def pickle2npz():
     nn12 = Cnnl('12-net').__load_model_old__('12-net_lasagne_.pickle')
     nn12.save_model('12-net_lasagne_.npz')
     nn24 = Cnnl(nn_name='24-net',
                 subnet=nn12).__load_model_old__('24-net_lasagne_.pickle')
     nn48 = Cnnl(nn_name='48-net',
                 subnet=nn24).__load_model_old__('48-net_lasagne_.pickle')
     nn24.save_model('24-net_lasagne_.npz')
     nn48.save_model('48-net_lasagne_.npz')
def train(nn_name='12-net', k=12):
    """
    Fucntion for traning 12-net with testing on part of data
    using cross validation
    """
    suff = str(k)
    if nn_name.find('calib') > 0:
        X_data_name = 'train_data_icalib_' + suff + '.npy'
        y_data_name = 'labels_icalib_' + suff + '.npy'
    else:
        X_data_name = 'train_data_' + suff + '.npy'
        y_data_name = 'labels_' + suff + '.npy'

    rates12 = sp.hstack((0.05 * sp.ones(25, dtype=sp.float32),
                         0.005 * sp.ones(15, dtype=sp.float32),
                         0.0005 * sp.ones(10, dtype=sp.float32)))
    rates24 = sp.hstack((0.01 * sp.ones(25, dtype=sp.float32),
                         0.0001 * sp.ones(15, dtype=sp.float32)))
    rates48 = sp.hstack([
        0.05 * sp.ones(15, dtype=sp.float32),
        0.005 * sp.ones(10, dtype=sp.float32)
    ])
    if nn_name == '24-net':
        nn = Cnnl(
            nn_name=nn_name,
            l_rates=rates24,
            subnet=Cnnl(nn_name='12-net',
                        l_rates=rates12).load_model('12-net_lasagne_.pickle'))
    elif nn_name == '48-net':
        nn = Cnnl(nn_name=nn_name,
                  l_rates=rates48,
                  subnet=Cnnl(
                      nn_name='24-net',
                      l_rates=rates24,
                      subnet=Cnnl(
                          nn_name='12-net',
                          l_rates=rates12).load_model('12-net_lasagne_.pickle')
                  ).load_model('24-net_lasagne_.pickle'))
    else:
        nn = Cnnl(nn_name=nn_name, l_rates=rates12)
    if not os.path.exists(nn_name + '_lasagne_.pickle'):
        if nn_name.find('calib') > 0:
            ds.get_train_wider_calib_data(k=k)
        else:
            ds.get_train_data(k=k)
    X, y = sp.load(X_data_name), sp.load(y_data_name)

    X_train, y_train = X, y

    if not os.path.exists(nn_name + '_lasagne_.pickle'):
        if nn_name == '24-net':
            X_sub_train12 = sp.load('train_data_12.npy')
            nn.fit(X=X_train, y=y_train, X12=X_sub_train12)
        elif nn_name == '48-net':
            X_sub_train12 = sp.load('train_data_12.npy')
            X_sub_train24 = sp.load('train_data_24.npy')
            nn.fit(X=X_train, y=y_train, X12=X_sub_train12, X24=X_sub_train24)
        else:
            nn.fit(X=X_train, y=y_train)
        nn.save_model(nn_name + '_lasagne_.pickle')
示例#3
0
def main():
    iname = 'img/test/1226.jpg'
    nn12 = Cnnl('12-net').load_model('12-net_lasagne_.pickle')
    nn_calib12 = Cnnl('12-calib_net').load_model(
        '12-calib_net_lasagne_.pickle')
    nn24 = Cnnl(nn_name='24-net',
                subnet=nn12).load_model('24-net_lasagne_.pickle')
    nn_calib24 = Cnnl('24-calib_net').load_model(
        '24-calib_net_lasagne_.pickle')
    nn48 = Cnnl(nn_name='48-net',
                subnet=nn24).load_model('48-net_lasagne_.pickle')
    nn_calib48 = Cnnl('48-calib_net').load_model(
        '48-calib_net_lasagne_.pickle')
    image = fr.get_frame(iname)
    p = 16
    k = 1.18
    bb = apply_12_net(image=image,
                      iname=iname,
                      nn=nn12,
                      p_level=p,
                      k=k,
                      debug=0)
    bb = apply_calib_net(image=image, iname=iname, bb=bb, nn=nn_calib12)
    bb = util.nms(bb, T=0.8)
    bb = apply_24_net(image=image, iname=iname, bb=bb, nn=nn24)
    bb = apply_calib_net(image=image, iname=iname, bb=bb, nn=nn_calib24)
    bb = util.nms(bb, T=0.8)
    bb = apply_48_net(image=image, iname=iname, bb=bb, nn=nn48)
    bb = util.nms(bb, T=0.3)
    bb = apply_calib_net(image=image, iname=iname, bb=bb, nn=nn_calib48)
    draw_bboxes(iname, bb)
示例#4
0
def train(nn_name='12-net', rootdir='F:\\'):
    """
    Fucntion for traning 12-net with testing on part of data
    using cross validation
    """
    is_calib = nn_name.find('calib') > 0

