def create_observation_dict(suggestion): start = time.time() accuracy = calculate_objective( suggestion.assignments, data, with_architecture=with_architecture, ) end = time.time() failed = True values = None duration = start - end if accuracy > 75 and duration > -250: values = [ { 'name': 'accuracy', 'value': accuracy }, { 'name': 'negative_train_time', 'value': duration }, ] failed = False return { 'suggestion': suggestion.id, 'values': values, 'failed': failed, }
def create_observation_dict(suggestion): start = time.time() accuracy = calculate_objective( suggestion.assignments, data, with_architecture=with_architecture, ) end = time.time() return { 'suggestion': suggestion.id, 'values': [ {'name': 'accuracy', 'value': accuracy}, {'name': 'negative_train_time', 'value': start - end}, ], }
if with_architecture: exp_name = 'GPU-powered Sentiment Analysis (SGD + Architecture)' param_filepath = 'cnn_text/long_hyperparams.json' else: exp_name = 'GPU-powered Sentiment Analysis (SGD Only)' param_filepath = 'cnn_text/hyperparams.json' with open(param_filepath) as f: hyperparams = f.read() hyperparams = json.loads(hyperparams) experiment = conn.experiments().create(name=exp_name, project='sigopt-examples', parameters=hyperparams, observation_budget=40 * len(hyperparams)) print("Created experiment: https://sigopt.com/experiment/" + experiment.id) else: experiment = conn.experiments(experiment_id).fetch() # Optimization Loop data = get_data() for _ in range(experiment.observation_budget): suggestion = conn.experiments(experiment.id).suggestions().create() value = calculate_objective(suggestion.assignments, data, with_architecture=with_architecture) observation = conn.experiments(experiment.id).observations().create( value=value, suggestion=suggestion.id)