示例#1
0
def train():
    batch_size = TRAIN_BATCH_SIZE
    num_labels = 10

    path = utility.generate_data_path(TRAINING_DATA_SIZE,
                                      utility.Data.STREET,
                                      label=False)
    train_images = utility.load_data(path)
    path = utility.generate_data_path(TRAINING_DATA_SIZE,
                                      utility.Data.STREET,
                                      label=True)
    train_labels = utility.load_data(path, label=True)
    path = utility.generate_data_path(utility.Size.TEST,
                                      utility.Data.STREET,
                                      label=False)
    test_images = utility.load_data(path)
    path = utility.generate_data_path(utility.Size.TEST,
                                      utility.Data.STREET,
                                      label=True)
    test_labels = utility.load_data(path, label=True)
    path = utility.generate_data_path(utility.Size.VALIDATION,
                                      utility.Data.STREET,
                                      label=False)
    validation_images = utility.load_data(path)
    path = utility.generate_data_path(utility.Size.VALIDATION,
                                      utility.Data.STREET,
                                      label=True)
    validation_labels = utility.load_data(path, label=True)

    train_size = train_images.shape[0]
    total_batch = int(train_size / batch_size)

    # Boolean for MODE of train or test
    is_training = tf.placeholder(tf.bool, name='MODE')

    # tf input
    x = tf.placeholder(tf.float32, [None, 32, 32, 3])
    y_ = tf.placeholder(tf.float32, [None, 10])  #answer
    y = cnn_model.CNN(x)

    # Get loss of model
    with tf.name_scope("LOSS"):
        loss = cnn_model.loss(
            y,
            y_,
        )
    # Define optimizer
    with tf.name_scope("ADAM"):
        # Optimizer: set up a variable that's incremented once per batch and
        # controls the learning rate decay.
        batch = tf.Variable(0)
        learning_rate = tf.train.exponential_decay(
            1e-4,  # Base learning rate.
            batch * batch_size,  # Current index into the dataset.
            train_size,  # Decay step.
            0.95,  # Decay rate.
            staircase=True)
        # Use simple momentum for the optimization.
        train_step = tf.train.AdamOptimizer(learning_rate).minimize(
            loss, global_step=batch)

    # Get accuracy of model
    with tf.name_scope("ACC"):
        correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    # Create a summary to monitor learning_rate tensor
    tf.summary.scalar('learning_rate', learning_rate)
    # Create a summary to monitor accuracy tensor
    tf.summary.scalar('acc', accuracy)
    # Merge all summaries into a single op
    merged_summary_op = tf.summary.merge_all()
    # Add ops to save and restore all the variables
    saver = tf.train.Saver()
    sess = tf.InteractiveSession()
    sess.run(tf.global_variables_initializer(), feed_dict={is_training: True})
    # op to write logs to Tensorboard
    summary_writer = tf.summary.FileWriter(LOGS_DIRECTORY,
                                           graph=tf.get_default_graph())
    max_acc = 0.
    start_time = time.time()
    # Loop for epoch
    for epoch in range(training_epochs):

        # Random shuffling
        [test_images,
         test_labels] = utility.shuffle_data(test_images, test_labels)
        [train_images,
         train_labels] = utility.shuffle_data(train_images, train_labels)

        # Loop over all batches
        for i in range(total_batch):

            # Compute the offset of the current minibatch in the data.
            offset = (i * batch_size) % (train_size)
            batch_xs = train_images[offset:(offset + batch_size), :]
            batch_ys = train_labels[offset:(offset + batch_size), :]

            # Run optimization op (backprop), loss op (to get loss value)
            # and summary nodes
            _, train_accuracy, summary = sess.run(
                [train_step, accuracy, merged_summary_op],
                feed_dict={
                    x: batch_xs,
                    y_: batch_ys,
                    is_training: True
                })

            # Write logs at every iteration
            summary_writer.add_summary(summary, epoch * total_batch + i)

            # Display logs
            if i % display_step == 0:
                print(
                    "Epoch:", '%04d,' % (epoch + 1),
                    "batch_index %4d/%4d, training accuracy %.5f" %
                    (i, total_batch, train_accuracy))

            # Get accuracy for validation data
            if i % validation_step == 0:
                # Calculate accuracy
                validation_accuracy = sess.run(accuracy,
                                               feed_dict={
                                                   x: validation_images,
                                                   y_: validation_labels,
                                                   is_training: False
                                               })

                print(
                    "Epoch:", '%04d,' % (epoch + 1),
                    "batch_index %4d/%4d, validation accuracy %.5f" %
                    (i, total_batch, validation_accuracy))

