def model_selection(model_name):
    if model_name == "cnn":
        return TextCNN(sequence_length=train_x.shape[1],
                       num_classes=train_y.shape[1],
                       vocab_size=len(vocab_processor.vocabulary_),
                       embedding_size=FLAGS.embedding_size,
                       filter_sizes=list(
                           map(int, FLAGS.filter_sizes.split(","))),
                       num_filters=FLAGS.num_filters,
                       l2_reg_lambda=FLAGS.l2_reg_lambda)
    elif model_name == "rnn":
        return TextRNN(sequence_length=max_document_length,
                       num_classes=train_y.shape[1],
                       vocab_size=len(vocab_processor.vocabulary_),
                       embedding_size=FLAGS.embedding_size,
                       learning_rate=FLAGS.learning_rate,
                       batch_size=FLAGS.batch_size,
                       decay_steps=FLAGS.decay_steps,
                       decay_rate=FLAGS.decay_rate,
                       is_training=FLAGS.is_training)
    elif model_name == "rcnn":
        return TextRCNN(sequence_length=train_x.shape[1],
                        num_classes=train_y.shape[1],
                        vocab_size=len(vocab_processor.vocabulary_),
                        embedding_size=FLAGS.embedding_size,
                        context_embedding_size=FLAGS.context_embedding_size,
                        cell_type=FLAGS.cell_type,
                        hidden_size=FLAGS.hidden_size,
                        l2_reg_lambda=FLAGS.l2_reg_lambda)
    elif model_name == "clstm":
        return TextCLSTM(max_len=max_document_length,
                         num_classes=train_y.shape[1],
                         vocab_size=len(vocab_processor.vocabulary_),
                         embedding_size=FLAGS.embedding_size,
                         filter_sizes=list(
                             map(int, FLAGS.filter_sizes.split(","))),
                         num_filters=FLAGS.num_filters,
                         num_layers=FLAGS.num_layers,
                         l2_reg_lambda=FLAGS.l2_reg_lambda)
    else:
        raise NotImplementedError("%s is not implemented" % (model_name))
示例#2
0
X_train, Y_train, X_test, Y_true, vocab_processor = utils.get_text_data()

# print("fitting/saving")
# clf = Pipeline([ ("word2vec vectorizer", TfidfEmbeddingVectorizer(w2v)),
#                  ("logistic regression", linear_model.LogisticRegression())])

with tf.Graph().as_default():
    session_conf = tf.ConfigProto(
        allow_soft_placement=FLAGS.allow_soft_placement,
        log_device_placement=FLAGS.log_device_placement)
    sess = tf.Session(config=session_conf)
    with sess.as_default():
        cnn = TextCNN(sequence_length=X_train.shape[1],
                      num_classes=2,
                      vocab_size=len(vocab_processor.vocabulary_),
                      embedding_size=FLAGS.embedding_dim,
                      filter_sizes=list(map(int,
                                            FLAGS.filter_sizes.split(","))),
                      num_filters=FLAGS.num_filters)

        global_step = tf.Variable(0, name="global_step", trainable=False)
        optimizer = tf.train.AdamOptimizer(1e-4)
        grads_and_vars = optimizer.compute_gradients(cnn.loss)
        train_op = optimizer.apply_gradients(grads_and_vars,
                                             global_step=global_step)

        # Output directory for models and summaries
        timestamp = str(int(time.time()))
        out_dir = os.path.abspath(
            os.path.join(os.path.curdir, "runs", timestamp))
        print("Writing to {}\n".format(out_dir))
示例#3
0
def train(x_train, y_train, vocab_processor, x_dev, y_dev):
    with tf.Graph().as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=FLAGS.allow_soft_placement,
            log_device_placement=FLAGS.log_device_placement)
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            cnn = TextCNN(sequence_length=x_train.shape[1],
                          num_classes=y_train.shape[1],
                          vocab_size=len(vocab_processor.vocabulary_),
                          embedding_size=FLAGS.embedding_dim,
                          filter_sizes=list(
                              map(int, FLAGS.filter_sizes.split(","))),
                          num_filters=FLAGS.num_filters,
                          l2_reg_lambda=FLAGS.l2_reg_lambda)

            # Define Training procedure
            global_step = tf.Variable(0, name="global_step", trainable=False)
            optimizer = tf.train.AdamOptimizer(1e-3)
            grads_and_vars = optimizer.compute_gradients(cnn.loss)
            train_op = optimizer.apply_gradients(grads_and_vars,
                                                 global_step=global_step)

