示例#1
0
 def _build_model(self):
     with default_options(init=he_uniform(), activation=relu, bias=True):
         model = Sequential([
             Convolution((4, 4), 64, strides=(2, 2), name='conv1'),
             Convolution((3, 3), 64, strides=(1, 1), name='conv2'),
             Dense(512, name='dense1', init=he_normal(0.01)),
             Dense(self._nb_actions, activation=None, init=he_normal(0.01), name='qvalues')
         ])
         return model
 def _build_model(self):
     with default_options(init=he_uniform(), activation=relu, bias=True):
         model = Sequential([
             Convolution((8, 8), 32, strides=(4, 4)),
             Convolution((4, 4), 64, strides=(2, 2)),
             Convolution((3, 3), 64, strides=(1, 1)),
             Dense(512, init=he_normal(0.01)),
             Dense(self._nb_actions, activation=None, init=he_normal(0.01))
         ])
         return model
示例#3
0
 def _build_model(self):
     with default_options(init=he_uniform(), activation=relu, bias=True):
         model = Sequential([
             Convolution((8, 8), 32, strides=(4, 4)),
             Convolution((4, 4), 64, strides=(2, 2)),
             Convolution((3, 3), 64, strides=(1, 1)),
             Dense(512, init=he_normal(0.01)),
             Dense(self._nb_actions, activation=None, init=he_normal(0.01))
         ])
         return model
 def _build_model(self):
     with default_options(init=he_uniform(), activation=relu, bias=True):
         model = Sequential([
             Convolution((4, 4), 64, strides=(2, 2), name='conv1'),
             Convolution((3, 3), 64, strides=(1, 1), name='conv2'),
             Dense(512, name='dense1', init=he_normal(0.01)),
             Dense(self._nb_actions,
                   activation=None,
                   init=he_normal(0.01),
                   name='qvalues')
         ])
         return model
示例#5
0
def create_transfer_learning_model(input, num_classes, model_file, freeze=False):

    base_model = load_model(model_file)
    base_model = C.as_composite(base_model[3].owner)

    # Load the pretrained classification net and find nodes
    feature_node = C.logging.find_by_name(base_model, feature_node_name)
    last_node = C.logging.find_by_name(base_model, last_hidden_node_name)
    
    base_model = C.combine([last_node.owner]).clone(C.CloneMethod.freeze if freeze else C.CloneMethod.clone, {feature_node: C.placeholder(name='features')})
    base_model = base_model(C.input_variable((num_channels, image_height, image_width)))

    r1 = C.logging.find_by_name(base_model, "z.x.x.r")
    r2_2 = C.logging.find_by_name(base_model, "z.x.x.x.x.r")
    r3_2 = C.logging.find_by_name(base_model, "z.x.x.x.x.x.x.r")
    r4_2 = C.logging.find_by_name(base_model, "z.x.x.x.x.x.x.x.x.r")

    up_r1 = OneByOneConvAndUpSample(r1, 3, num_classes)
    up_r2_2 = OneByOneConvAndUpSample(r2_2, 2, num_classes)
    up_r3_2 = OneByOneConvAndUpSample(r3_2, 1, num_classes)
    up_r4_2 = OneByOneConvAndUpSample(r4_2, 0, num_classes)
    
    merged = C.splice(up_r1, up_r3_2, up_r2_2, axis=0)

    resnet_fcn_out = Convolution((1, 1), num_classes, init=he_normal(), activation=sigmoid, pad=True)(merged)

    z = UpSampling2DPower(resnet_fcn_out,2)
    
    return z
示例#6
0
def bn_inception_cifar_model(input, labelDim, bnTimeConst):
    # 32 x 32 x 3
    conv1a = conv_bn_relu_layer(input, 32, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 32
    conv1b = conv_bn_relu_layer(conv1a, 32, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 32
    conv2a = conv_bn_relu_layer(conv1b, 64, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 64
    conv2b = conv_bn_relu_layer(conv2a, 128, (3,3), (1,1), True, bnTimeConst)

    # Inception Blocks
    # 32 x 32 x 128
    inception3a = inception_block_with_maxpool(conv2b, 32, 32, 32, 32, 48, 16, bnTimeConst)
    # 32 x 32 x 128
    inception3b = inception_block_with_maxpool(inception3a, 32, 32, 32, 32, 48, 16, bnTimeConst)
    # 16 x 16 x 128
    inception4a = inception_block_with_avgpool(inception3b, 96, 48, 64, 48, 64, 64, bnTimeConst) 
    # 16 x 16 x 288
    inception4b = inception_block_with_avgpool(inception4a, 48, 64, 96, 80, 96, 64, bnTimeConst)
    # 16 x 16 x 288
    inception4c = inception_block_with_avgpool(inception4b, 48, 64, 96, 80, 96, 64, bnTimeConst)
    # 16 x 16 x 288
    inception4d = inception_block_pass_through(inception4c, 0, 128, 192, 192, 256, 0, bnTimeConst)
    # 8 x 8 x 512
    inception5a = inception_block_with_maxpool(inception4d, 176, 96, 160, 96, 112, 64, bnTimeConst)
    # Global Average
    # 8 x 8 x 512
    pool1 = AveragePooling(filter_shape=(8,8))(inception5a)


    # 1 x 1 x 512
    z = Dense(labelDim, init=he_normal())(pool1)

    return z
示例#7
0
def conv_bn_relu(input,
                 filter_size,
                 num_filters,
                 strides=(1, 1),
                 init=he_normal()):
    r = conv_bn(input, filter_size, num_filters, strides, init, 1)
    return relu(r)
示例#8
0
def bn_inception_cifar_model(input, labelDim, bnTimeConst):

    # 32 x 32 x 3
    conv1a = conv_bn_relu_layer(input, 32, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 32
    conv1b = conv_bn_relu_layer(conv1a, 32, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 32
    conv1c = conv_bn_relu_layer(conv1b, 32, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 32
    conv2a = conv_bn_relu_layer(conv1c, 32, (1,1), (1,1), True, bnTimeConst)
    # 32 x 32 x 32
    conv2b = conv_bn_relu_layer(conv2a, 64, (3,3), (1,1), True, bnTimeConst)
    