    X_name = 'train_data_' + ('icalib_'
                              if is_calib else '') + nn_name[:2] + '.npz'
    y_name = 'labels_' + ('icalib_' if is_calib else '') + nn_name[:2] + '.npz'
    is_calib = nn_name.find('calib') > 0
    rates = sp.hstack((0.05 * sp.ones(333, dtype=sp.float32),
                       0.005 * sp.ones(333, dtype=sp.float32),
                       0.0005 * sp.ones(333, dtype=sp.float32),
                       0.00005 * sp.ones(5, dtype=sp.float32)))
    rates12 = rates
    rates24 = rates
    rates48 = rates
    rates12_c = rates12[333:666]
    rates48_c = rates12_c
    rates24_c = rates12_c
    if nn_name == '24-net':
        if is_calib:
            nn = Cnnl(nn_name=nn_name, l_rates=rates24_c)
        else:
            nn = Cnnl(nn_name=nn_name, l_rates=rates24)
    elif nn_name == '48-net':
        if is_calib:
            nn = Cnnl(nn_name=nn_name, l_rates=rates48_c)
        else:
            nn = Cnnl(nn_name=nn_name, l_rates=rates48)
    else:
        if is_calib:
            nn = Cnnl(nn_name=nn_name, l_rates=rates12_c)
        else:
            nn = Cnnl(nn_name=nn_name, l_rates=rates12)

    if is_calib:
        X = util.load_from_npz(X_name)
        y = util.load_from_npz(y_name)
        nn.fit(X, y)
    else:
        rpath = os.path.join(rootdir, 'traindata', nn.nn_name)
        nn.train_on_hdd(rootdir=rpath)
    nn.__save_model_old__(nn_name + '_lasagne_.pickle')
示例#5
0
def main():
    iname = 'img/test/p1.jpg'
    nn12 = Cnnl('12-net').__load_model_old__('12-net_lasagne_.pickle')
    nn24 = Cnnl(nn_name = '24-net',subnet=nn12).__load_model_old__('24-net_lasagne_.pickle')
    nn48 = Cnnl(nn_name = '48-net',subnet=nn24).__load_model_old__('48-net_lasagne_.pickle')
    nn_calib12 =  Cnnl('12-calib_net').__load_model_old__('12-calib_net_lasagne_.pickle')
    nn_calib24 =  Cnnl('24-calib_net').__load_model_old__('24-calib_net_lasagne_.pickle')
    #nn_calib48 =  Cnnl('48-calib_net').__load_model_old__('48-calib_net_lasagne_.pickle')
    image = fr.get_frame(iname)
    p = 11
    k = 1.41
    t_level = 0
    gbb = []
    gp = []
    print('Start....')
    s = time()
    py = fr.get_frame_pyramid(image,scale=k,steps=p)
    for m,frame in enumerate(py):
        if m < t_level:
            continue
        
        bb,p = apply_12_net(image = image,frame=frame,iname = iname,nn = nn12,m=m,debug=0)
        keep = util.nms(bb,p,T=0.5)
        
        bb = bb[keep] if keep != [] else bb
        p = p[keep] if keep != [] else p 
        cnt_detect = len(bb)
        if cnt_detect  == 0:
            continue
        #draw_bboxes(iname,bb,c='#-r_12--' + str(m))
        for b in bb:
            gbb.append(b)
        for pp in p:
            gp.append(pp)

    gbb = sp.array(gbb)
    gp = sp.array(gp)
    #draw_bboxes(iname,gbb,c='0-r_12')
    
    bb = gbb
    p = gp
    bb = apply_calib_net(image = image, iname = iname,bb=bb,nn=nn_calib12)
    cnt_detect = len(bb)
    