            # Keep track of gradient values and sparsity (optional)
            grad_summaries = []
            for g, v in grads_and_vars:
                if g is not None:
                    grad_hist_summary = tf.summary.histogram(
                        "{}/grad/hist".format(v.name), g)
                    sparsity_summary = tf.summary.scalar(
                        "{}/grad/sparsity".format(v.name),
                        tf.nn.zero_fraction(g))
                    grad_summaries.append(grad_hist_summary)
                    grad_summaries.append(sparsity_summary)
            grad_summaries_merged = tf.summary.merge(grad_summaries)

            # Output directory for models and summaries
            timestamp = str(int(time.time()))
            out_dir = os.path.abspath(
                os.path.join(os.path.curdir, "runs", timestamp))
            print("Writing to {}\n".format(out_dir))

            # Summaries for loss and accuracy
            loss_summary = tf.summary.scalar("loss", cnn.loss)
            acc_summary = tf.summary.scalar("accuracy", cnn.accuracy)

            # Train Summaries
            train_summary_op = tf.summary.merge(
                [loss_summary, acc_summary, grad_summaries_merged])
            train_summary_dir = os.path.join(out_dir, "summaries", "train")
            train_summary_writer = tf.summary.FileWriter(
                train_summary_dir, sess.graph)

            # Dev summaries
            dev_summary_op = tf.summary.merge([loss_summary, acc_summary])
            dev_summary_dir = os.path.join(out_dir, "summaries", "dev")
            dev_summary_writer = tf.summary.FileWriter(dev_summary_dir,
                                                       sess.graph)

            # Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
            checkpoint_dir = os.path.abspath(
                os.path.join(out_dir, "checkpoints"))
            checkpoint_prefix = os.path.join(checkpoint_dir, "model")
            maxacc_prefix = os.path.join(checkpoint_dir, "maxaccmodel")
            if not os.path.exists(checkpoint_dir):
                os.makedirs(checkpoint_dir)
            saver = tf.train.Saver(tf.global_variables(),
                                   max_to_keep=FLAGS.num_checkpoints)

            # Write vocabulary
            vocab_processor.save(os.path.join(out_dir, "vocab"))

            # Initialize all variables
            sess.run(tf.global_variables_initializer())

            def train_step(x_batch, y_batch):
                """
                A single training step
                """
                feed_dict = {
                    cnn.input_x: x_batch,
                    cnn.input_y: y_batch,
                    cnn.dropout_keep_prob: FLAGS.dropout_keep_prob
                }
                _, step, summaries, loss, accuracy = sess.run([
                    train_op, global_step, train_summary_op, cnn.loss,
                    cnn.accuracy
                ], feed_dict)
                time_str = datetime.datetime.now().isoformat()
                print("{}: step {}, loss {:g}, acc {:g}".format(
                    time_str, step, loss, accuracy))
                train_summary_writer.add_summary(summaries, step)

            def dev_step(x_batch, y_batch, writer=None):
                """
                Evaluates model on a dev set
                """
                feed_dict = {
                    cnn.input_x: x_batch,
                    cnn.input_y: y_batch,
                    cnn.dropout_keep_prob: 1.0
                }
                step, summaries, loss, accuracy = sess.run(
                    [global_step, dev_summary_op, cnn.loss, cnn.accuracy],
                    feed_dict)
                time_str = datetime.datetime.now().isoformat()
                result = "{}: step {}, loss {:g}, acc {:g}".format(
                    time_str, step, loss, accuracy)
                print(result)
                with open(os.path.join(out_dir, "result"), 'a+') as f:
                    f.write("{}\n".format(result))
                if writer:
                    writer.add_summary(summaries, step)

                if tf.MaxAcc < accuracy:
                    tf.MaxAcc = accuracy
                    print("Max acc: {:g}".format(tf.MaxAcc))
                    return True
                else:
                    print("Max acc: {:g}".format(tf.MaxAcc))
                    return False