            # Save the current model if the maximum accuracy is updated
            if validation_accuracy > max_acc:
                max_acc = validation_accuracy
                save_path = saver.save(sess, MODEL_DIRECTORY)
                print("Model updated and saved in file: %s" % save_path)

    print("Optimization Finished!")
    print("--- %s seconds ---" % (time.time() - start_time))

    # Restore variables from disk
    saver.restore(sess, MODEL_DIRECTORY)

    # TESTING
    test_size = test_labels.shape[0]
    batch_size = TEST_BATCH_SIZE
    total_batch = int(test_size / batch_size)

    acc_buffer = []

    for i in range(total_batch):
        offset = (i * batch_size) % (test_size)
        batch_xs = test_images[offset:(offset + batch_size), :]
        batch_ys = test_labels[offset:(offset + batch_size), :]
        y_final = sess.run(y,
                           feed_dict={
                               x: batch_xs,
                               y_: batch_ys,
                               is_training: False
                           })
        correct_prediction = numpy.equal(numpy.argmax(y_final, 1),
                                         numpy.argmax(batch_ys, 1))
        acc_buffer.append(numpy.sum(correct_prediction) / batch_size)

    print("test accuracy for the stored model: %g" % numpy.mean(acc_buffer))
示例#2
0
def train(dataset):
    """Train this network model.
    Args:
        datasets: contain two elements: a tensor for feature,shape is [batch,height,width,channels]
                , and a tensor for label, shape is [batch, label_num].
    Return:
    """
    global GRID_FEATURE_SHAPE
    global FLAGS

    with tf.Graph().as_default():
        global_step = tf.Variable(2, trainable=False)
        """Build network."""
        x = tf.placeholder(tf.float32, shape=[None, GRID_FEATURE_SHAPE[0]\
            , GRID_FEATURE_SHAPE[1], GRID_FEATURE_SHAPE[2]]) # [batch,heigh,width,depth]
        y_ = tf.placeholder(tf.float32, shape=[None])  # [batch]
        keep_prob = tf.placeholder(tf.float32, shape=[])
        logits = cnn_model.inference(x, keep_prob)
        """get variable"""
        # For Debug
        """build loss function and optimizer."""
        loss = cnn_model.loss(logits, y_)
        train_step = tf.train.AdamOptimizer(1e-4).minimize(loss)
        """build accuracy function"""
        # for column
        #pdb.set_trace()
        prediction = tf.equal(tf.argmax(logits, 1), tf.cast(y_, tf.int64))
        accuracy = tf.reduce_mean(tf.cast(prediction, tf.float32))
        """train and save new model."""
        with tf.Session() as sess:
            sess.run(tf.initialize_all_variables())
            """init saver and load old model."""
            saver = tf.train.Saver()
            ckpt = tf.train.get_checkpoint_state(CFLAGS.checkpoint_dir)
            if ckpt and ckpt.model_checkpoint_path:
                print 'Find old model %s, and try to restore it.' % (
                    ckpt.model_checkpoint_path)
                saver.restore(sess, ckpt.model_checkpoint_path)
            """training"""
            print 'Begin trainning....'
            for i in xrange(global_step.eval(), 10000):
                batch = dataset.next_batch(FLAGS.batch_size)
                #tmp = sess.run(logits,feed_dict={x:batch[0], y_:batch[1], keep_prob:0.5})
                #pdb.set_trace()
                train_step.run(feed_dict={
                    x: batch[0],
                    y_: batch[1],
                    keep_prob: 0.5
                })
                # show train accuracy
                if (i + 1) % 10 == 0:
                    train_accuracy = accuracy.eval(feed_dict={x:batch[0]\
                                    , y_:batch[1], keep_prob:1.0})
                    print "step %d, trainning accuracy %g" % (i,
                                                              train_accuracy)
                # save checkpoint
                if (i + 1) % CFLAGS.checkpoint_steps == 0:
                    sess.run(tf.assign(global_step, i + 1))
                    saver.save(sess, CFLAGS.checkpoint_dir + CFLAGS.checkpoint_file \
                                , global_step=global_step)

            print 'End trainning...'
示例#3
0
def train():
    batch_size = FLAGS.batch_size
    crop_size = FLAGS.crop_size

    with tf.Graph().as_default():
        global_step = tf.Variable(0, name='global_step', trainable=False)
        # input
        train_input = CNNTrainInput(FLAGS.data_file)

        images = tf.placeholder(tf.float32,
                                shape=[batch_size, crop_size, crop_size, 1],
                                name='image')
        labels = tf.placeholder(tf.int64, shape=[batch_size], name='label')
        # Display the training images in the visualizer.

