_flat) df_dh = df_dh.T.reshape(*H.shape) / norm_const # average log-likelihood f = sum(loglik) / norm_const df_dtheta = {} df_dtheta['slstm'] = [0.] * self.num_layers for l in range(self.num_layers)[::-1]: if l not in train_layers: break if l > min(train_layers): # derivative with respect to inputs of layer l are derivatives # of hidden states of layer l - 1 df_dtheta['slstm'][l] = self.slstm[l].backward( df_dh, force_backward=True) df_dh = df_dtheta['slstm'][l]['inputs'] del df_dtheta['slstm'][l]['inputs'] else: # no need to compute derivatives with respect to input units df_dtheta['slstm'][l] = self.slstm[l].backward(df_dh) # compute gradient of MCGSM df_dtheta['mcgsm'] = self.mcgsm._parameter_gradient( H_flat, Y_flat, parameters={'train_means': train_means }) * log(2.) * self.mcgsm.dim_out return f, df_dtheta # collect current parameters params = {} params['slstm'] = [0.] * self.num_layers for l in range(self.num_layers)[::-1]: if l not in train_layers: break params['slstm'][l] = self.slstm[l].parameters() params['mcgsm'] = self.mcgsm._parameters({'train_means': train_means}) # a start index for each batch start_indices = range(0, inputs.shape[0] - batch_size + 1, batch_size) if self.verbosity > 0: print 'Training...' if method.upper() == 'SFO': try: # optimize using sum-of-functions optimizer optimizer = SFO(f_df, params, start_indices, display=self.verbosity) params_opt = optimizer.optimize(num_passes=num_epochs) # set model parameters for l in range(self.num_layers): self.slstm[l].set_parameters(params_opt['slstm'][l]) self.mcgsm._set_parameters(params_opt['mcgsm'], {'train_means': train_means}) except KeyboardInterrupt: pass return optimizer.hist_f_flat elif method.upper() == 'SGD': loss = [] diff = { 'slstm': [0.] * self.num_layers, 'mcgsm': zeros_like(params['mcgsm']) } for l in train_layers: diff['slstm'][l] = {} for key in params['slstm'][l]: diff['slstm'][l][key] = zeros_like(params['slstm'][l][key]) for n in range(num_epochs): for b in range(0, inputs.shape[0] - batch_size + 1, batch_size): # compute gradients f, df = f_df(params, b) loss.append(f / log(2.) / self.num_channels) # update SLSTM parameters for l in train_layers: for key in params['slstm'][l]: diff['slstm'][l][key] = momentum * diff['slstm'][ l][key] - df['slstm'][l][key] params['slstm'][l][key] = params['slstm'][l][ key] + learning_rate * diff['slstm'][l][key] # update MCGSM parameters diff['mcgsm'] = momentum * diff['mcgsm'] - df['mcgsm'] params['mcgsm'] = params[ 'mcgsm'] + learning_rate * diff['mcgsm'] if self.verbosity > 0: print '{0:>5} {1:>10.4f} {2:>10.4f}'.format( n, loss[-1], mean(loss[-max([10, 20000 // batch_size]):])) return loss elif method.upper() == 'ADAM': loss = [] diff_mean = { 'slstm': [0.] * self.num_layers, 'mcgsm': zeros_like(params['mcgsm']) } diff_sqrd = { 'slstm': [0.] * self.num_layers, 'mcgsm': zeros_like(params['mcgsm']) } for l in train_layers: diff_mean['slstm'][l] = {} diff_sqrd['slstm'][l] = {} for key in params['slstm'][l]: diff_mean['slstm'][l][key] = zeros_like( params['slstm'][l][key]) diff_sqrd['slstm'][l][key] = zeros_like( params['slstm'][l][key]) # step counter t = 1 for n in range(num_epochs): for b in range(0, inputs.shape[0] - batch_size + 1, batch_size): # compute gradients f, df = f_df(params, b) loss.append(f / log(2.) / self.num_channels) # include bias correction in step width step_width = learning_rate / ( 1. - power(decay1, t)) * sqrt(1. - power(decay2, t)) t += 1 # update SLSTM parameters for l in train_layers: for key in params['slstm'][l]: diff_mean['slstm'][l][key] = decay1 * diff_mean['slstm'][l][key] \ + (1. - decay1) * df['slstm'][l][key] diff_sqrd['slstm'][l][key] = decay2 * diff_sqrd['slstm'][l][key] \ + (1. - decay2) * square(df['slstm'][l][key]) params['slstm'][l][key] = params['slstm'][l][key] - \ step_width * diff_mean['slstm'][l][key] / (1e-8 + sqrt(diff_sqrd['slstm'][l][key])) # update MCGSM parameters diff_mean['mcgsm'] = decay1 * diff_mean['mcgsm'] + ( 1. - decay1) * df['mcgsm'] diff_sqrd['mcgsm'] = decay2 * diff_sqrd['mcgsm'] + ( 1. - decay2) * square(df['mcgsm']) params['mcgsm'] = params['mcgsm'] - \ step_width * diff_mean['mcgsm'] / (1e-8 + sqrt(diff_sqrd['mcgsm'])) if self.verbosity > 0: print '{0:>5} {1:>10.4f} {2:>10.4f}'.format( n, loss[-1], mean(loss[-max([10, 20000 // batch_size]):])) return loss else: raise ValueError('Unknown method \'{0}\'.'