            # Generate batches
            batches = parse_data.batch_iter(list(zip(x_train, y_train)),
                                            FLAGS.batch_size, FLAGS.num_epochs)
            # Training loop. For each batch...
            for batch in batches:
                x_batch, y_batch = zip(*batch)
                train_step(x_batch, y_batch)
                current_step = tf.train.global_step(sess, global_step)
                if current_step % FLAGS.evaluate_every == 0:
                    print("\nEvaluation:")
                    save = dev_step(x_dev, y_dev, writer=dev_summary_writer)
                    print()
                if current_step % FLAGS.checkpoint_every == 0:
                    path = saver.save(sess,
                                      checkpoint_prefix,
                                      global_step=current_step)
                    print("Saved model checkpoint to {}\n".format(path))
                    if save:
                        path = saver.save(sess, maxacc_prefix, None)
                        print("Saved max acc model checkpoint to {}\n".format(
                            path))
                        copy("{}.data-00000-of-00001".format(path))
                        copy("{}.index".format(path))
                        copy("{}.meta".format(path))
示例#4
0
with tf.device('/gpu:%s' % 3):

    with tf.name_scope('%s_%s' % ('tower', 3)):

        with tf.Graph().as_default():

            session_conf = tf.ConfigProto(
                # allow_soft_placement=True,
                log_device_placement=False, )
            # session_conf.gpu_options.allow_growth = True
            sess = tf.Session(config=session_conf)  # 初始化 session
            with sess.as_default():
                cnn = TextCNN(sequence_length=x_train.shape[1],
                              num_classes=1,
                              vocab_size=len(vocab_processor.vocabulary_),
                              embedding_size=100,
                              filter_sizes=[2, 3, 4, 5],
                              num_filters=256,
                              l2_reg_lambda=0.001)
                threashold = 0.25  #仅用于人工观察图
                # 定义 training 过程
                global_step = tf.Variable(0,
                                          name='global_step',
                                          trainable=False)
                optimizer = tf.train.AdamOptimizer(0.0005)
                grads_and_vars = optimizer.compute_gradients(cnn.loss)

                train_op = optimizer.apply_gradients(grads_and_vars,
                                                     global_step=global_step)

                # 记录 gradient 和 sparsity (画图)
示例#5
0
def train():
    train_file = 'data/emotion Phrases.csv'
    x_raw, y_raw, df, labels, embedding_mat = preprocessing.load_data(
        train_file)

    parameter_file = './parameters.json'
    params = json.loads(open(parameter_file).read())

    max_document_length = max([len(x.split(' ')) for x in x_raw])
    logging.info(
        'The maximum length of all sentences: {}'.format(max_document_length))
    vocab_processor = learn.preprocessing.VocabularyProcessor(
        max_document_length)
    x = np.array(list(vocab_processor.fit_transform(x_raw)))
    y = np.array(y_raw)

    # print x.shape

    x_, x_test, y_, y_test = train_test_split(x,
                                              y,
                                              test_size=0.2,
                                              random_state=42)

    shuffle_indices = np.random.permutation(np.arange(len(y_)))
    x_shuffled = x_[shuffle_indices]
    y_shuffled = y_[shuffle_indices]
    x_train, x_dev, y_train, y_dev = train_test_split(x_shuffled,
                                                      y_shuffled,
                                                      test_size=0.2)

    #    with open('labels.json', 'w') as outfile:
    #        json.dump(labels, outfile, indent=4)

    logging.info('x_train: {}, x_dev: {}, x_test: {}'.format(
        len(x_train), len(x_dev), len(x_test)))
    logging.info('y_train: {}, y_dev: {}, y_test: {}'.format(
        len(y_train), len(y_dev), len(y_test)))

    graph = tf.Graph()
    with graph.as_default():
        session_conf = tf.ConfigProto(allow_soft_placement=True,
                                      log_device_placement=False)
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            cnn = TextCNN(sequence_length=x_train.shape[1],
                          num_classes=y_train.shape[1],
                          vocab_size=9017,
                          embedding_size=params['embedding_dim'],
                          filter_sizes=list(
                              map(int, params['filter_sizes'].split(","))),
                          num_filters=params['num_filters'],
                          embedding_mat=embedding_mat,
                          l2_reg_lambda=params['l2_reg_lambda'])

            global_step = tf.Variable(0, name="global_step", trainable=False)
            optimizer = tf.train.AdamOptimizer(1e-3)
            grads_and_vars = optimizer.compute_gradients(cnn.loss)
            train_op = optimizer.apply_gradients(grads_and_vars,
                                                 global_step=global_step)

            timestamp = str(int(time.time()))
            out_dir = os.path.abspath(
                os.path.join(os.path.curdir, "trained_model_" + timestamp))

            checkpoint_dir = os.path.abspath(
                os.path.join(out_dir, "checkpoints"))
            checkpoint_prefix = os.path.join(checkpoint_dir, "model")
            if not os.path.exists(checkpoint_dir):
                os.makedirs(checkpoint_dir)
            saver = tf.train.Saver(tf.global_variables())