    # Inception Blocks
    # 32 x 32 x 64
    inception3a = inception_block_with_avgpool(conv2b, 32, 32, 32, 32, 48, 16, bnTimeConst)
    # 32 x 32 x 128
    inception3b = inception_block_pass_through(inception3a, 0, 64, 80, 32, 48, 0, bnTimeConst) 
    # 16 x 16 x 256
    inception4a = inception_block_with_avgpool(inception3b, 96, 48, 64, 48, 64, 64, bnTimeConst) 
    # 16 x 16 x 288
    inception4b = inception_block_with_avgpool(inception4a, 48, 64, 96, 80, 96, 64, bnTimeConst) 
    # 16 x 16 x 288
    inception4c = inception_block_pass_through(inception4b, 0, 128, 192, 192, 256, 0, bnTimeConst)
    # 8 x 8 x 512
    inception5a = inception_block_with_maxpool(inception4c, 176, 96, 160, 96, 112, 64, bnTimeConst) 
    
    # Global Average
    # 8 x 8 x 512
    pool1 = AveragePooling(filter_shape=(8,8))(inception5a)
    # 1 x 1 x 512
    z = Dense(labelDim, init=he_normal())(pool1)

    return z
示例#9
0
def create_model(input, num_classes):
    c_map = [16, 32, 64]
    num_stack_layers = 3

    conv = conv_bn_relu(input, (3, 3), c_map[0])
    r1 = resnet_basic_stack(conv, num_stack_layers, c_map[0])

    r2_1 = resnet_basic_inc(r1, c_map[1])
    r2_2 = resnet_basic_stack(r2_1, num_stack_layers - 1, c_map[1])

    r3_1 = resnet_basic_inc(r2_2, c_map[2])
    r3_2 = resnet_basic_stack(r3_1, num_stack_layers - 1, c_map[2])

    up_r1 = OneByOneConvAndUpSample(r1, 0, num_classes)
    up_r2_2 = OneByOneConvAndUpSample(r2_2, 1, num_classes)
    up_r3_2 = OneByOneConvAndUpSample(r3_2, 2, num_classes)

    merged = C.splice(up_r1, up_r3_2, up_r2_2, axis=0)

    resnet_fcn_out = Convolution((1, 1),
                                 num_classes,
                                 init=he_normal(),
                                 activation=sigmoid,
                                 pad=True)(merged)

    return resnet_fcn_out
示例#10
0
def conv_bn_layer(input,
                  out_feature_map_count,
                  kernel_shape,
                  strides,
                  bn_time_const,
                  b_value=0,
                  sc_value=1):
    num_in_channels = input.shape[0]
    kernel_width = kernel_shape[0]
    kernel_height = kernel_shape[1]
    v_stride = strides[0]
    h_stride = strides[1]
    #TODO: use RandomNormal to initialize, needs to be exposed in the python api
    conv_params = parameter(shape=(out_feature_map_count, num_in_channels,
                                   kernel_height, kernel_width),
                            init=he_normal())
    conv_func = convolution(conv_params, input,
                            (num_in_channels, v_stride, h_stride))

    #TODO: initialize using b_value and sc_value, needs to be exposed in the python api
    bias_params = parameter(shape=(out_feature_map_count), init=b_value)
    scale_params = parameter(shape=(out_feature_map_count), init=sc_value)
    running_mean = constant(0., (out_feature_map_count))
    running_invstd = constant(0., (out_feature_map_count))
    running_count = constant(0., (1))
    return batch_normalization(conv_func,
                               scale_params,
                               bias_params,
                               running_mean,
                               running_invstd,
                               running_count=running_count,
                               spatial=True,
                               normalization_time_constant=bn_time_const,
                               use_cudnn_engine=True)
示例#11
0
def convolution_bn(input, filter_size, num_filters, strides=(1,1), init=he_normal(), activation=relu):
    if activation is None:
        activation = lambda x: x
        
    r = Convolution(filter_size, num_filters, strides=strides, init=init, activation=None, pad=True, bias=False)(input)
    r = BatchNormalization(map_rank=1)(r)
    r = activation(r)
    
    return r
示例#12
0
def OneByOneConvAndUpSample(x, k_power, num_channels):
    x = Convolution((1, 1),
                    num_channels,
                    init=he_normal(),
                    activation=relu,
                    pad=True)(x)
    x = UpSampling2DPower(x, k_power)

    return x
示例#13
0
def conv_bn(input, filter_size, num_filters, strides=(1, 1), init=he_normal()):
    c = Convolution(filter_size,
                    num_filters,
                    activation=None,
                    init=init,
                    pad=True,
                    strides=strides,
                    bias=False)(input)
    r = BatchNormalization(map_rank=1,
                           normalization_time_constant=4096,
                           use_cntk_engine=False)(c)
    return r
def bn_inception_model(input, labelDim, bnTimeConst):

    # 224 x 224 x 3
    conv1 = conv_bn_relu_layer(input, 64, (7, 7), (2, 2), True, bnTimeConst)
    # 112 x 112 x 64
    pool1 = MaxPooling(filter_shape=(3, 3), strides=(2, 2), pad=True)(conv1)
    # 56 x 56 x 64
    conv2a = conv_bn_relu_layer(pool1, 64, (1, 1), (1, 1), True, bnTimeConst)
    # 56 x 56 x 64
    conv2b = conv_bn_relu_layer(conv2a, 192, (3, 3), (1, 1), True, bnTimeConst)
    # 56 x 56 x 192
    pool2 = MaxPooling(filter_shape=(3, 3), strides=(2, 2), pad=True)(conv2b)

