示例#1
0
    def __init__(self,
                 value=None,
                 shape=None,
                 dtype=None,
                 device=None,
                 name=''):

        if not device:
            device = use_default_device()

        if (np.isscalar(value) or isinstance(value, np.ndarray)) and not shape:
            shape = ()

        if dtype is not None:
            if isinstance(value, np.ndarray) and dtype != value.dtype:
                value = np.array(value, dtype=dtype)
        else:
            if isinstance(value, np.ndarray):
                dtype = value.dtype
            else:
                dtype = np.float32

        if np.isscalar(value):
            super(Constant, self).__init__(sanitize_shape(shape),
                                           sanitize_dtype_cntk(dtype), value,
                                           device, name)
        else:
            ndav = sanitize_value(shape, value, dtype, device)
            super(Constant, self).__init__(ndav, name)
示例#2
0
    def __init__(self,
                 shape=None,
                 init=None,
                 dtype=None,
                 device=None,
                 name=''):
        if not device:
            device = use_default_device()

        if dtype is not None:
            if isinstance(init, np.ndarray) and dtype != init.dtype:
                init = np.array(init, dtype=dtype)
        else:
            if np.isscalar(init) and not shape:
                shape = ()
            if isinstance(init, np.ndarray):
                dtype = init.dtype
            else:
                dtype = np.float32

        if init is None:
            init = 0

        if isinstance(init, (np.ndarray, list, float, int)):
            ndav = sanitize_value(shape, init, dtype, device)
            super(Parameter, self).__init__(ndav, name)
        else:
            shape = sanitize_shape(shape)
            cntk_dtype = sanitize_dtype_cntk(dtype)
            super(Parameter, self).__init__(shape, cntk_dtype, init, device,
                                            name)
示例#3
0
文件: core.py 项目: rgmendes/CNTK
 def __init__(self, shape, data_type, device=None):
     from cntk.internal import sanitize_shape, sanitize_dtype_cntk
     shape = sanitize_shape(shape)
     data_type = sanitize_dtype_cntk(data_type)
     if device is None:
         device = use_default_device()
     super(NDArrayView, self).__init__(data_type, cntk_py.StorageFormat_Dense, shape,
                                       device)
示例#4
0
文件: core.py 项目: OlegBoulanov/CNTK
 def __init__(self, shape, data_type, device=None):
     from cntk.internal import sanitize_shape, sanitize_dtype_cntk
     shape = sanitize_shape(shape)
     data_type = sanitize_dtype_cntk(data_type)
     if device is None:
         device = use_default_device()
     super(NDArrayView, self).__init__(data_type, cntk_py.StorageFormat_Dense, shape,
                                       device)
示例#5
0
    def __init__(self, shape=None, dtype=None, needs_gradient=False, is_sparse=False,
                 dynamic_axes=[cntk_py.Axis.default_batch_axis(), cntk_py.Axis.default_dynamic_axis()], name=''):
        shape = sanitize_shape(shape)

        if dtype is None:
            dtype = np.float32
        dtype = sanitize_dtype_cntk(dtype)

        dynamic_axes = sanitize_dynamic_axes(dynamic_axes)

        super(Variable, self).__init__(shape, is_sparse, dtype, needs_gradient, name, dynamic_axes)
示例#6
0
    def __init__(self, shape=None, dtype=None, needs_gradient=False, is_sparse=False,
                 dynamic_axes=[cntk_py.Axis.default_batch_axis(), cntk_py.Axis.default_dynamic_axis()], name=''):
        shape = sanitize_shape(shape)

        if dtype is None:
            dtype = np.float32
        dtype = sanitize_dtype_cntk(dtype)

        dynamic_axes = sanitize_dynamic_axes(dynamic_axes)

        super(Variable, self).__init__(shape, is_sparse, dtype, needs_gradient, name, dynamic_axes)
示例#7
0
    def __init__(self, value=None, shape=None, dtype=None, device=None, name=''):

        if dtype is None:
            if isinstance(value, np.ndarray):
                dtype = value.dtype
            else:
                dtype = np.float32

        if device is None:
            device = DeviceDescriptor.use_default_device()

        if np.isscalar(value):
            super(Constant, self).__init__(sanitize_shape(shape),
                    sanitize_dtype_cntk(dtype), value, device, name)
        else:
            ndav = sanitize_value(shape, value, dtype, device)
            super(Constant, self).__init__(ndav, name)
示例#8
0
    def __init__(self, shape=None, init=None, dtype=None,
                 device=None, name=''):

        if dtype is None:
            if isinstance(init, np.ndarray):
                dtype = init.dtype
            else:
                dtype = np.float32

