def tpo_cv_cnnvar(): maxlen = 200 nb_words = 6500 embd_dim = 100 folds = range(1, 11) trains = ['data/tpov4/train_'+str(fold)+'.csv' for fold in folds] tests = ['data/tpov4/test_'+str(fold)+'.csv' for fold in folds] pairs = zip(trains, tests) accs = [] for (train, test) in pairs: print(train + '=>' + test) X_train, Y_train, X_test, Y_test, nb_classes = load_csvs(train, test, nb_words, maxlen, embd_type='self', w2v=None) acc = cnn_var_selfembd(X_train, Y_train, X_test, Y_test, nb_classes, maxlen, nb_words, embd_dim, 50, 32, 25, 'rmsprop') accs.append(acc) acc_cv = np.mean(accs) print('after 10-fold cv:' + str(acc_cv))
def asap_cv_cnnvar(): maxlen = 75 nb_words = 4500 embd_dim = 50 folds = (1,2,3,4,5,6,7,8,9,10) trains = ['data/asap2/train'+str(fold)+'.csv' for fold in folds] tests = ['data/asap2/test'+str(fold)+'.csv' for fold in folds] pairs = zip(trains, tests) kappas = [] for (train, test) in pairs: print(train + '=>' + test) X_train, Y_train, X_test, Y_test, nb_classes = load_csvs(train, test, nb_words, maxlen, embd_type='self', w2v=None) kappa = cnn_var_selfembd(X_train, Y_train, X_test, Y_test, nb_classes, maxlen, nb_words, embd_dim, 50, 32, 30, 'rmsprop') kappas.append(kappa) kappa_cv = metrics.mean_quadratic_weighted_kappa(kappas) print('after 10-fold cv:' + str(kappa_cv))