    # Inception Blocks
    # 28 x 28 x 192
    inception3a = inception_block_with_avgpool(pool2, 64, 64, 64, 64, 96, 32,
                                               bnTimeConst)
    # 28 x 28 x 256
    inception3b = inception_block_with_avgpool(inception3a, 64, 64, 96, 64, 96,
                                               64, bnTimeConst)
    # 28 x 28 x 320
    inception3c = inception_block_pass_through(inception3b, 0, 128, 160, 64,
                                               96, 0, bnTimeConst)
    # 14 x 14 x 576
    inception4a = inception_block_with_avgpool(inception3c, 224, 64, 96, 96,
                                               128, 128, bnTimeConst)
    # 14 x 14 x 576
    inception4b = inception_block_with_avgpool(inception4a, 192, 96, 128, 96,
                                               128, 128, bnTimeConst)
    # 14 x 14 x 576
    inception4c = inception_block_with_avgpool(inception4b, 160, 128, 160, 128,
                                               160, 128, bnTimeConst)
    # 14 x 14 x 576
    inception4d = inception_block_with_avgpool(inception4c, 96, 128, 192, 160,
                                               192, 128, bnTimeConst)
    # 14 x 14 x 576
    inception4e = inception_block_pass_through(inception4d, 0, 128, 192, 192,
                                               256, 0, bnTimeConst)
    # 7 x 7 x 1024
    inception5a = inception_block_with_avgpool(inception4e, 352, 192, 320, 160,
                                               224, 128, bnTimeConst)
    # 7 x 7 x 1024
    inception5b = inception_block_with_maxpool(inception5a, 352, 192, 320, 192,
                                               224, 128, bnTimeConst)

    # Global Average
    # 7 x 7 x 1024
    pool3 = AveragePooling(filter_shape=(7, 7))(inception5b)
    # 1 x 1 x 1024
    z = Dense(labelDim, init=he_normal())(pool3)

    return z
示例#15
0
def bn_inceptionv2_cifar_model(input, labelDim, bnTimeConst):

    # 32 x 32 x 3
    conv1a = conv_bn_relu_layer(input, 32, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 32
    conv1b = conv_bn_relu_layer(conv1a, 32, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 32
    conv1c = conv_bn_relu_layer(conv1b, 32, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 64
    conv2a = conv_bn_relu_layer(conv1c, 64, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 64
    conv2b = conv_bn_relu_layer(conv2a, 64, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 64
    conv2c = conv_bn_relu_layer(conv2b, 64, (3,3), (1,1), True, bnTimeConst)

    # Inception Blocks
    # 32 x 32 x 64
    inception3a = inception_block1(conv2b, 32, 32, 32, 32, 48, 16, bnTimeConst)
    # 32 x 32 x 128
    inception3b = inception_block1(inception3a, 0, 64, 80, 32, 48, 0, bnTimeConst)
    # 32 x 32 x 128
    inception3c = inception_block1(inception3b, 0, 64, 80, 32, 48, 0, bnTimeConst)
    # 32 x 32 x 128
    pool1 = AveragePooling(filter_shape=(3,3), strides = (2,2), pad = True)(inception3c)

    # 16 x 16 x 256
    inception4a = inception_block2(inception3c, 96, 48, 64, 48, 64, 64, bnTimeConst) 
    # 16 x 16 x 256
    inception4b = inception_block2(inception4a, 96, 48, 64, 48, 64, 64, bnTimeConst) 
    # 16 x 16 x 256
    inception4c = inception_block2(inception4b, 96, 48, 64, 48, 64, 64, bnTimeConst)
    # 16 x 16 x 288
    inception4d = inception_block2(inception4c, 48, 64, 96, 80, 96, 64, bnTimeConst) 
    # 16 x 16 x 288
    inception4e = inception_block2(inception4d, 0, 128, 192, 192, 256, 0, bnTimeConst)
    # 16 x 16 x 288
    pool2 = AveragePooling(filter_shape=(3,3), strides = (2,2), pad = True)(inception4e)

    # Inception Blocks
    # 8 x 8 x 512
    inception5a = inception_block1(pool2, 176, 96, 160, 96, 112, 64, bnTimeConst) 
    # 8 x 8 x 512
    inception5b = inception_block1(inception5a, 176, 96, 160, 96, 112, 64, bnTimeConst)

    # Global Average
    # 8 x 8 x 512
    pool3 = AveragePooling(filter_shape=(8,8))(inception5a)
    # 1 x 1 x 512
    z = Dense(labelDim, init=he_normal())(pool3)

    return z
示例#16
0
def conv_dw(input, fillter_size, num_filters, strides=(1, 1),
            init=he_normal()):
    r = Convolution(fillter_size,
                    num_filters,
                    activation=None,
                    init=init,
                    pad=True,
                    strides=strides,
                    bias=False,
                    groups=1)(input)

    print('r.shape ', r.shape)

    return relu(r)
示例#17
0
def inceptionv1_cifar_model2(input, labelDim, bnTimeConst):

    # 32 x 32 x 3
    conv1 = conv_bn_relu_layer(input, 32, (3, 3), (1, 1), True, bnTimeConst)
    # 32 x 32 x 32
    conv2 = conv_bn_relu_layer(conv1, 32, (3, 3), (1, 1), True, bnTimeConst)

    # Inception Blocks
    # 32 x 32 x 64
    inception3a = inception_block_with_maxpool(conv2, 32, 32, 32, 32, 48, 16,
                                               bnTimeConst)
    # 32 x 32 x 128
    inception3b = inception_block_with_maxpool(inception3a, 32, 32, 32, 32, 48,
                                               16, bnTimeConst)

    maxpool1 = MaxPooling((3, 3), strides=(2, 2), pad=True)(inception3b)

    # 16 x 16 x 128
    inception4a = inception_block_with_maxpool(maxpool1, 96, 48, 64, 48, 64,
                                               64, bnTimeConst)
    # 16 x 16 x 288
    inception4b = inception_block_with_maxpool(inception4a, 96, 48, 64, 48, 64,
                                               64, bnTimeConst)
    # 16 x 16 x 288
    inception4c = inception_block_with_maxpool(inception4b, 96, 48, 64, 48, 64,
                                               64, bnTimeConst)
    # 16 x 16 x 288
    inception4d = inception_block_with_maxpool(inception4c, 96, 48, 64, 48, 64,
                                               64, bnTimeConst)
    # 16 x 16 x 288
    inception4e = inception_block_with_maxpool(inception4d, 96, 48, 64, 48, 64,
                                               64, bnTimeConst)

    maxpool2 = MaxPooling((3, 3), strides=(2, 2), pad=True)(inception4e)

