def create_image_mb_source(map_file, is_training, total_number_of_samples): if not os.path.exists(map_file): raise RuntimeError("File '%s' does not exist." %map_file) # transformation pipeline for the features has jitter/crop only when training transforms = [] if is_training: transforms += [ xforms.crop(crop_type='randomside', side_ratio=0.88671875, jitter_type='uniratio') # train uses jitter ] else: transforms += [ xforms.crop(crop_type='center', side_ratio=0.88671875) # test has no jitter ] transforms += [ xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear'), ] # deserializer return MinibatchSource( ImageDeserializer(map_file, StreamDefs( features = StreamDef(field='image', transforms=transforms), # first column in map file is referred to as 'image' labels = StreamDef(field='label', shape=num_classes))), # and second as 'label' randomize = is_training, epoch_size=total_number_of_samples, multithreaded_deserializer = True)
def create_mb_source(image_height, image_width, num_channels, map_file, mean_file, is_training): if not os.path.exists(map_file): raise RuntimeError("File '%s' does not exist." % (map_file)) # transformation pipeline for the features has jitter/crop only when training transforms = [] if is_training: transforms += [ xforms.crop(crop_type='randomside', side_ratio=0.875, jitter_type='uniratio') # train uses jitter ] else: transforms += [ xforms.crop(crop_type='center', side_ratio=0.875) # test has no jitter ] transforms += [ xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear'), ] if mean_file != '': transforms += [ xforms.mean(mean_file), ] # deserializer return MinibatchSource( ImageDeserializer(map_file, StreamDefs( features = StreamDef(field='image', transforms=transforms) # first column in map file is referred to as 'image' )), randomize = is_training, multithreaded_deserializer = True, max_sweeps = 1)
def create_image_mb_source(map_file, is_training, total_number_of_samples): if not os.path.exists(map_file): raise RuntimeError("File '%s' does not exist." %map_file) # transformation pipeline for the features has jitter/crop only when training transforms = [] if is_training: transforms += [ xforms.crop(crop_type='randomside', side_ratio=0.88671875, jitter_type='uniratio') # train uses jitter ] else: transforms += [ xforms.crop(crop_type='center', side_ratio=0.88671875) # test has no jitter ] transforms += [ xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear'), ] # deserializer return MinibatchSource( ImageDeserializer(map_file, StreamDefs( features=StreamDef(field='image', transforms=transforms), # first column in map file is referred to as 'image' labels=StreamDef(field='label', shape=num_classes))), # and second as 'label' randomize=is_training, max_samples=total_number_of_samples, multithreaded_deserializer=True)
def create_image_mb_source(map_file, mean_file, is_training, total_number_of_samples): if not os.path.exists(map_file) or not os.path.exists(mean_file): raise RuntimeError("File '%s' or '%s' does not exist." % (map_file, mean_file)) # transformation pipeline for the features has jitter/crop only when training transforms = [] if is_training: transforms += [ xforms.crop(crop_type='randomside', side_ratio=0.8, jitter_type='uniratio') # train uses jitter ] else: transforms += [ xforms.crop(crop_type='center', crop_size=IMAGE_WIDTH) ] transforms += [ xforms.scale(width=IMAGE_WIDTH, height=IMAGE_HEIGHT, channels=NUM_CHANNELS, interpolations='linear'), xforms.mean(mean_file) ] # deserializer return MinibatchSource( ImageDeserializer(map_file, StreamDefs( features=StreamDef(field='image', transforms=transforms), # first column in map file is referred to as 'image' labels=StreamDef(field='label', shape=NUM_CLASSES))), # and second as 'label' randomize=is_training, max_samples=total_number_of_samples, multithreaded_deserializer = True)