        if init is None:
            init = 0

        if isinstance(init, (np.ndarray, list, float, int)):
            ndav = sanitize_value(shape, init, dtype, device)
            super(Parameter, self).__init__(ndav, name)
        else:
            shape = sanitize_shape(shape)
            cntk_dtype = sanitize_dtype_cntk(dtype)
            super(Parameter, self).__init__(shape, cntk_dtype, init,
                    device, name)
示例#9
0
    def __init__(self,
                 value=None,
                 shape=None,
                 dtype=None,
                 device=None,
                 name=''):

        if dtype is None:
            if isinstance(value, np.ndarray):
                dtype = value.dtype
            else:
                dtype = np.float32

        if device is None:
            device = DeviceDescriptor.use_default_device()

        if np.isscalar(value):
            super(Constant, self).__init__(sanitize_shape(shape),
                                           sanitize_dtype_cntk(dtype), value,
                                           device, name)
        else:
            ndav = sanitize_value(shape, value, dtype, device)
            super(Constant, self).__init__(ndav, name)
示例#10
0
    def __init__(self,
                 shape=None,
                 init=None,
                 dtype=None,
                 device=None,
                 name=''):

        if dtype is None:
            if isinstance(init, np.ndarray):
                dtype = init.dtype
            else:
                dtype = np.float32

        if init is None:
            init = 0

        if isinstance(init, (np.ndarray, list, float, int)):
            ndav = sanitize_value(shape, init, dtype, device)
            super(Parameter, self).__init__(ndav, name)
        else:
            shape = sanitize_shape(shape)
            cntk_dtype = sanitize_dtype_cntk(dtype)
            super(Parameter, self).__init__(shape, cntk_dtype, init, device,
                                            name)
示例#11
0
文件: typing.py 项目: tinyfx/CNTK
 def __getitem__(self, shape):
     shape = sanitize_shape(shape)
     return Variable._Type(shape, **kwargs)  # inject it for @Function
示例#12
0
    def create(var, data, seq_starts=None, device=None, read_only=False):
        '''
        Creates a :class:`~cntk.core.Value` object.

        Args:
            var (:class:`~cntk.variables.Variable`): variable into which
             ``data`` is passed
            data: data for `var`.
             It can be:

              * a single NumPy array denoting the full minibatch
              * a list of NumPy arrays or SciPy sparse CSR matrices
              * a single NumPy array denoting one parameter or constant
            seq_starts (list of `bool`\ s or None): if None, every sequence is
             treated as a new sequence. Otherwise, it is interpreted as a list of
             Booleans that tell whether a sequence is a new sequence (`True`) or a
             continuation of the sequence in the same slot of the previous
             minibatch (`False`)
            device (:class:`~cntk.device.DeviceDescriptor`, default None): device
             this value should be put on
            read_only (bool, default False): whether the data is read only

        Returns:
            :class:`~cntk.core.Value` object.
        '''
        if not isinstance(var, cntk_py.Variable):
            raise TypeError('Variable expected, but got "%s"' % type(var))

        if not var.dynamic_axes:
            # No dynamic axes -> we can pass everything in one go
            data = Value._as_best_data_type(var, data)
            # Since the core API's Value does not copy single NDArrayViews,
            # we cannot borrow the memory here.
            ndav = NDArrayView.from_data(data, device=device, borrow=False)

            return cntk_py.Value(ndav)

        elif len(var.dynamic_axes) <= 1 and isinstance(data,
                                                       list) and len(data) > 1:
            warnings.warn('you provided the minibatch data as a list, but '
                          'your corresponding input variable (uid "%s") has '
                          'only one dynamic axis (batch axis). To speed up '
                          'graph execution, please convert the data '
                          'beforehand into one NumPy array to speed up '
                          'training.' % var.uid)

        if isinstance(data, cntk_py.NDArrayView):
            return cntk_py.Value(data)

        if isinstance(data, np.ndarray):
            # The outermost axis has to be Python list. If the user passes a
            # full minibatch as one NumPy array, we have to convert it.
            if data.dtype == object:
                raise ValueError(
                    'dtype object is not supported. If this is a '
                    'batch of sequences, you need to pass them as a '
                    'pure-Python list of NumPy arrays')

            if seq_starts:
                data = list(np.atleast_1d(data))
            else:
                data = Value._as_best_data_type(var, data)
                ndav = NDArrayView.from_data(data, device)

                return cntk_py.Value(ndav)

        if isinstance(data, sparse.csr_matrix):
            if seq_starts:
                raise ValueError(
                    'seq_starts are not supported with data specified as a single '
                    'SciPy sparse CSR matrix. Please provide a list instead')
            else:
                data = Value._as_best_data_type(var, data)
                ndav = NDArrayView.from_data(data, device)

                return cntk_py.Value(ndav)

        if not isinstance(data, list):
            raise ValueError('batch must be a list of NumPy arrays or '
                             'SciPy CSR matrices')