    # 8 x 8 x 288
    inception5a = inception_block_with_maxpool(inception4e, 176, 96, 160, 96,
                                               112, 64, bnTimeConst)
    # 8 x 8 x 512
    inception5b = inception_block_with_maxpool(inception5a, 176, 96, 160, 96,
                                               112, 64, bnTimeConst)

    # Global Average
    # 8 x 8 x 512
    pool1 = AveragePooling(filter_shape=(8, 8))(inception5b)
    # 1 x 1 x 512

    z = Dense(labelDim, init=he_normal())(pool1)

    return z
示例#18
0
def create_resnet_model(input, num_classes):
    conv = convolution_bn(input, (3, 3), 16)
    r1_1 = resnet_basic_stack(conv, 16, 3)

    r2_1 = resnet_basic_inc(r1_1, 32)
    r2_2 = resnet_basic_stack(r2_1, 32, 2)

    r3_1 = resnet_basic_inc(r2_2, 64)
    r3_2 = resnet_basic_stack(r3_1, 64, 2)

    pool = GlobalAveragePooling()(r3_2)
    net = Dense(num_classes, init=he_normal(), activation=None)(pool)

    return net
示例#19
0
def create_resnet_model(input, num_classes):
    conv = convolution_bn(input, (3,3), 16)
    r1_1 = resnet_basic_stack(conv, 16, 3)

    r2_1 = resnet_basic_inc(r1_1, 32)
    r2_2 = resnet_basic_stack(r2_1, 32, 2)

    r3_1 = resnet_basic_inc(r2_2, 64)
    r3_2 = resnet_basic_stack(r3_1, 64, 2)

    pool = GlobalAveragePooling()(r3_2) 
    net = Dense(num_classes, init=he_normal(), activation=None)(pool)

    return net
示例#20
0
def create_resnet_model(input, num_classes):
    conv = convolution_bn(input, (3, 3), 16)
    r1_1 = resnet_basic_stack(conv, 16, 3)

    r2_1 = resnet_basic_inc(r1_1, 32)
    r2_2 = resnet_basic_stack(r2_1, 32, 2)

    r3_1 = resnet_basic_inc(r2_2, 64)
    r3_2 = resnet_basic_stack(r3_1, 64, 2)

    # Global average pooling
    pool = AveragePooling(filter_shape=(8, 8), strides=(1, 1))(r3_2)
    net = Dense(num_classes, init=he_normal(), activation=None)(pool)

    return net
示例#21
0
def create_cifar10_model(input, num_classes):
    c_map = [32, 64, 128]

    conv = conv_bn_relu(input, (3, 3), c_map[0])
    r1 = mobilenet_basic_stack(conv, 3, c_map[0])

    r2_1 = mobilenet_basic_inc(r1, c_map[1])
    r2_2 = mobilenet_basic_stack(r2_1, 3, c_map[1])

    r3_1 = mobilenet_basic_inc(r2_2, c_map[2])
    r3_2 = mobilenet_basic_stack(r3_1, 3, c_map[2])

    # Global average pooling and output
    pool = AveragePooling(filter_shape=(8, 8))(r3_2)
    z = Dense(num_classes, init=he_normal())(pool)
    return z
示例#22
0
def conv_bn_relu(layer_input,
                 filter_size,
                 num_filters,
                 strides,
                 init=he_normal(),
                 name=''):
    """
    Returns a convolutional layer followed by a batch normalization layer and then ReLU activation
    """
    r = conv_bn(layer_input,
                filter_size,
                num_filters,
                strides,
                init,
                name=name)
    return relu(r, name='{}_relu'.format(name))
示例#23
0
    def constructCNN(self, cntk_input):
        self.cntk_model = None
        if self.network_type == 'idsia':
            with C.layers.default_options(activation=C.relu):
                self.cntk_model = C.layers.Sequential([
                    C.layers.Convolution((3,3), strides=(1,1), num_filters=100, pad=False,
                        init=he_normal(), name="cntk_conv1"),
                    C.layers.MaxPooling((2,2), strides=(2,2), name="cntk_pool1"),
                    C.layers.Convolution((4,4), strides=(1,1), num_filters=150, pad=False,
                        init=he_normal(), name="cntk_conv2"),
                    C.layers.MaxPooling((2,2), strides=(2,2), name="cntk_pool2"),
                    C.layers.Convolution((3,3), strides=(1,1), num_filters=250, pad=False,
                        init=he_normal(), name="cntk_conv3"),
                    C.layers.MaxPooling((2,2), strides=(2,2), name="cntk_pool3"),

                    C.layers.Dense(200, init=he_normal(), name="cntk_fc1"),
                    C.layers.Dense(self.class_num, activation=None, init=he_normal(), name="cntk_fc2") # Leave the softmax for now
                ])(cntk_input)
        elif self.network_type == 'self':
            with C.layers.default_options(activation=C.relu):
                self.cntk_model = C.layers.Sequential([
                    C.layers.Convolution((5,5), strides=(2,2), num_filters=64, pad=True,
                        init=he_normal(), name="cntk_conv1"),
                    C.layers.MaxPooling((2,2), strides=(2,2), name="cntk_pool1"),
                    C.layers.Convolution((3,3), strides=(1,1), num_filters=256, pad=True,
                        init=he_normal(), name="cntk_conv2"),
                    C.layers.MaxPooling((2,2), strides=(2,2), name="cntk_pool2"),