def test_crop_dimensionality(tmpdir): import io; from PIL import Image np.random.seed(1) file_mapping_path = str(tmpdir / 'file_mapping.txt') with open(file_mapping_path, 'w') as file_mapping: for i in range(5): data = np.random.randint(0, 2**8, (20, 40, 3)) image = Image.fromarray(data.astype('uint8'), "RGB") buf = io.BytesIO() image.save(buf, format='PNG') assert image.width == 40 and image.height == 20 label = str(i) # save to mapping + png file file_name = label + '.png' with open(str(tmpdir/file_name), 'wb') as f: f.write(buf.getvalue()) file_mapping.write('.../%s\t%s\n' % (file_name, label)) transforms1 = [ xforms.scale(width=40, height=20, channels=3), xforms.crop(crop_type='randomside', crop_size=(20, 10), side_ratio=(0.2, 0.5), jitter_type='uniratio')] transforms2 = [ xforms.crop(crop_type='randomside', crop_size=(20, 10), side_ratio=(0.2, 0.5), jitter_type='uniratio')] d1 = ImageDeserializer(file_mapping_path, StreamDefs( images1=StreamDef(field='image', transforms=transforms1), labels1=StreamDef(field='label', shape=10))) d2 = ImageDeserializer(file_mapping_path, StreamDefs( images2=StreamDef(field='image', transforms=transforms2), labels2=StreamDef(field='label', shape=10))) mbs = MinibatchSource([d1, d2]) for j in range(5): mb = mbs.next_minibatch(1) images1 = mb[mbs.streams.images1].asarray() images2 = mb[mbs.streams.images2].asarray() assert images1.shape == (1, 1, 3, 10, 20) assert (images1 == images2).all()
def create_image_mb_source(map_file, mean_file, train, total_number_of_samples): if not os.path.exists(map_file) or not os.path.exists(mean_file): raise RuntimeError("File '%s' or '%s' does not exist. Please run install_cifar10.py from DataSets/CIFAR-10 to fetch them" % (map_file, mean_file)) # transformation pipeline for the features has jitter/crop only when training transforms = [] if train: transforms += [ xforms.crop(crop_type='randomside', side_ratio=0.8, jitter_type='uniratio') # train uses jitter ] transforms += [ xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear'), xforms.mean(mean_file) ] # deserializer return C.io.MinibatchSource( C.io.ImageDeserializer( map_file, C.io.StreamDefs(features=C.io.StreamDef(field='image', transforms=transforms), # 1st col in mapfile referred to as 'image' labels=C.io.StreamDef(field='label', shape=num_classes))), # and second as 'label' randomize=train, max_samples=total_number_of_samples, multithreaded_deserializer=True)
def create_video_mb_source(map_files, num_channels, image_height, image_width, num_classes): transforms = [ xforms.crop(crop_type='center', crop_size=224), xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear') ] map_files = sorted(map_files, key=lambda x: int(x.split('Map_')[1].split('.')[0])) print(map_files) # Create multiple image sources sources = [] for i, map_file in enumerate(map_files): streams = { "feature" + str(i): StreamDef(field='image', transforms=transforms), "label" + str(i): StreamDef(field='label', shape=num_classes) } sources.append(ImageDeserializer(map_file, StreamDefs(**streams))) return MinibatchSource(sources, max_sweeps=1, randomize=False)
def create_reader(map_file, mean_file, is_training): print("Reading map file:", map_file) print("Reading mean file:", mean_file) if not os.path.exists(map_file) or not os.path.exists(mean_file): raise RuntimeError( "This tutorials depends 201A tutorials, please run 201A first.") # transformation pipeline for the features has jitter/crop only when training transforms = [] # train uses data augmentation (translation only) if is_training: transforms += [xforms.crop(crop_type='randomside', side_ratio=0.8)] transforms += [ xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear'), xforms.mean(mean_file) ] # deserializer return C.io.MinibatchSource( C.io.ImageDeserializer( map_file, C.io.StreamDefs( features=C.io.StreamDef( field='image', transforms=transforms ), # first column in map file is referred to as 'image' labels=C.io.StreamDef( field='label', shape=num_classes) # and second as 'label' )))
def create_reader(map_file1, map_file2): transforms = [xforms.crop(crop_type='randomside', side_ratio=0.8, jitter_type='uniratio'), xforms.scale(width=224, height=224, channels=3, interpolations='linear')] source1 = C.io.ImageDeserializer(map_file1, C.io.StreamDefs( source_image = C.io.StreamDef(field='image', transforms=transforms))) source2 = C.io.ImageDeserializer(map_file2, C.io.StreamDefs( target_image = C.io.StreamDef(field='image', transforms=transforms))) return C.io.MinibatchSource([source1, source2], max_samples=sys.maxsize, randomize=True, multithreaded_deserializer=False)