            # One training step: train the model with one batch
            def train_step(x_batch, y_batch):
                feed_dict = {
                    cnn.input_x: x_batch,
                    cnn.input_y: y_batch,
                    cnn.dropout_keep_prob: params['dropout_keep_prob']
                }
                _, step, loss, acc = sess.run(
                    [train_op, global_step, cnn.loss, cnn.accuracy], feed_dict)

            # One evaluation step: evaluate the model with one batch
            def dev_step(x_batch, y_batch):
                feed_dict = {
                    cnn.input_x: x_batch,
                    cnn.input_y: y_batch,
                    cnn.dropout_keep_prob: 1.0
                }
                step, loss, acc, num_correct = sess.run(
                    [global_step, cnn.loss, cnn.accuracy, cnn.num_correct],
                    feed_dict)
                return num_correct

            # Save the word_to_id map since predict.py needs it
            vocab_processor.save(os.path.join(out_dir, "vocab.pickle"))
            sess.run(tf.global_variables_initializer())

            print "Loading Embeddings !"
            initW = preprocessing.load_embedding_vectors(
                vocab_processor.vocabulary_)
            #
            #x = np.shape(a)
            #print(x)
            print(np.shape(initW))
            sess.run(cnn.W.assign(initW))

            print "Loaded Embeddings !"

            # Training starts here
            train_batches = preprocessing.generate_batches(
                list(zip(x_train, y_train)), params['batch_size'],
                params['num_epochs'])
            best_accuracy, best_at_step = 0, 0

            for train_batch in train_batches:
                if len(train_batch) == 0:
                    continue
                x_train_batch, y_train_batch = zip(*train_batch)
                train_step(x_train_batch, y_train_batch)
                current_step = tf.train.global_step(sess, global_step)

                if current_step % params['evaluate_every'] == 0:
                    dev_batches = preprocessing.generate_batches(
                        list(zip(x_dev, y_dev)), params['batch_size'], 1)
                    total_dev_correct = 0
                    for dev_batch in dev_batches:
                        if len(dev_batch) == 0:
                            continue
                        x_dev_batch, y_dev_batch = zip(*dev_batch)
                        num_dev_correct = dev_step(x_dev_batch, y_dev_batch)
                        total_dev_correct += num_dev_correct

                    dev_accuracy = float(total_dev_correct) / len(y_dev)
                    logging.critical(
                        'Accuracy on dev set: {}'.format(dev_accuracy))

                    if dev_accuracy >= best_accuracy:
                        best_accuracy, best_at_step = dev_accuracy, current_step
                        path = saver.save(sess,
                                          checkpoint_prefix,
                                          global_step=current_step)
                        logging.critical('Saved model {} at step {}'.format(
                            path, best_at_step))
                        logging.critical('Best accuracy {} at step {}'.format(
                            best_accuracy, best_at_step))

            test_batches = preprocessing.generate_batches(
                list(zip(x_test, y_test)), params['batch_size'], 1)
            total_test_correct = 0
            for test_batch in test_batches:
                if len(test_batch) == 0:
                    continue
                print "Non Zero Length"
                x_test_batch, y_test_batch = zip(*test_batch)
                num_test_correct = dev_step(x_test_batch, y_test_batch)
                total_test_correct += num_test_correct

            test_accuracy = float(total_test_correct) / len(y_test)

            train_batches = preprocessing.generate_batches(
                list(zip(x_train, y_train)), params['batch_size'], 1)

            total_train_correct = 0
            for train_batch in train_batches:
                if len(train_batch) == 0:
                    continue
                print "Non Zero Length"
                x_train_batch, y_train_batch = zip(*train_batch)
                num_test_correct = dev_step(x_train_batch, y_train_batch)
                total_train_correct += num_test_correct

            train_accuracy = float(total_train_correct) / len(y_train)