                    C.layers.Dense(2048, init=he_normal(), name="cntk_fc1"),
                    C.layers.Dropout(0.5, name="cntk_dropout1"),
                    C.layers.Dense(self.class_num, activation=None, init=he_normal(), name="cntk_fc2") # Leave the softmax for now
                ])(cntk_input)
        elif self.network_type == "resnet-56":
            self.cntk_model = cntk_resnet.create_model(cntk_input, 9, self.class_num) # 6*9 + 2 = 56
        elif self.network_type == "resnet-32":
            self.cntk_model = cntk_resnet.create_model(cntk_input, 5, self.class_num) # 6*5 + 2 = 32
        elif self.network_type == "resnet-20":
            self.cntk_model = cntk_resnet.create_model(cntk_input, 3, self.class_num) # 6*3 + 2 = 20
示例#24
0
def conv_bn_relu_layer(input,
                       num_filters,
                       filter_size,
                       strides=(1, 1),
                       pad=True,
                       bnTimeConst=4096,
                       init=he_normal()):
    conv = Convolution(filter_size,
                       num_filters,
                       activation=None,
                       init=init,
                       pad=pad,
                       strides=strides,
                       bias=False)(input)
    bn = BatchNormalization(map_rank=1,
                            normalization_time_constant=bnTimeConst,
                            use_cntk_engine=False)(conv)
    return relu(bn)
示例#25
0
def bn_inception_model(input, labelDim, bnTimeConst):

    # 224 x 224 x 3
    conv1 = conv_bn_relu_layer(input, 64, (7,7), (2,2), True, bnTimeConst)
    # 112 x 112 x 64
    pool1 = MaxPooling(filter_shape=(3,3), strides=(2,2), pad=True)(conv1)
    # 56 x 56 x 64
    conv2a = conv_bn_relu_layer(pool1, 64, (1,1), (1,1), True, bnTimeConst)
    # 56 x 56 x 64
    conv2b = conv_bn_relu_layer(conv2a, 192, (3,3), (1,1), True, bnTimeConst)
    # 56 x 56 x 192
    pool2 = MaxPooling(filter_shape=(3,3), strides=(2,2), pad=True)(conv2b)
    
    # Inception Blocks
    # 28 x 28 x 192
    inception3a = inception_block_with_avgpool(pool2, 64, 64, 64, 64, 96, 32, bnTimeConst)
    # 28 x 28 x 256
    inception3b = inception_block_with_avgpool(inception3a, 64, 64, 96, 64, 96, 64, bnTimeConst) 
    # 28 x 28 x 320
    inception3c = inception_block_pass_through(inception3b, 0, 128, 160, 64, 96, 0, bnTimeConst) 
    # 14 x 14 x 576
    inception4a = inception_block_with_avgpool(inception3c, 224, 64, 96, 96, 128, 128, bnTimeConst) 
    # 14 x 14 x 576
    inception4b = inception_block_with_avgpool(inception4a, 192, 96, 128, 96, 128, 128, bnTimeConst) 
    # 14 x 14 x 576
    inception4c = inception_block_with_avgpool(inception4b, 160, 128, 160, 128, 160, 128, bnTimeConst) 
    # 14 x 14 x 576
    inception4d = inception_block_with_avgpool(inception4c, 96, 128, 192, 160, 192, 128, bnTimeConst) 
    # 14 x 14 x 576
    inception4e = inception_block_pass_through(inception4d, 0, 128, 192, 192, 256, 0, bnTimeConst)
    # 7 x 7 x 1024
    inception5a = inception_block_with_avgpool(inception4e, 352, 192, 320, 160, 224, 128, bnTimeConst) 
    # 7 x 7 x 1024
    inception5b = inception_block_with_maxpool(inception5a, 352, 192, 320, 192, 224, 128, bnTimeConst) 
    
    # Global Average
    # 7 x 7 x 1024
    pool3 = AveragePooling(filter_shape=(7,7))(inception5b)
    # 1 x 1 x 1024
    z = Dense(labelDim, init=he_normal())(pool3)

    return z
示例#26
0
def conv_bn(layer_input,
            filter_size,
            num_filters,
            strides,
            init=he_normal(),
            name=''):
    """
    Returns a convolutional layer followed by a batch normalization layer
    """
    r = Convolution(filter_size,
                    num_filters,
                    activation=None,
                    init=init,
                    pad=True,
                    strides=strides,
                    bias=True,
                    name=name)(layer_input)
    r = BatchNormalization(map_rank=1,
                           normalization_time_constant=4096,
                           name='{}_bn'.format(name))(r)
    return r
示例#27
0
def inception_v4_model(input, labelDim, bnTimeConst):
    l = pre_block(input, bnTimeConst)

    # 32 x 32
    A1 = Inception_A(l, 32, 32, 32, 64, 32, 64, bnTimeConst)
    A2 = Inception_A(A1, 32, 32, 32, 64, 32, 64, bnTimeConst)
    A3 = Inception_A(A2, 32, 32, 32, 64, 32, 64, bnTimeConst)
    A4 = Inception_A(A3, 32, 32, 32, 64, 32, 64, bnTimeConst)

    # 32 x 32 x 192
    RA = reduction_A(A4, 32, 32, 64, 64, bnTimeConst)

    # 16 x 16 x 288
    B1 = Inception_B(RA, 128, 32, 32, 64, 96, 32, 64, 96, bnTimeConst)
    B2 = Inception_B(B1, 128, 32, 32, 64, 96, 32, 64, 96, bnTimeConst)
    B3 = Inception_B(B2, 128, 32, 32, 64, 96, 32, 64, 96, bnTimeConst)
    B4 = Inception_B(B3, 128, 32, 32, 64, 96, 32, 64, 96, bnTimeConst)
    B5 = Inception_B(B4, 128, 32, 32, 64, 96, 32, 64, 96, bnTimeConst)
    B6 = Inception_B(B5, 128, 32, 32, 64, 96, 32, 64, 96, bnTimeConst)
    B7 = Inception_B(B6, 128, 32, 32, 64, 96, 32, 64, 96, bnTimeConst)

    # 16 x 16 x 352
    RB = reduction_B(B7, 64, 64, 96, bnTimeConst)

    # 8 x 8 x 512
    C1 = Inception_C(RB, 128, 128, 96, 64, 64, 128, 160, 64, bnTimeConst)
    C2 = Inception_C(C1, 128, 128, 96, 64, 64, 128, 160, 64, bnTimeConst)
    C3 = Inception_C(C2, 128, 128, 96, 64, 64, 128, 160, 64, bnTimeConst)