        image_slices = tf.slice(images, [0, 0, 0, 0],
                                [int(batch_size), crop_size, crop_size, 1],
                                name='central_slice')
        tf.summary.image('image_slices', image_slices, max_outputs=10)

        # inference
        logits = cnn_model.inference(images)

        # calculate accuracy and error rate
        prediction = tf.argmax(logits, 1)
        correct_prediction = tf.equal(prediction, labels)
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        error_rate = 1 - accuracy
        tf.summary.scalar('accuracy', accuracy)
        tf.summary.scalar('error_rate', error_rate)

        # train to minimize loss
        loss = cnn_model.loss(logits, labels)
        lr = tf.placeholder(tf.float64, name='leaning_rate')
        tf.summary.scalar('learning_rate', lr)
        train_op = cnn_model.train(loss, lr, global_step)

        # Add ops to save and restore all the variables.
        saver = tf.train.Saver()

        # run graph in session
        with tf.Session() as sess:
            init = tf.global_variables_initializer(
            )  # create an operation initializes all the variables
            sess.run(init)
            merged = tf.summary.merge_all()
            writer = tf.summary.FileWriter('%s' % FLAGS.train_dir, sess.graph)

            if FLAGS.load_ckpt:
                ckpt_file = '%s/model.ckpt-%d' % \
                    (FLAGS.train_dir, FLAGS.ckpt_step)
                print('restore sess with %s' % ckpt_file)
                saver.restore(sess, ckpt_file)

            start = time.time()
            for step in range(FLAGS.max_steps):
                batch_images, batch_labels = train_input.next_batch(
                    batch_size=batch_size)
                if FLAGS.shuffle:
                    idx = np.arange(batch_size)
                    np.random.shuffle(idx)
                    batch_images = batch_images[idx]
                    batch_labels = batch_labels[idx]
                lr_value = FLAGS.learning_rate * pow(
                    FLAGS.decay_factor, (step / FLAGS.decay_steps))
                _, err, g_step, loss_value, summary = sess.run(
                    [train_op, error_rate, global_step, loss, merged],
                    feed_dict={
                        labels: batch_labels,
                        images: batch_images,
                        lr: lr_value,
                    })

                if step % FLAGS.log_frequency == 0 and step != 0:
                    end = time.time()
                    duration = end - start
                    examples_per_sec = FLAGS.log_frequency * FLAGS.batch_size / duration
                    sec_per_batch = float(duration / FLAGS.log_frequency)
                    format_str = (
                        '%s: step %d, loss = %.2f, err = %.4f (%.1f examples/sec; %.3f '
                        'sec/batch)')
                    print(format_str % (datetime.now(), g_step, loss_value,
                                        err, examples_per_sec, sec_per_batch))
                    writer.add_summary(summary, g_step)
                    # Save the variables to disk.
                    saver.save(sess,
                               '%s/model.ckpt' % FLAGS.train_dir,
                               global_step=g_step)
                    start = end
示例#4
0
#........ This part will used to get training data for each epoch during training
init_count = 0
num_epochs = 100
batch_size = 40
numiter = 125
ne = 0
valacc = []
#Create session
feed_images = tf.placeholder(tf.float32, shape=(None, 96, 96, 3))
feed_labels = tf.placeholder(tf.float32, shape=(None, ))

aug_img = tf.placeholder(tf.float32, shape=(96, 96, 3))

logits = nn_model(feed_images, training=True)

cost = loss(logits, feed_labels)

opt_mom = optimizer(lr=0.01)
opt = opt_mom.minimize(cost)

acc = accuracy(logits, feed_labels)

sess = tf.Session()
sess.run(tf.global_variables_initializer())

img_scale_crop = tf.random_crop(
    tf.image.resize_images(aug_img, get_new_size()), [96, 96, 3])

img_rand_flip_lr = tf.image.random_flip_left_right(aug_img)

img_rand_flip_ud = tf.image.random_flip_up_down(aug_img)