def create_reader(map_file, mean_file, train): """ Define the reader for both training and evaluation action. """ if not os.path.exists(map_file) or not os.path.exists(mean_file): raise RuntimeError("This example require prepared dataset. \ Please run cifar_prepare.py example.") transforms = [] if train: transforms += [xforms.crop(crop_type='randomside', side_ratio=0.8)] transforms += [ xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear'), xforms.mean(mean_file) ] return C.io.MinibatchSource( C.io.ImageDeserializer( map_file, C.io.StreamDefs(features=C.io.StreamDef(field='image', transforms=transforms), labels=C.io.StreamDef(field='label', shape=num_classes))))
def create_reader(map_file, is_train): transforms = [xforms.crop(crop_type="center", side_ratio=0.9), xforms.scale(width=img_width, height=img_height, channels=img_channel, interpolations="linear")] return C.io.MinibatchSource(C.io.ImageDeserializer(map_file, C.io.StreamDefs( image=C.io.StreamDef(field="image", transforms=transforms), dummy=C.io.StreamDef(field="label", shape=num_classes))), randomize=is_train, max_sweeps=C.io.INFINITELY_REPEAT if is_train else 1)
def create_image_mb_source(map_file, train, total_number_of_samples): ''' Input: map_file, train:bool, total_num_of_samples Function: - checks if it is training or testing phase - for training: It applies Image Augmentation techniques like cropping, width_shift, height_shift, horizontal_flip, color_contrast to prevent overfitting of the model. Return: MinibatchSource to be fed into the CNTK Model ''' print('Creating source for {}.'.format(map_file)) transforms = [] if train: # Apply translational and color transformations only for the Image set transforms += [ xforms.crop(crop_type='randomarea', area_ratio=(0.08, 1.0), aspect_ratio=(0.75, 1), jitter_type='uniratio'), # train uses jitter xforms.color(brightness_radius=0.4, contrast_radius=0.4, saturation_radius=0.4) ] # Scale the images to a specified size (224 x 224) as expected by the model transforms += [ xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='cubic') ] return C.io.MinibatchSource( C.io.ImageDeserializer( map_file, C.io.StreamDefs(features=C.io.StreamDef(field='image', transforms=transforms), # 1st col in mapfile referred to as 'image' labels=C.io.StreamDef(field='label', shape=num_classes))), # and second as 'label' randomize=train, max_samples=total_number_of_samples, multithreaded_deserializer=False)
def create_reader(map_file, train, dimensions, classes, total_number_of_samples): print( f"Reading map file: {map_file} with number of samples {total_number_of_samples}" ) # transformation pipeline for the features has jitter/crop only when training transforms = [] # finalize_network uses data augmentation (translation only) if train: transforms += [ xforms.crop(crop_type='randomside', area_ratio=(0.08, 1.0), aspect_ratio=(0.75, 1.3333), jitter_type='uniratio'), xforms.color(brightness_radius=0.4, contrast_radius=0.4, saturation_radius=0.4) ] transforms += [ xforms.scale(width=dimensions['width'], height=dimensions['height'], channels=dimensions['depth'], interpolations='linear') ] source = MinibatchSource(ImageDeserializer( map_file, StreamDefs(features=StreamDef(field='image', transforms=transforms), labels=StreamDef(field='label', shape=len(classes)))), randomize=train, max_samples=total_number_of_samples, multithreaded_deserializer=True) return source
def create_reader(map_file, mean_file, is_training): if not os.path.exists(map_file) or not os.path.exists(mean_file): raise RuntimeError( "File '%s' or '%s' does not exist. Please run install_cifar10.py from DataSets/CIFAR-10 to fetch them" % (map_file, mean_file)) # transformation pipeline for the features has jitter/crop only when training transforms = [] if is_training: transforms += [ xforms.crop(crop_type='RandomSide', side_ratio=0.8, jitter_type='uniRatio') # train uses jitter ] transforms += [ xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear'), xforms.mean(mean_file) ] # deserializer return cntk.io.MinibatchSource( cntk.io.ImageDeserializer( map_file, cntk.io.StreamDefs( features=cntk.io.StreamDef( field='image', transforms=transforms ), # first column in map file is referred to as 'image' labels=cntk.io.StreamDef( field='label', shape=num_classes))), # and second as 'label' randomize=is_training)