    # 8 x 8 x 512
    pool1 = AveragePooling(filter_shape=(8, 8))(C3)

    # 1 x 1 x 512
    z = Dense(labelDim, init=he_normal())(pool1)

    return z
示例#28
0
def gaussian(scale=1):
    return he_normal(scale=scale * math.sqrt(0.02))
def inception_v3_model(input, labelDim, dropRate, bnTimeConst):

    # 299 x 299 x 3
    conv1 = conv_bn_relu_layer(input, 32, (3, 3), (2, 2), False, bnTimeConst)
    # 149 x 149 x 32
    conv2 = conv_bn_relu_layer(conv1, 32, (3, 3), (1, 1), False, bnTimeConst)
    # 147 x 147 x 32
    conv3 = conv_bn_relu_layer(conv2, 64, (3, 3), (1, 1), True, bnTimeConst)
    # 147 x 147 x 64
    pool1 = MaxPooling(filter_shape=(3, 3), strides=(2, 2), pad=False)(conv3)
    # 73 x 73 x 64
    conv4 = conv_bn_relu_layer(pool1, 80, (1, 1), (1, 1), False, bnTimeConst)
    # 73 x 73 x 80
    conv5 = conv_bn_relu_layer(conv4, 192, (3, 3), (1, 1), False, bnTimeConst)
    # 71 x 71 x 192
    pool2 = MaxPooling(filter_shape=(3, 3), strides=(2, 2), pad=False)(conv5)
    # 35 x 35 x 192

    #
    # Inception Blocks
    #
    mixed1 = inception_block_1(pool2, 64, [48, 64], [64, 96, 96], 32,
                               bnTimeConst)
    # 35 x 35 x 256
    mixed2 = inception_block_1(mixed1, 64, [48, 64], [64, 96, 96], 64,
                               bnTimeConst)
    # 35 x 35 x 288
    mixed3 = inception_block_1(mixed2, 64, [48, 64], [64, 96, 96], 64,
                               bnTimeConst)
    # 35 x 35 x 288
    mixed4 = inception_block_2(mixed3, 384, [64, 96, 96], bnTimeConst)
    # 17 x 17 x 768
    mixed5 = inception_block_3(mixed4, 192, [128, 128, 192],
                               [128, 128, 128, 128, 192], 192, bnTimeConst)
    # 17 x 17 x 768
    mixed6 = inception_block_3(mixed5, 192, [160, 160, 192],
                               [160, 160, 160, 160, 192], 192, bnTimeConst)
    # 17 x 17 x 768
    mixed7 = inception_block_3(mixed6, 192, [160, 160, 192],
                               [160, 160, 160, 160, 192], 192, bnTimeConst)
    # 17 x 17 x 768
    mixed8 = inception_block_3(mixed7, 192, [192, 192, 192],
                               [192, 192, 192, 192, 192], 192, bnTimeConst)
    # 17 x 17 x 768
    mixed9 = inception_block_4(mixed8, [192, 320], [192, 192, 192, 192],
                               bnTimeConst)
    # 8 x 8 x 1280
    mixed10 = inception_block_5(mixed9, 320, [384, 384, 384],
                                [448, 384, 384, 384], 192, bnTimeConst)
    # 8 x 8 x 2048
    mixed11 = inception_block_5(mixed10, 320, [384, 384, 384],
                                [448, 384, 384, 384], 192, bnTimeConst)
    # 8 x 8 x 2048

    #
    # Prediction
    #
    pool3 = AveragePooling(filter_shape=(8, 8), pad=False)(mixed11)
    # 1 x 1 x 2048
    drop = Dropout(dropout_rate=dropRate)(pool3)
    # 1 x 1 x 2048
    z = Dense(labelDim, init=he_normal())(drop)

    #
    # Auxiliary
    #
    # 17 x 17 x 768
    auxPool = AveragePooling(filter_shape=(5, 5), strides=(3, 3),
                             pad=False)(mixed8)
    # 5 x 5 x 768
    auxConv1 = conv_bn_relu_layer(auxPool, 128, (1, 1), (1, 1), True,
                                  bnTimeConst)
    # 5 x 5 x 128
    auxConv2 = conv_bn_relu_layer(auxConv1, 768, (5, 5), (1, 1), False,
                                  bnTimeConst)
    # 1 x 1 x 768
    aux = Dense(labelDim, init=he_normal())(auxConv2)

    return {'z': z, 'aux': aux}
示例#30
0
def inception_v3_cifar_model(input, labelDim, bnTimeConst):
    # 32 x 32 x 3
    conv1 = conv_bn_relu_layer(input, 32, (3, 3), (1, 1), True, bnTimeConst)
    # 32 x 32 x 32
    conv2 = conv_bn_relu_layer(conv1, 32, (3, 3), (1, 1), True, bnTimeConst)
    # 32 x 32 x 32
    conv3 = conv_bn_relu_layer(conv2, 64, (3, 3), (1, 1), True, bnTimeConst)
    # 32 x 32 x 64
    conv4 = conv_bn_relu_layer(conv3, 80, (1, 1), (1, 1), True, bnTimeConst)
    # 32 x 32 x 80
    conv5 = conv_bn_relu_layer(conv4, 128, (3, 3), (1, 1), True, bnTimeConst)
    # 32 x 32 x 128
    pool1 = MaxPooling(filter_shape=(3, 3), strides=(2, 2), pad=True)(conv5)