    #draw_bboxes(iname,bb,c='1-r_calib_12')    
    
    keep = util.nms(bb,p,T=0.3)
    
    bb = bb[keep] if keep != [] else bb
    
    p = p[keep] if keep != [] else p
    
    #draw_bboxes(iname,bb,c='2-r_nms_12')
    
    bb,p = apply_24_48_net(image = image, iname = iname, bb = bb,nn = nn24,debug=0 )
    cnt_detect = len(bb)
    #draw_bboxes(iname,bb,c='3-r_24')
    
    bb = apply_calib_net(image = image, iname = iname,bb = bb,nn=nn_calib24)
   
    cnt_detect = len(bb)
    #draw_bboxes(iname,bb,c='4-r_calib_24')
    keep = util.nms(bb,p,T=0.3)

    bb = bb[keep] if keep != [] else bb
    p = p[keep] if keep != [] else p
    #draw_bboxes(iname,bb,c='5-r_nms_24')
    cnt_detect = len(bb)
    
    bb,p = apply_24_48_net(image = image, iname = iname, bb = bb,nn = nn48,debug=1)        
    cnt_detect = len(bb)
    draw_bboxes(iname,bb,c='6-r_48',debug=1)
    
    
#    bb = apply_calib_net(image = image,iname = iname,bb=bb,nn=nn_calib48)
#    draw_bboxes(iname,bb,c='6-r_calib_48')
#    
#    bb = util.nms(bb,T=0.2)
#    draw_bboxes(iname,bb,c='7-r_nms_48_final')
    print('Finish...',time()-s)
示例#6
0
def cv(nn_name, d_num=10000, k_fold=7, score_metrics='accuracy', verbose=0):
    suff = str(nn_name[:2])
    if nn_name.find('calib') > 0:
        X_data_name = 'train_data_icalib_' + suff + '.npy'
        y_data_name = 'labels_icalib_' + suff + '.npy'
    else:
        X_data_name = 'train_data_' + suff + '.npy'
        y_data_name = 'labels_' + suff + '.npy'
    X, y = sp.load(X_data_name), sp.load(y_data_name)
    d_num = min(len(X), d_num)
    X = X[:d_num]
    y = y[:d_num]
    rates12 = sp.hstack((0.05 * sp.ones(25, dtype=sp.float32),
                         0.005 * sp.ones(15, dtype=sp.float32),
                         0.0005 * sp.ones(10, dtype=sp.float32)))
    rates24 = sp.hstack((0.01 * sp.ones(25, dtype=sp.float32),
                         0.0001 * sp.ones(15, dtype=sp.float32)))
    rates48 = sp.hstack([
        0.05 * sp.ones(15, dtype=sp.float32),
        0.005 * sp.ones(10, dtype=sp.float32)
    ])
    if nn_name == '48-net':
        X12 = sp.load('train_data_12.npy')[:d_num]
        X24 = sp.load('train_data_24.npy')[:d_num]
    elif nn_name == '24-net':
        X12 = sp.load('train_data_12.npy')[:d_num]

    if score_metrics == 'accuracy':
        score_fn = accuracy_score
    else:
        score_fn = f1_score
    scores = []
    iteration = 0
    for t_indx, v_indx in util.kfold(X, y, k_fold=k_fold):
        nn = None
        X_train, X_test, y_train, y_test = X[t_indx], X[v_indx], y[t_indx], y[
            v_indx]

        #print('\t \t',str(iteration+1),'fold out of ',str(k_fold),'\t \t' )
        if nn_name == '24-net':
            nn = Cnnl(
                nn_name=nn_name,
                l_rates=rates24,
                subnet=Cnnl(
                    nn_name='12-net',
                    l_rates=rates12).load_model('12-net_lasagne_.pickle'))
            nn.fit(X=X_train, y=y_train, X12=X12[t_indx])
        elif nn_name == '48-net':
            nn = Cnnl(
                nn_name=nn_name,
                l_rates=rates48,
                subnet=Cnnl(
                    nn_name='24-net',
                    l_rates=rates24,
                    subnet=Cnnl(
                        nn_name='12-net',
                        l_rates=rates12).load_model('12-net_lasagne_.pickle')).
                load_model('24-net_lasagne_.pickle'))
            nn.fit(X=X_train, y=y_train, X12=X12[t_indx], X24=X24[t_indx])
        else:

            nn = Cnnl(nn_name=nn_name, l_rates=rates12, verbose=verbose)
            nn.fit(X=X_train, y=y_train)

        if nn_name == '24-net':
            y_pred = nn.predict(X_test, X12=X12[v_indx])
        elif nn_name == '48-net':
            y_pred = nn.predict(X_test, X12=X12[v_indx], X24=X24[v_indx])
        else:
            y_pred = nn.predict(X_test)
        score = score_fn(y_test, y_pred)

        #print(iteration,'fold score',score)
        scores.append(score)
        iteration += 1
    score_mean = sp.array(scores).mean()
    print(d_num, 'mean score', score)
    return score_mean