.format(method)) def finetune(self, images, max_iter=1000, train_means=False, num_samples_train=500000, num_samples_valid=100000): """ Train MCGSM using L-BFGS while keeping parameters of spatial LSTMs fixed. @type images: C{ndarray}/C{list} @param images: an array or a list of images @type max_iter: C{int} @param max_iter: maximum number of L-BFGS iterations @type train_means: C{bool} @param train_means: whether or not to optimize the mean parameters of the MCGSM @type num_samples_train: C{int} @param num_samples_train: number of training examples extracted from images @type num_samples_valid: C{int} @type num_samples_valid: number of validation examples used for early stopping @rtype: C{bool} @return: true if training converged, false otherwise """ if images.shape[0] > min([200000, num_samples_train]): images = images[random_select(min([200000, num_samples_train]), images.shape[0])] if self.verbosity > 0: print 'Preprocessing...' inputs, outputs = self._preprocess(images) if self.preconditioner: if self.verbosity > 0: print 'Preconditioning...' # remove correlations inputs, outputs = self._precondition(inputs, outputs) # compute hidden unit activations hiddens = inputs if self.verbosity > 0: print 'Computing hidden states...' for l in range(self.num_layers): self.slstm[l] = SLSTM(num_rows=hiddens.shape[1], num_cols=hiddens.shape[2], num_channels=hiddens.shape[3], num_hiddens=self.num_hiddens, batch_size=min( [hiddens.shape[0], self.MAX_BATCH_SIZE]), nonlinearity=self.nonlinearity, extended=self.extended, slstm=self.slstm[l], verbosity=self.verbosity) hiddens = self.slstm[l].forward(hiddens) if self.verbosity > 0: print 'Preparing inputs and outputs...' # form inputs to MCGSM hiddens = hiddens.reshape(-1, self.num_hiddens).T outputs = outputs.reshape(-1, self.num_channels).T if hiddens.shape[1] > num_samples_train: num_samples_valid = min( [num_samples_valid, hiddens.shape[1] - num_samples_train]) # select subset of data points for finetuning idx = random_select(num_samples_train + num_samples_valid, hiddens.shape[1]) if num_samples_valid > 0: # split data into training and validation set hiddens_train = asarray(hiddens[:, idx[:num_samples_train]], order='F') outputs_train = asarray(outputs[:, idx[:num_samples_train]], order='F') hiddens_valid = asarray(hiddens[:, idx[num_samples_train:]], order='F') outputs_valid = asarray(outputs[:, idx[num_samples_train:]], order='F') # finetune with early stopping based on validation performance return self.mcgsm.train(hiddens_train, outputs_train, hiddens_valid, outputs_valid, parameters={ 'verbosity': self.verbosity, 'train_means': train_means, 'max_iter': max_iter }) else: hiddens = asarray(hiddens[:, idx], order='F') outputs = asarray(outputs[:, idx], order='F') if self.verbosity > 0: print 'Finetuning...' return self.mcgsm.train(hiddens, outputs, parameters={ 'verbosity': self.verbosity, 'train_means': train_means, 'max_iter': max_iter }) def hidden_states(self, images, return_all=False, layer=None): """ Compute hidden states of LSTM units for given images. By default, the last layer's hidden units are computed. @type images: C{ndarray}/C{list} @param images: array or list of images to process @type return_all: C{bool} @param return_all: if true, also return preconditioned inputs and outputs @type layer: C{int} @param layer: a positive integer controlling which layer's hidden units to compute @rtype: C{ndarray}/C{tuple} @return: hidden states or a tuple of inputs, hidden states, and outputs """ if self.verbosity > 0: print 'Preprocessing...' inputs, outputs = self._preprocess(images) if self.preconditioner is not None: if self.verbosity > 0: print 'Preconditioning...' # remove correlations inputs, outputs = self._precondition(inputs, outputs) # compute hidden unit activations hiddens = inputs batch_size = min([hiddens.shape[0], self.MAX_BATCH_SIZE]) if layer is None or layer < 1: layer = self.num_layers for l in range(layer): if self.slstm[l].num_rows != hiddens.shape[1] \ or self.slstm[l].num_cols != hiddens.shape[2] \ or self.slstm[l].batch_size != batch_size: self.slstm[l] = SLSTM(num_rows=hiddens.shape[1], num_cols=hiddens.shape[2], num_channels=hiddens.shape[3], num_hiddens=self.num_hiddens, batch_size=batch_size, nonlinearity=self.nonlinearity, extended=self.extended, slstm=self.slstm[l], verbosity=self.verbosity) hiddens = self.slstm[l].forward(hiddens) if return_all: return inputs, hiddens, outputs return hiddens def gradient(self, images): """ Returns the average log-likelihood [nat] and its gradient with respect to pixel values. @type images: C{ndarray} @param images: images at which to evaluate the density's gradient @rtype: C{tuple} @return: average log-likelihood and gradient with respect to images """ if self.verbosity > 0: print 'Preprocessing...' inputs, outputs = self._preprocess(images) if self.preconditioner: if self.verbosity > 0: print 'Preconditioning...' # remove correlations inputs, outputs = self._precondition(inputs, outputs) if self.verbosity > 0: print 'Creating SLSTMs...' # create SLSTMs batch_size = min([images.shape[0], self.MAX_BATCH_SIZE]) for l in range(self.num_layers): if self.slstm[l] is None or \ self.slstm[l].batch_size != batch_size or \ self.slstm[l].num_rows != inputs.shape[1] or \ self.slstm[l].num_cols != inputs.shape[2]: self.slstm[l] = SLSTM(num_rows=inputs.shape[1], num_cols=inputs.shape[2], num_channels=inputs.shape[3] if l < 1 else self.num_hiddens, num_hiddens=self.num_hiddens, batch_size=batch_size, nonlinearity=self.nonlinearity, extended=self.extended, slstm=self.slstm[l], verbosity=self.verbosity) # compute hidden unit activations hiddens = inputs for l in range(self.num_layers): hiddens = self.slstm[l].forward(hiddens) # form inputs to MCGSM H_flat = hiddens.reshape(-1, self.num_hiddens).T Y_flat = outputs.reshape(-1, self.num_channels).T # compute gradients df_dh, df_dy, loglik = self.mcgsm._data_gradient(H_flat, Y_flat) df_dh = df_dh.T.reshape(*hiddens.shape) / H_flat.shape[1] df_dy = df_dy.T.reshape(*outputs.shape) / H_flat.shape[1] # average log-likelihood f = sum(loglik) / H_flat.shape[1] for l in range(self.num_layers)[::-1]: df_dh = self.slstm[l].backward(df_dh, force_backward=True)['inputs'] if self.preconditioner: df_dh, df_dy = self._adjust_gradient(df_dh, df_dy) # locate output pixel in output mask for i_off, j_off in zip(range(self.output_mask.shape[0]), range(self.output_mask.shape[1])): if any(self.output_mask[i_off, j_off]): break gradient = zeros_like(images) # make sure mask and gradient have compatible dimensionality if gradient.ndim == 4 and self.input_mask.ndim == 2: gradient = gradient[:, :, :, 0] for i in range(images.shape[1] - self.input_mask.shape[0] + 1): for j in range(images.shape[2] - self.input_mask.shape[1] + 1): patch = gradient[:, i:i + self.input_mask.shape[0], j:j + self.output_mask.shape[1]] patch[:, self.input_mask] += df_dh[:, i, j] patch[:, self.output_mask] += df_dy[:, i, j] return f, gradient.reshape(*images.shape) def sample(self, images, min_values=None, max_values=None, mask=None, return_loglik=False): """ Sample one or several images. @type images: C{ndarray}/C{list} @param images: an array or a list of images to initialize pixels at boundaries @type min_values: C{ndarray}/C{list} @param min_values: list of lower bounds for each channel (for increased stability) @type max_values: C{ndarray}/C{list} @param max_values: list of upper bounds for each channel (for increased stability) @type mask: C{ndarray} @param mask: replace only certain pixels indicated by this Boolean mask @rtype: C{ndarray} @return: sampled images of the size of the images given as input """ # reshape images into four-dimensional arrays shape = images.shape if images.ndim == 2: images = images[None, :, :, None] elif images.ndim == 3: if self.num_channels > 1: images = images[None] else: images = images[:, :, :, None] # create spatial LSTMs for sampling for l in range(self.num_layers): if self.slstm[l].num_rows != 1 \ or self.slstm[l].num_cols != 1 \ or self.slstm[l].batch_size != images.shape[0]: self.slstm[l] = SLSTM(num_rows=1, num_cols=1, num_channels=sum(self.input_mask) if l < 