def create_image_mb_source(map_file, mean_file, train, total_number_of_samples): if not os.path.exists(map_file) or not os.path.exists(mean_file): raise RuntimeError("File '%s' or '%s' does not exist." % (map_file, mean_file)) # transformation pipeline for the features has jitter/crop only when training transforms = [] if train: transforms += [ xforms.crop(crop_type='randomarea', area_ratio=(0.08, 1.0), aspect_ratio=(0.75, 1.3333), jitter_type='uniratio'), # train uses jitter xforms.color(brightness_radius=0.4, contrast_radius=0.4, saturation_radius=0.4) ] else: transforms += [ C.io.transforms.crop(crop_type='center', side_ratio=0.875) # test has no jitter ] transforms += [ xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='cubic'), xforms.mean(mean_file) ] # deserializer return C.io.MinibatchSource( C.io.ImageDeserializer(map_file, C.io.StreamDefs( features=C.io.StreamDef(field='image', transforms=transforms), # 1st col in mapfile referred to as 'image' labels=C.io.StreamDef(field='label', shape=num_classes))), # and second as 'label' randomize=train, max_samples=total_number_of_samples, multithreaded_deserializer=True)
def test_create_two_image_deserializers(tmpdir): mbdata = r'''filename 0 filename2 0 ''' map_file = str(tmpdir / 'mbdata.txt') with open(map_file, 'w') as f: f.write(mbdata) image_width = 100 image_height = 200 num_channels = 3 transforms = [ xforms.crop(crop_type='randomside', side_ratio=0.5, jitter_type='uniratio'), xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear') ] image1 = ImageDeserializer( map_file, StreamDefs(f1=StreamDef(field='image', transforms=transforms))) image2 = ImageDeserializer( map_file, StreamDefs(f2=StreamDef(field='image', transforms=transforms))) mb_source = MinibatchSource([image1, image2]) assert isinstance(mb_source, MinibatchSource)
def create_image_mb_source(map_file, train, total_number_of_samples): print('Creating source for {}.'.format(map_file)) transforms = [] if train: transforms += [ xforms.crop(crop_type='randomarea', area_ratio=(0.08, 1.0), aspect_ratio=(0.75, 1), jitter_type='uniratio'), # train uses jitter xforms.color(brightness_radius=0.4, contrast_radius=0.4, saturation_radius=0.4) ] transforms += [ xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='cubic') ] # deserializer return C.io.MinibatchSource( C.io.ImageDeserializer( map_file, C.io.StreamDefs( features=C.io.StreamDef( field='image', transforms=transforms ), # 1st col in mapfile referred to as 'image' labels=C.io.StreamDef( field='label', shape=num_classes))), # and second as 'label' randomize=train, max_samples=total_number_of_samples, multithreaded_deserializer=True)
def create_image_mb_source(map_file, mean_file, train, total_number_of_samples): if not os.path.exists(map_file) or not os.path.exists(mean_file): raise RuntimeError("File '%s' or '%s' does not exist. Please run install_cifar10.py from DataSets/CIFAR-10 to fetch them" % (map_file, mean_file)) # transformation pipeline for the features has jitter/crop only when training transforms = [] if train: transforms += [ xforms.crop(crop_type='randomside', side_ratio=0.8, jitter_type='uniratio') # train uses jitter ] transforms += [ xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear'), xforms.mean(mean_file) ] # deserializer return cntk.io.MinibatchSource( cntk.io.ImageDeserializer(map_file, cntk.io.StreamDefs( features = cntk.io.StreamDef(field='image', transforms=transforms), # first column in map file is referred to as 'image' labels = cntk.io.StreamDef(field='label', shape=num_classes))), # and second as 'label' randomize=train, epoch_size=total_number_of_samples, multithreaded_deserializer = True)