    #
    # Inception Blocks
    # 16 x 16 x 128
    mixed1 = inception_block_1(pool1, 32, [32, 48], [48, 64, 64], 32,
                               bnTimeConst)
    # 16 x 16 x 160
    mixed2 = inception_block_1(mixed1, 32, [32, 48], [48, 64, 64], 64,
                               bnTimeConst)
    # 16 x 16 x 160
    mixed3 = inception_block_1(mixed2, 32, [32, 48], [48, 64, 64], 64,
                               bnTimeConst)
    # 16 x 16 x 160
    #mixed4 = inception_block_2(mixed3, 32, [48, 64, 64], bnTimeConst)
    mixed4 = inception_block_pass_through(mixed3, 0, 64, 80, 32, 48, 0,
                                          bnTimeConst)
    # 8 x 8 x 256
    mixed5 = inception_block_3(mixed4, 192, [48, 64, 64],
                               [128, 128, 128, 128, 192], 192, bnTimeConst)
    # 8 x 8 x
    mixed6 = inception_block_3(mixed5, 192, [160, 160, 192],
                               [160, 160, 160, 160, 192], 192, bnTimeConst)
    # 8 x 8 x 768
    mixed7 = inception_block_3(mixed6, 192, [160, 160, 192],
                               [160, 160, 160, 160, 192], 192, bnTimeConst)
    # 8 x 8 x 768
    mixed8 = inception_block_3(mixed7, 192, [192, 192, 192],
                               [192, 192, 192, 192, 192], 192, bnTimeConst)
    # 8 x 8 x 768
    mixed9 = inception_block_3(mixed8, 192, [192, 192, 192],
                               [192, 192, 192, 192, 192], 192, bnTimeConst)
    # 8 x 8 x 1280
    mixed10 = inception_block_5(mixed9, 320, [384, 384, 384],
                                [448, 384, 384, 384], 192, bnTimeConst)
    # 8 x 8 x 2048
    mixed11 = inception_block_5(mixed10, 320, [384, 384, 384],
                                [448, 384, 384, 384], 192, bnTimeConst)
    # 8 x 8 x 2048

    #
    # Prediction
    #
    pool3 = AveragePooling(filter_shape=(8, 8))(mixed11)
    # 1 x 1 x 2048
    drop = Dropout(dropout_rate=0.2)(pool3)
    # 1 x 1 x 2048
    z = Dense(labelDim, init=he_normal())(drop)

    #
    # Auxiliary
    #
    # 8 x 8 x 768
    auxPool = AveragePooling(filter_shape=(3, 3), strides=(1, 1),
                             pad=True)(mixed8)
    # 5 x 5 x 768
    auxConv1 = conv_bn_relu_layer(auxPool, 128, (1, 1), (1, 1), True,
                                  bnTimeConst)
    # 5 x 5 x 128
    auxConv2 = conv_bn_relu_layer(auxConv1, 256, (3, 3), (1, 1), True,
                                  bnTimeConst)
    # 1 x 1 x 768
    aux = Dense(labelDim, init=he_normal())(auxConv2)

    return {'z': z, 'aux': aux}
示例#31
0
def conv_bn_relu_layer(input, num_filters, filter_size, strides=(1,1), pad=True, bnTimeConst=4096, init=he_normal()):
    conv = Convolution(filter_size, num_filters, activation=None, init=init, pad=pad, strides=strides, bias=False)(input)
    bn   = BatchNormalization(map_rank=1, normalization_time_constant=bnTimeConst, use_cntk_engine=False)(conv)
    return relu(bn)
示例#32
0
def inception_v3_model(input, labelDim, dropRate, bnTimeConst):

    # 299 x 299 x 3
    conv1 = conv_bn_relu_layer(input, 32, (3,3), (2,2), False, bnTimeConst)
    # 149 x 149 x 32
    conv2 = conv_bn_relu_layer(conv1, 32, (3,3), (1,1), False, bnTimeConst)
    # 147 x 147 x 32
    conv3 = conv_bn_relu_layer(conv2, 64, (3,3), (1,1), True, bnTimeConst)
    # 147 x 147 x 64
    pool1 = MaxPooling(filter_shape=(3,3), strides=(2,2), pad=False)(conv3)
    # 73 x 73 x 64
    conv4 = conv_bn_relu_layer(pool1, 80, (1,1), (1,1), False, bnTimeConst)
    # 73 x 73 x 80
    conv5 = conv_bn_relu_layer(conv4, 192, (3,3), (1,1), False, bnTimeConst)
    # 71 x 71 x 192
    pool2 = MaxPooling(filter_shape=(3,3), strides=(2,2), pad=False)(conv5)
    # 35 x 35 x 192

    #
    # Inception Blocks
    #
    mixed1 = inception_block_1(pool2, 64, [48, 64], [64, 96, 96], 32, bnTimeConst)
    # 35 x 35 x 256
    mixed2 = inception_block_1(mixed1, 64, [48, 64], [64, 96, 96], 64, bnTimeConst)
    # 35 x 35 x 288
    mixed3 = inception_block_1(mixed2, 64, [48, 64], [64, 96, 96], 64, bnTimeConst)
    # 35 x 35 x 288
    mixed4 = inception_block_2(mixed3, 384, [64, 96, 96], bnTimeConst)
    # 17 x 17 x 768
    mixed5 = inception_block_3(mixed4, 192, [128, 128, 192], [128, 128, 128, 128, 192], 192, bnTimeConst)
    # 17 x 17 x 768
    mixed6 = inception_block_3(mixed5, 192, [160, 160, 192], [160, 160, 160, 160, 192], 192, bnTimeConst)
    # 17 x 17 x 768
    mixed7 = inception_block_3(mixed6, 192, [160, 160, 192], [160, 160, 160, 160, 192], 192, bnTimeConst)
    # 17 x 17 x 768
    mixed8 = inception_block_3(mixed7, 192, [192, 192, 192], [192, 192, 192, 192, 192], 192, bnTimeConst)
    # 17 x 17 x 768
    mixed9 = inception_block_4(mixed8, [192, 320], [192, 192, 192, 192], bnTimeConst)
    # 8 x 8 x 1280
    mixed10 = inception_block_5(mixed9, 320, [384, 384, 384], [448, 384, 384, 384], 192, bnTimeConst)
    # 8 x 8 x 2048
    mixed11 = inception_block_5(mixed10, 320, [384, 384, 384], [448, 384, 384, 384], 192, bnTimeConst)
    # 8 x 8 x 2048