1 else self.num_hiddens, num_hiddens=self.num_hiddens, batch_size=images.shape[0], nonlinearity=self.nonlinearity, slstm=self.slstm[l], extended=self.extended) # container for hidden and memory unit activations hiddens = [] memory = [] for l in range(self.num_layers): hiddens.append(defaultdict(lambda: 0.)) memory.append(defaultdict(lambda: 0.)) # locate output pixel for i_off, j_off in zip(range(self.output_mask.shape[0]), range(self.output_mask.shape[1])): if any(self.output_mask[i_off, j_off]): break if min_values is not None: min_values = asarray(min_values).reshape(1, 1, 1, -1) if self.output_mask.ndim > 2: min_values = min_values[:, :, :, self.output_mask[i_off, j_off]] if max_values is not None: max_values = asarray(max_values).reshape(1, 1, 1, -1) if self.output_mask.ndim > 2: max_values = max_values[:, :, :, self.output_mask[i_off, j_off]] # unnormalized log-density of generated sample logq = 0. for i in range(images.shape[1] - self.input_mask.shape[0] + 1): for j in range(images.shape[2] - self.input_mask.shape[1] + 1): # extract patches from images patches = images[:, i:i + self.input_mask.shape[0], j:j + self.input_mask.shape[1]] # extract causal neighborhoods from patches inputs = [] for k in range(images.shape[0]): inputs.append( generate_data_from_image(patches[k, :, :], self.input_mask, self.output_mask)[0]) inputs = asarray(inputs) inputs = inputs.reshape(inputs.shape[0], 1, 1, -1) if self.preconditioner: inputs = self._precondition(inputs) # set hidden unit activations for l in range(self.num_layers): self.slstm[l].net.blobs['h_init_i_jm1'].data[:] = hiddens[ l][i, j - 1] self.slstm[l].net.blobs['h_init_im1_j'].data[:] = hiddens[ l][i - 1, j] self.slstm[l].net.blobs['c_init_i_jm1'].data[:] = memory[ l][i, j - 1] self.slstm[l].net.blobs['c_init_im1_j'].data[:] = memory[ l][i - 1, j] # compute hidden unit activations activations = inputs for l in range(self.num_layers): activations = self.slstm[l].forward(activations) # store hidden unit activations for l in range(self.num_layers): hiddens[l][ i, j] = self.slstm[l].net.blobs['outputs'].data.copy() memory[l][ i, j] = self.slstm[l].net.blobs['c_0_0'].data.copy() if mask is not None and not mask[i + i_off, j + j_off]: # skip sampling of this pixel continue for _ in range(10): # sample MCGSM outputs = self.mcgsm.sample(hiddens[-1][i, j].reshape( -1, self.num_hiddens).T) if not any(isnan(outputs)): break print 'Warning: NaNs detected.' if return_loglik: logq += self.mcgsm.loglikelihood( hiddens[-1][i, j].reshape(-1, self.num_hiddens).T, outputs) outputs = outputs.T.reshape(outputs.shape[1], 1, 1, outputs.shape[0]) if self.preconditioner: inputs, outputs = self._precondition_inverse( inputs, outputs) if max_values is not None: outputs[outputs > max_values] = max_values[ outputs > max_values] if min_values is not None: outputs[outputs < min_values] = min_values[ outputs < min_values] # insert sampled pixels into images if self.output_mask.ndim > 2: images[:, i + i_off, j + j_off][:, self.output_mask[i_off, j_off]] = outputs else: images[:, i + i_off, j + j_off] = outputs images = images.reshape(*shape) if return_loglik: return images, logq return images def _logq(self, images, mask): """ Computes an unnormalized conditional log-likelihood used by Metropolis-Hastings (e.g., for inpainting). """ inputs, hiddens, outputs = self.hidden_states(images, return_all=True) # locate output pixel for i_off, j_off in zip(range(self.output_mask.shape[0]), range(self.output_mask.shape[1])): if any(self.output_mask[i_off, j_off]): break # unnormalized log-density of generated sample logq = 0. for i in range(images.shape[1] - self.input_mask.shape[0] + 1): for j in range(images.shape[2] - self.input_mask.shape[1] + 1): if not mask[i + i_off, j + j_off]: # skip evaluation of this pixel continue logq += self.mcgsm.loglikelihood( hiddens[:, i, j, :].reshape(-1, self.num_hiddens).T, outputs[:, i, j, :]) return logq def __setstate__(self, state): """ Method used by pickle module, for backwards compatibility reasons. """ self.__dict__ = state if not hasattr(self, 'nonlinearity'): self.nonlinearity = 'TanH' if not hasattr(self, 'extended'): self.extended = False