def create_reader(map_file, mean_file, train, image_height=64, image_width=64, num_channels=3, num_classes=32): # transformation pipeline for the features has jitter/crop only when training # https://docs.microsoft.com/en-us/python/api/cntk.io.transforms?view=cntk-py-2.2 trs = [] if train: trs += [ transforms.crop(crop_type='randomside', side_ratio=0, jitter_type='none') # Horizontal flip enabled ] trs += [ transforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear'), transforms.mean(mean_file) ] # deserializer image_source = ImageDeserializer( map_file, StreamDefs( features=StreamDef( field='image', transforms=trs ), # first column in map file is referred to as 'image' labels=StreamDef(field='label', shape=num_classes) # and second as 'label' )) return MinibatchSource(image_source)
def create_reader(map_file, mean_file, is_training): if not os.path.exists(map_file) or not os.path.exists(mean_file): raise RuntimeError( "File '%s' or '%s' does not exist. Please run install_cifar10.py from DataSets/CIFAR-10 to fetch them" % (map_file, mean_file)) # crop transform 40 * 0.8 = 32 transforms = [] if is_training: transforms += [ xforms.crop(crop_type='RandomSide', side_ratio=0.8, jitter_type='uniRatio') # train uses jitter ] transforms += [ xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear'), xforms.mean(mean_file) ] # deserializer return C.io.MinibatchSource(C.io.ImageDeserializer( map_file, C.io.StreamDefs(features=C.io.StreamDef(field='image', transforms=transforms), labels=C.io.StreamDef(field='label', shape=num_classes))), randomize=is_training)
def test_create_two_image_deserializers(tmpdir): mbdata = r'''filename 0 filename2 0 ''' map_file = str(tmpdir / 'mbdata.txt') with open(map_file, 'w') as f: f.write(mbdata) image_width = 100 image_height = 200 num_channels = 3 transforms = [xforms.crop(crop_type='randomside', side_ratio=0.5, jitter_type='uniratio'), xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear')] image1 = ImageDeserializer( map_file, StreamDefs(f1=StreamDef(field='image', transforms=transforms))) image2 = ImageDeserializer( map_file, StreamDefs(f2=StreamDef(field='image', transforms=transforms))) mb_source = MinibatchSource([image1, image2]) assert isinstance(mb_source, MinibatchSource)
def create_mb_source(map_file, image_width, image_height, num_channels, num_classes, randomize=True): transforms = [] transforms += [xforms.crop(crop_type='randomside', side_ratio=0.8)] transforms += [xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear')] return MinibatchSource(ImageDeserializer(map_file, StreamDefs( features =StreamDef(field='image', transforms=transforms), labels =StreamDef(field='label', shape=num_classes))), randomize=randomize)
def create_mb(map_file, params, training_set): transforms = [] image_dimensions = params['image_dimensions'] num_classes = params['num_classes'] if training_set: # Scale to square-sized image. without this the cropping transform would chop the larger dimension of an # image to make it squared, and then take 0.9 crops from within the squared image. transforms += [ xforms.scale(width=2 * image_dimensions[0], height=2 * image_dimensions[1], channels=image_dimensions[2], scale_mode='pad', pad_value=114) ] transforms += [ xforms.crop(crop_type='randomside', side_ratio=0.9, jitter_type='uniratio') ] # Randomly crop square area #randomside enables Horizontal flipping #new_dim = side_ratio * min(old_w,old_h) , 0.9 * 224 = 201.6 #transforms += [xforms.crop(crop_type='center')] transforms += [ xforms.color(brightness_radius=0.2, contrast_radius=0.2, saturation_radius=0.2) ] transforms += [xforms.crop(crop_type='center', side_ratio=0.875)] # test has no jitter] # Scale down and pad transforms += [ xforms.scale(width=image_dimensions[0], height=image_dimensions[1], channels=image_dimensions[2], scale_mode='pad', pad_value=114) ] return MinibatchSource(ImageDeserializer( map_file, StreamDefs(features=StreamDef(field='image', transforms=transforms), labels=StreamDef(field='label', shape=num_classes))), randomize=training_set, multithreaded_deserializer=True)