        print 'Accuracy on test set is {} based on the best model'.format(
            test_accuracy)
        print 'Accuracy on train set is {} based on the best model'.format(
            train_accuracy)
        # logging.critical('Accuracy on test set is {} based on the best model {}'.format(test_accuracy, path))
        logging.critical('The training is complete')
示例#6
0
# Split train/test set (10%) for training
dev_sample_index = -1 * int(0.1 * float(len(y)))
x_train, x_test = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:]
y_train, y_test = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:]

print("Vocabulary Size: {:d}".format(len(vocab_processor.vocabulary_)))

with tf.Graph().as_default():
    session_conf = tf.ConfigProto(allow_soft_placement=True,
                                  log_device_placement=False)
    sess = tf.Session(config=session_conf)

    with sess.as_default():
        cnn = TextCNN(x_train.shape[1],
                      y_train.shape[1],
                      vocab_size=len(vocab_processor.vocabulary_))

        writer = tf.summary.FileWriter('logs')
        writer.add_graph(sess.graph)

        # Define Training procedure
        global_step = tf.Variable(0, name="global_step", trainable=False)
        optimizer = tf.train.AdamOptimizer(1e-3)
        grads_and_vars = optimizer.compute_gradients(cnn.loss)
        train_op = optimizer.apply_gradients(grads_and_vars,
                                             global_step=global_step)

        # Output directory for models
        timestamp = str(int(time.time()))
        out_dir = os.path.abspath(
示例#7
0
session_conf = tf.ConfigProto(allow_soft_placement=FLAGS.allow_soft_placement,
                              log_device_placement=FLAGS.log_device_placement)

with tf.Session(config=session_conf) as sess:

    seq_length = x_train.shape[1]
    num_class = y_train.shape[1]
    voc_size = len(voc)

    print('initialize cnn filter')
    print('sequence length %d,  number of class %d, vocab size %d' %
          (seq_length, num_class, voc_size))

    cnn = TextCNN(seq_length, num_class, voc_size, FLAGS.embedding_dim,
                  list(map(int, FLAGS.filter_sizes.split(","))),
                  FLAGS.num_filters, FLAGS.l2_reg_lambda)

    global_step = tf.Variable(0, name='global_step', trainable=False)
    optimizer = tf.train.AdamOptimizer(1e-3)
    grads_and_vars = optimizer.compute_gradients(cnn.loss)
    train_op = optimizer.apply_gradients(grads_and_vars,
                                         global_step=global_step)

    # Keep track of gradient values and sparsity (optional)
    grad_summaries = []
    for g, v in grads_and_vars:
        if g is not None:
            grad_hist_summary = tf.summary.histogram(
                "{}/grad/hist".format(v.name), g)
            sparsity_summary = tf.summary.scalar(
示例#8
0
文件: train.py 项目: sharpshim/misc
print "Vocabulary Size: {:d}".format(len(vocb_processor.vocabulary_))
print "Train/Dev: {:d}/{:d}".format(len(x_train), len(x_dev))

graph = tf.Graph()
with graph.as_default():
    session_conf = tf.ConfigProto(
        allow_soft_placement=FLAGS.allow_soft_placement,
        log_device_placement=FLAGS.log_device_placement)
    sess = tf.Session(config=session_conf)
    #sess = tf_debug.LocalCLIDebugWrapperSession(sess)
    with sess.as_default():
        cnn = TextCNN(sequence_length = x_train.shape[1],
                      num_classes = y_train.shape[1],
                      vocb_size = len(vocb_processor.vocabulary_),
                      embedding_size = FLAGS.embedding_size,
                      filter_sizes = map(int, FLAGS.filter_sizes.split(",")),
                      num_filters = FLAGS.num_filters,
                      l2_reg_lambda = FLAGS.l2_reg_lambda
                      )
        global_step = tf.Variable(0, trainable=False, name="global_step")
        optimizer = tf.train.AdamOptimizer(1e-3)
        grads_and_vars = optimizer.compute_gradients(cnn.loss)
        train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)

        grad_summaries = []
        for g, v in grads_and_vars:
            if g is not None:
                grad_hist_summary = tf.summary.histogram("{}/grad/hist".format(v.name), g)
                sparsity_summary = tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
                grad_summaries.append(grad_hist_summary)
                grad_summaries.append(sparsity_summary)
示例#9
0
def train():
    if os.path.exists(VOCAB_FILENAME):
        print('load prebuilt vocab file ')
        vocab = load_vocab(VOCAB_FILENAME)
    else:
        print('build vocab from raw text')
        data = read_raw_data(TOTAL_FILENAME)
        tokens = [t for d in data for t in d[0]]
        
