示例#1
0
def train_cnocr(args):
    head = '%(asctime)-15s %(message)s'
    logging.basicConfig(level=logging.DEBUG, format=head)
    args.model_name = args.emb_model_type + '-' + args.seq_model_type
    out_dir = os.path.join(args.out_model_dir, args.model_name)
    logger.info('save models to dir: %s' % out_dir)
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)
    args.prefix = os.path.join(
        out_dir, 'cnocr-v{}-{}'.format(__version__, args.model_name))

    hp = CnHyperparams()
    hp = _update_hp(hp, args)

    network, hp = gen_network(args.model_name, hp)
    metrics = CtcMetrics(hp.seq_length)

    data_train, data_val = _gen_iters(hp, args.train_file, args.test_file,
                                      args.use_train_image_aug, args.dataset,
                                      args.charset, args.debug)
    data_names = ['data']
    fit(
        network=network,
        data_train=data_train,
        data_val=data_val,
        metrics=metrics,
        args=args,
        hp=hp,
        data_names=data_names,
    )
示例#2
0
def run_captcha(args):
    hp = Hyperparams2()

    network = crnn_lstm(hp)
    # arg_shape, out_shape, aux_shape = network.infer_shape(data=(128, 1, 32, 100), label=(128, 10),
    #                                                       l0_init_h=(128, 100), l1_init_h=(128, 100), l2_init_h=(128, 100), l3_init_h=(128, 100))
    # print(dict(zip(network.list_arguments(), arg_shape)))
    # import pdb; pdb.set_trace()

    # Start a multiprocessor captcha image generator
    mp_captcha = MPDigitCaptcha(font_paths=get_fonts(args.font_path),
                                h=hp.img_width,
                                w=hp.img_height,
                                num_digit_min=3,
                                num_digit_max=4,
                                num_processes=args.num_proc,
                                max_queue_size=hp.batch_size * 2)
    mp_captcha.start()
    # img, num = mp_captcha.get()
    # print(img.shape)
    # import numpy as np
    # import cv2
    # img = np.transpose(img, (1, 0))
    # cv2.imwrite('captcha1.png', img * 255)
    # import pdb; pdb.set_trace()

    init_c = [('l%d_init_c' % l, (hp.batch_size, hp.num_hidden))
              for l in range(hp.num_lstm_layer * 2)]
    init_h = [('l%d_init_h' % l, (hp.batch_size, hp.num_hidden))
              for l in range(hp.num_lstm_layer * 2)]
    init_states = init_c + init_h
    data_names = ['data'] + [x[0] for x in init_states]

    data_train = OCRIter(hp.train_epoch_size // hp.batch_size,
                         hp.batch_size,
                         init_states,
                         captcha=mp_captcha,
                         num_label=hp.num_label,
                         name='train')
    data_val = OCRIter(hp.eval_epoch_size // hp.batch_size,
                       hp.batch_size,
                       init_states,
                       captcha=mp_captcha,
                       num_label=hp.num_label,
                       name='val')

    head = '%(asctime)-15s %(message)s'
    logging.basicConfig(level=logging.DEBUG, format=head)

    metrics = CtcMetrics(hp.seq_length)

    fit(network=network,
        data_train=data_train,
        data_val=data_val,
        metrics=metrics,
        args=args,
        hp=hp,
        data_names=data_names)

    mp_captcha.reset()
示例#3
0
def run_cn_ocr(args):
    hp = Hyperparams()

    network = crnn_lstm(hp)

    mp_data_train = MPOcrImages(args.data_root, args.train_file, (hp.img_width, hp.img_height), hp.num_label,
                                num_processes=args.num_proc, max_queue_size=hp.batch_size * 100)
    # img, num = mp_data_train.get()
    # print(img.shape)
    # print(mp_data_train.shape)
    # import pdb; pdb.set_trace()
    # import numpy as np
    # import cv2
    # img = np.transpose(img, (1, 0))
    # cv2.imwrite('captcha1.png', img * 255)
    # import pdb; pdb.set_trace()
    mp_data_test = MPOcrImages(args.data_root, args.test_file, (hp.img_width, hp.img_height), hp.num_label,
                               num_processes=max(args.num_proc // 2, 1), max_queue_size=hp.batch_size * 10)
    mp_data_train.start()
    mp_data_test.start()

    # init_c = [('l%d_init_c' % l, (hp.batch_size, hp.num_hidden)) for l in range(hp.num_lstm_layer * 2)]
    # init_h = [('l%d_init_h' % l, (hp.batch_size, hp.num_hidden)) for l in range(hp.num_lstm_layer * 2)]
    # init_states = init_c + init_h
    # data_names = ['data'] + [x[0] for x in init_states]
    data_names = ['data']

    data_train = OCRIter(
        hp.train_epoch_size // hp.batch_size, hp.batch_size, captcha=mp_data_train, num_label=hp.num_label,
        name='train')
    data_val = OCRIter(
        hp.eval_epoch_size // hp.batch_size, hp.batch_size, captcha=mp_data_test, num_label=hp.num_label,
        name='val')
    # data_train = ImageIterLstm(
    #     args.data_root, args.train_file, hp.batch_size, (hp.img_width, hp.img_height), hp.num_label, init_states, name="train")
    # data_val = ImageIterLstm(
    #     args.data_root, args.test_file,  hp.batch_size, (hp.img_width, hp.img_height), hp.num_label, init_states, name="val")

    head = '%(asctime)-15s %(message)s'
    logging.basicConfig(level=logging.DEBUG, format=head)

    metrics = CtcMetrics(hp.seq_length)

    fit(network=network, data_train=data_train, data_val=data_val, metrics=metrics, args=args, hp=hp, data_names=data_names)

    mp_data_train.reset()
    mp_data_test.reset()