    #
    # Prediction
    #
    pool3 = AveragePooling(filter_shape=(8,8), pad=False)(mixed11)
    # 1 x 1 x 2048
    drop = Dropout(dropout_rate=dropRate)(pool3)
    # 1 x 1 x 2048
    z = Dense(labelDim, init=he_normal())(drop)

    #
    # Auxiliary
    #
    # 17 x 17 x 768
    auxPool =  AveragePooling(filter_shape=(5,5), strides=(3,3), pad=False)(mixed8)
    # 5 x 5 x 768
    auxConv1 = conv_bn_relu_layer(auxPool, 128, (1,1), (1,1), True, bnTimeConst)
    # 5 x 5 x 128
    auxConv2 = conv_bn_relu_layer(auxConv1, 768, (5,5), (1,1), False, bnTimeConst)
    # 1 x 1 x 768
    aux = Dense(labelDim, init=he_normal())(auxConv2)

    return {
        'z':   z,
        'aux': aux
    }
示例#33
0
def inception_v3_cifar_model(input, labelDim, bnTimeConst):
    # 32 x 32 x 3
    conv1 = conv_bn_relu_layer(input, 32, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 32
    conv2 = conv_bn_relu_layer(conv1, 32, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 32
    conv3 = conv_bn_relu_layer(conv2, 64, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 64
    conv4 = conv_bn_relu_layer(conv3, 80, (1,1), (1,1), True, bnTimeConst)
    # 32 x 32 x 80
    conv5 = conv_bn_relu_layer(conv4, 128, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 128
    pool1 = MaxPooling(filter_shape=(3,3), strides=(2,2), pad=True)(conv5)

    #
    # Inception Blocks
    # 16 x 16 x 128
    mixed1 = inception_block_1(pool1, 32, [32, 48], [48, 64, 64], 32, bnTimeConst)
    # 16 x 16 x 176
    mixed2 = inception_block_1(mixed1, 32, [32, 48], [48, 64, 64], 32, bnTimeConst)
    # 16 x 16 x 176
    mixed3 = inception_block_1(mixed2, 32, [32, 48], [48, 64, 64], 32, bnTimeConst)
    # 16 x 16 x 176
    mixed4 = inception_block_pass_through(mixed3, 0, 32, 48, 32, 48, 0, bnTimeConst)
    # 8 x 8 x 256
    mixed5 = inception_block_3(mixed4, 64, [48, 64, 64], [48, 48, 48, 48, 64], 64, bnTimeConst)
    # 8 x 8 x 256
    mixed6 = inception_block_3(mixed5, 64, [48, 64, 64], [48, 48, 48, 48, 64], 64, bnTimeConst)
    # 8 x 8 x 256
    mixed7 = inception_block_3(mixed6, 64, [48, 64, 64], [48, 48, 48, 48, 64], 64, bnTimeConst)
    # 8 x 8 x 256
    mixed8 = inception_block_3(mixed7, 80, [48, 64, 64], [48, 48, 48, 48, 64], 80, bnTimeConst)
    # 8 x 8 x 288
    mixed9 = inception_block_3(mixed8, 128, [64, 128, 128], [64, 64, 64, 64, 128], 128, bnTimeConst)
    # 8 x 8 x 512
    mixed10 = inception_block_5(mixed9, 128, [64, 128, 128], [64, 64, 64, 128], 128, bnTimeConst)
    # 8 x 8 x 512
    mixed11 = inception_block_5(mixed10, 128, [64, 128, 128], [64, 64, 64, 128], 128, bnTimeConst)
    # 8 x 8 x 512

    #
    # Prediction
    #
    pool2 = AveragePooling(filter_shape=(8,8))(mixed11)
    # 1 x 1 x 512
    z = Dense(labelDim, init=he_normal())(pool2)

    #
    # Auxiliary
    #
    # 8 x 8 x 288
    auxPool =  AveragePooling(filter_shape=(3,3), strides=(1,1), pad=True)(mixed8)
    # 8 x 8 x 288
    auxConv1 = conv_bn_relu_layer(auxPool, 320, (1,1), (1,1), True, bnTimeConst)
    # 8 x 8 x 320
    auxConv2 = conv_bn_relu_layer(auxConv1, 512, (3,3), (1,1), True, bnTimeConst)
    # 8 x 8 x 512
    aux = Dense(labelDim, init=he_normal())(auxConv2)

    return {
        'z':   z,
        'aux': aux
    }
示例#34
0
def conv_bn(input, filter_size, num_filters, strides=(1,1), init=he_normal()):
    c = Convolution(filter_size, num_filters, activation=None, init=init, pad=True, strides=strides, bias=False)(input)
    r = BatchNormalization(map_rank=1, normalization_time_constant=4096, use_cntk_engine=False)(c)
    return r
示例#35
0
def conv_bn_relu(input, filter_size, num_filters, strides=(1,1), init=he_normal()):
    r = conv_bn(input, filter_size, num_filters, strides, init) 
    return relu(r)
示例#36
0
文件: nn.py 项目: shadrack4292/CNTK
def conv_bn_layer(input, out_feature_map_count, kernel_shape, strides, bn_time_const, b_value=0, sc_value=1):
    num_in_channels = input.shape[0]
    kernel_width = kernel_shape[0]
    kernel_height = kernel_shape[1]
    v_stride = strides[0]
    h_stride = strides[1]
    # TODO: use RandomNormal to initialize, needs to be exposed in the python api
    conv_params = parameter(
        shape=(out_feature_map_count, num_in_channels, kernel_height, kernel_width), init=he_normal()
    )
    conv_func = convolution(conv_params, input, (num_in_channels, v_stride, h_stride))

    # TODO: initialize using b_value and sc_value, needs to be exposed in the python api
    bias_params = parameter(shape=(out_feature_map_count), init=b_value)
    scale_params = parameter(shape=(out_feature_map_count), init=sc_value)
    running_mean = constant(0.0, (out_feature_map_count))
    running_invstd = constant(0.0, (out_feature_map_count))
    return batch_normalization(
        conv_func, scale_params, bias_params, running_mean, running_invstd, True, bn_time_const, use_cudnn_engine=True
    )