        vocab = build_vocab(tokens)
        
        print('save vocab file')
        save_vocab(VOCAB_FILENAME, vocab)


    if os.path.exists(TRAIN_DATA_FILENAME):
        print('load prebuilt train data ') 
        input = load_data(TRAIN_DATA_FILENAME)
    else:
        print('build train data from raw text')
        data = read_raw_data(TRAIN_FILENAME)
        
        input = build_input(data, vocab)

        print('save train data & vocab file')
        save_data(TRAIN_DATA_FILENAME, input)
    
    if os.path.exists(TEST_DATA_FILENAME):
        print('load prebuilt test data')
        test_input = load_data(TEST_DATA_FILENAME)
    else:
        print('build test data from raw text')
        data = read_raw_data(TEST_FILENAME)
        
        test_input = build_input(data, vocab)

        print('save test data ')
        save_data(TEST_DATA_FILENAME, test_input)


    with tf.Session() as sess:

        seq_length = np.shape(input[0][0])[0]
        num_class = np.shape(input[0][1])[0]

        print('initialize cnn filter')
        print('sequence length %d,  number of class %d, vocab size %d' % (seq_length, num_class, len(vocab)))
        
        cnn = TextCNN(seq_length, num_class, len(vocab), 128, [3,4,5], 128, 0.0)

        global_step = tf.Variable(0, name='global_step', trainable=False)
        optimizer = tf.train.AdamOptimizer(1e-3)
        grads_and_vars = optimizer.compute_gradients(cnn.loss)
        train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)

        def train_step(x_batch, y_batch):
            feed_dict = {
                cnn.input : x_batch,
                cnn.label : y_batch,
                cnn.dropout_keep_prob : 0.5
            }

            _, step, loss, accuracy = sess.run([train_op, global_step, cnn.loss, cnn.accuracy], feed_dict)

        def evaluate(x_batch, y_batch):
            feed_dict = {
                cnn.input : x_batch,
                cnn.label : y_batch,
                cnn.dropout_keep_prob : 1.0
            }

            step, loss, accuracy = sess.run([global_step, cnn.loss, cnn.accuracy], feed_dict)
            print("step %d, loss %f, acc %f" % (step, loss, accuracy))

        saver = tf.train.Saver()
        sess.run(tf.global_variables_initializer())
        
        for i in range(10000):
            try:
                batch = random.sample(input, 64) 
            
                x_batch, y_batch = zip(*batch)
                train_step(x_batch, y_batch)
                current_step = tf.train.global_step(sess, global_step)
                if current_step % 100 == 0:
                    batch = random.sample(test_input, 64)
                    x_test, y_test = zip(*batch)
                    evaluate(x_test, y_test)
                if current_step % 1000 == 0:
                    save_path = saver.save(sess, './textcnn.ckpt')
                    print('model saved : %s' % save_path)
            except:
                print ("Unexpected error:", sys.exc_info()[0])
                raise
示例#10
0
文件: main.py 项目: kpsc/nlp
    'l2_reg_lambda': 0.1,
    'batch_size': 64,
    'num_epochs': 40,
    'allow_soft_placement': True,
    'log_device_placement': False
}

if __name__ == '__main__':
    trainx, trainy, testx, testy, vocab = data_helpers.data_process(FLAGS)

    conf = tf.ConfigProto(allow_soft_placement=True,
                          log_device_placement=False,
                          gpu_options=tf.GPUOptions(allow_growth=True))

    with tf.Graph().as_default() as graph, tf.Session(conf) as sess:
        model = TextCNN(vocab.embedding, FLAGS)
        saver = tf.train.Saver(max_to_keep=20)
        sess.run(tf.global_variables_initializer())

        stime = time.time()
        eval_acc = []
        for epoch in range(FLAGS['num_epochs']):
            # train
            for batch in data_helpers.batch_iter(list(zip(trainx, trainy)),
                                                 FLAGS['batch_size'], 1):
                x_batch, y_batch = zip(*batch)
                step, loss, accuracy = model.train_step(sess, x_batch, y_batch)
                if (step + 1) % 200 == 0:
                    print(
                        "train    epoch: %d, spend-time: %.4f, step: %d, loss: %.4f, acc: %.4f"
                        % (epoch, time.time() - stime, step, loss, accuracy))