        # NDArrayViews are all created on CPU. The Value object later then will
        # move it to the requested device.
        # As Value will later create copies anyways, we do not create copies in
        # NDArrayView itself. Because of that, we need to keep around the
        # instances _as_best_data_type() until we have passed them to
        # Value_create() where it will be copied further.
        data = [Value._as_best_data_type(var, sample) for sample in data]
        device = device or use_default_device()
        borrow = device.type() == DeviceKind.CPU
        list_of_ndavs = [
            NDArrayView.from_data(sample, device=cpu(), borrow=borrow)
            for sample in data
        ]

        from cntk.internal import sanitize_shape
        value = cntk_py.Value_create(sanitize_shape(var.shape), list_of_ndavs,
                                     seq_starts or [], device, read_only,
                                     True)  # always create a copy in Value

        return value
示例#13
0
文件: core.py 项目: OlegBoulanov/CNTK
    def create(var, data, seq_starts=None, device=None, read_only=False):
        '''
        Creates a :class:`~cntk.core.Value` object.

        Args:
            var (:class:`~cntk.variables.Variable`): variable into which
             ``data`` is passed
            data: data for `var`.
             It can be:

              * a single NumPy array denoting the full minibatch
              * a list of NumPy arrays or SciPy sparse CSR matrices
              * a single NumPy array denoting one parameter or constant
            seq_starts (list of `bool`\ s or None): if None, every sequence is
             treated as a new sequence. Otherwise, it is interpreted as a list of
             Booleans that tell whether a sequence is a new sequence (`True`) or a
             continuation of the sequence in the same slot of the previous
             minibatch (`False`)
            device (:class:`~cntk.device.DeviceDescriptor`, default None): device
             this value should be put on
            read_only (bool, default False): whether the data is read only

        Returns:
            :class:`~cntk.core.Value` object.
        '''
        if not isinstance(var, cntk_py.Variable):
            raise TypeError('Variable expected, but got "%s"' % type(var))

        if not var.dynamic_axes:
            # No dynamic axes -> we can pass everything in one go
            data = Value._as_best_data_type(var, data)
            # Since the core API's Value does not copy single NDArrayViews,
            # we cannot borrow the memory here.
            ndav = NDArrayView.from_data(data, device=device, borrow=False)

            return cntk_py.Value(ndav)

        elif len(var.dynamic_axes) <= 1 and isinstance(data, list) and len(data) > 1:
            warnings.warn('you provided the minibatch data as a list, but '
                          'your corresponding input variable (uid "%s") has '
                          'only one dynamic axis (batch axis). To speed up '
                          'graph execution, please convert the data '
                          'beforehand into one NumPy array to speed up '
                          'training.' % var.uid)

        if isinstance(data, cntk_py.NDArrayView):
            return cntk_py.Value(data)

        if isinstance(data, np.ndarray):
            # The outermost axis has to be Python list. If the user passes a
            # full minibatch as one NumPy array, we have to convert it.
            if data.dtype == object:
                raise ValueError('dtype object is not supported. If this is a '
                                 'batch of sequences, you need to pass them as a '
                                 'pure-Python list of NumPy arrays')

            if seq_starts:
                data = list(np.atleast_1d(data))
            else:
                data = Value._as_best_data_type(var, data)
                ndav = NDArrayView.from_data(data, device)

                return cntk_py.Value(ndav)

        if isinstance(data, sparse.csr_matrix):
            if seq_starts:
                raise ValueError('seq_starts are not supported with data specified as a single '
                                 'SciPy sparse CSR matrix. Please provide a list instead')
            else:
                data = Value._as_best_data_type(var, data)
                ndav = NDArrayView.from_data(data, device)

                return cntk_py.Value(ndav)

        if not isinstance(data, list):
            raise ValueError('batch must be a list of NumPy arrays or '
                             'SciPy CSR matrices')

        # NDArrayViews are all created on CPU. The Value object later then will
        # move it to the requested device.
        # As Value will later create copies anyways, we do not create copies in
        # NDArrayView itself. Because of that, we need to keep around the
        # instances _as_best_data_type() until we have passed them to
        # Value_create() where it will be copied further.
        data = [Value._as_best_data_type(var, sample) for sample in data]
        device = device or use_default_device()
        borrow = device.type() == DeviceKind.CPU
        list_of_ndavs = [NDArrayView.from_data(sample, device=cpu(),
                                               borrow=borrow)
                         for sample in data]

        from cntk.internal import sanitize_shape
        value = cntk_py.Value_create(
            sanitize_shape(var.shape),
            list_of_ndavs,
            seq_starts or [],
            device,
            read_only,
            True)  # always create a copy in Value

        return value