def test_image(): map_file = "input.txt" mean_file = "mean.txt" feature_name = "f" image_width = 100 image_height = 200 num_channels = 3 label_name = "l" num_classes = 7 transforms = [ xforms.crop(crop_type='randomside', side_ratio=0.5, jitter_type='uniratio'), xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear'), xforms.mean(mean_file)] defs = StreamDefs(f=StreamDef(field='image', transforms=transforms), l=StreamDef(field='label', shape=num_classes)) image = ImageDeserializer(map_file, defs) config = to_dictionary(MinibatchSourceConfig([image], randomize=False)) assert len(config['deserializers']) == 1 d = config['deserializers'][0] assert d['type'] == 'ImageDeserializer' assert d['file'] == map_file assert set(d['input'].keys()) == {label_name, feature_name} l = d['input'][label_name] assert l['labelDim'] == num_classes f = d['input'][feature_name] assert set(f.keys()) == {'transforms'} t0, t1, t2, _ = f['transforms'] assert t0['type'] == 'Crop' assert t1['type'] == 'Scale' assert t2['type'] == 'Mean' assert t0['cropType'] == 'randomside' assert t0['sideRatio'] == 0.5 assert t0['aspectRatio'] == 1.0 assert t0['jitterType'] == 'uniratio' assert t1['width'] == image_width assert t1['height'] == image_height assert t1['channels'] == num_channels assert t1['interpolations'] == 'linear' assert t2['meanFile'] == mean_file config = to_dictionary(MinibatchSourceConfig([image, image])) assert len(config['deserializers']) == 2 config = to_dictionary(MinibatchSourceConfig([image, image, image])) assert len(config['deserializers']) == 3 # TODO depends on ImageReader.dll '''
def create_minibatch_source(map_file, is_training, num_outputs): '''Create a minibatch source''' transforms = [] # train uses data augmentation (translation only) if is_training: transforms += [xforms.crop(crop_type='randomside', side_ratio=0.8) ] transforms += [xforms.scale(width=IMAGE_WIDTH, height=IMAGE_HEIGHT, channels=3, interpolations='linear')] data_source = C.io.ImageDeserializer(MAP_FILE_PATH, C.io.StreamDefs( image = C.io.StreamDef(field='image', transforms=transforms), label = C.io.StreamDef(field='label', shape=num_outputs) )) return C.io.MinibatchSource([data_source], randomize=is_training)
def test_image_with_crop_range(): map_file = "input.txt" feature_name = "f" image_width = 100 image_height = 200 num_channels = 3 label_name = "l" num_classes = 7 transforms = [ xforms.crop(crop_type='randomside', crop_size=(512, 424), side_ratio=(0.2, 0.5), area_ratio=(0.1, 0.75), aspect_ratio=(0.3, 0.8), jitter_type='uniratio') ] defs = StreamDefs(f=StreamDef(field='image', transforms=transforms), l=StreamDef(field='label', shape=num_classes)) image = ImageDeserializer(map_file, defs) config = to_dictionary(MinibatchSourceConfig([image], randomize=False)) assert len(config['deserializers']) == 1 d = config['deserializers'][0] assert d['type'] == 'ImageDeserializer' assert d['file'] == map_file assert set(d['input'].keys()) == {label_name, feature_name} l = d['input'][label_name] assert l['labelDim'] == num_classes f = d['input'][feature_name] assert set(f.keys()) == {'transforms'} t0, _ = f['transforms'] assert t0['type'] == 'Crop' assert t0['cropType'] == 'randomside' assert t0['cropSize'] == '512:424' assert t0['sideRatio'] == '0.2:0.5' assert t0['aspectRatio'] == '0.3:0.8' assert t0['areaRatio'] == '0.1:0.75' assert t0['jitterType'] == 'uniratio' config = to_dictionary(MinibatchSourceConfig([image, image])) assert len(config['deserializers']) == 2 config = to_dictionary(MinibatchSourceConfig([image, image, image])) assert len(config['deserializers']) == 3
def create_video_mb_source(map_file, num_channels, image_height, image_width, num_classes): transforms = [ xforms.crop(crop_type='center', crop_size=224), xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear') ] return MinibatchSource(ImageDeserializer( map_file, StreamDefs(features=StreamDef(field='image', transforms=transforms), labels=StreamDef(field='label', shape=num_classes))), max_sweeps=1, randomize=False)
def test_image_with_crop_range(): map_file = "input.txt" feature_name = "f" image_width = 100 image_height = 200 num_channels = 3 label_name = "l" num_classes = 7 transforms = [ xforms.crop(crop_type='randomside', crop_size=(512,424), side_ratio=(0.2, 0.5), area_ratio=(0.1, 0.75), aspect_ratio=(0.3, 0.8), jitter_type='uniratio') ] defs = StreamDefs(f=StreamDef(field='image', transforms=transforms), l=StreamDef(field='label', shape=num_classes)) image = ImageDeserializer(map_file, defs) config = to_dictionary(MinibatchSourceConfig([image], randomize=False)) assert len(config['deserializers']) == 1 d = config['deserializers'][0] assert d['type'] == 'ImageDeserializer' assert d['file'] == map_file assert set(d['input'].keys()) == {label_name, feature_name} l = d['input'][label_name] assert l['labelDim'] == num_classes f = d['input'][feature_name] assert set(f.keys()) == {'transforms'} t0, _ = f['transforms'] assert t0['type'] == 'Crop' assert t0['cropType'] == 'randomside' assert t0['cropSize'] == '512:424' assert t0['sideRatio'] == '0.2:0.5' assert t0['aspectRatio'] == '0.3:0.8' assert t0['areaRatio'] == '0.1:0.75' assert t0['jitterType'] == 'uniratio' config = to_dictionary(MinibatchSourceConfig([image, image])) assert len(config['deserializers']) == 2 config = to_dictionary(MinibatchSourceConfig([image, image, image])) assert len(config['deserializers']) == 3
def create_mb_source(map_file, image_width, image_height, num_channels, num_classes, boTrain): transforms = [] if boTrain: # Scale to square-sized image. without this the cropping transform would chop the larger dimension of an # image to make it squared, and then take 0.9 crops from within the squared image. transforms += [xforms.scale(width=2*image_width, height=2*image_height, channels=num_channels, interpolations='linear', scale_mode='pad', pad_value=114)] transforms += [xforms.crop(crop_type='randomside', side_ratio=0.9, jitter_type='uniratio')] # Randomly crop square area transforms += [xforms.scale(width=image_width, height=image_height, channels=num_channels, # Scale down and pad interpolations='linear', scale_mode='pad', pad_value=114)] if boTrain: transforms += [xforms.color(brightness_radius=0.2, contrast_radius=0.2, saturation_radius=0.2)] return MinibatchSource(ImageDeserializer(map_file, StreamDefs( features = StreamDef(field='image', transforms=transforms), labels = StreamDef(field='label', shape=num_classes))), randomize = boTrain, multithreaded_deserializer=True)
def create_minibatch_source(map_filename, num_classes): transforms = [xforms.crop(crop_type='randomside', side_ratio=0.85, jitter_type='uniratio'), xforms.scale(width=224, height=224, channels=3, interpolations='linear'), xforms.color(brightness_radius=0.2, contrast_radius=0.2, saturation_radius=0.2)] return(cntk.io.MinibatchSource(cntk.io.ImageDeserializer( map_filename, cntk.io.StreamDefs( features=cntk.io.StreamDef( field='image', transforms=transforms, is_sparse=False), labels=cntk.io.StreamDef( field='label', shape=num_classes, is_sparse=False)))))
def create_image_mb_source(map_file, mean_file, train, total_number_of_samples): """ Creates minibatch source """ if not os.path.exists(map_file) or not os.path.exists(mean_file): raise RuntimeError("File '%s' or '%s' does not exist. " % (map_file, mean_file)) # transformation pipeline for the features has jitter/crop only when training transforms = [] if train: imgfolder = os.path.join(os.path.split(map_file)[0], 'train') transforms += [ xforms.crop(crop_type='randomside', side_ratio=0.8, jitter_type='uniratio') # train uses jitter ] else: imgfolder = os.path.join(os.path.split(map_file)[0], 'test') transforms += [ xforms.scale(width=_IMAGE_WIDTH, height=_IMAGE_HEIGHT, channels=_NUM_CHANNELS, interpolations='linear'), xforms.mean(mean_file) ] map_file = process_map_file(map_file, imgfolder) # deserializer return MinibatchSource( ImageDeserializer( map_file, StreamDefs( features=StreamDef(field='image', transforms=transforms), # first column in map file is referred to as 'image' labels=StreamDef( field='label', shape=_NUM_CLASSES))), # and second as 'label' randomize=train, max_samples=total_number_of_samples, multithreaded_deserializer=True)
def create_reader(map_file, mean_file, train, image_height=800, image_width=150, num_channels=3, num_classes=32): # transformation pipeline for the features has crop only when training trs = [] if train: trs += [ transforms.crop(crop_type='center', aspect_ratio=0.1875, side_ratio=0.95, jitter_type='uniratio') # Horizontal flip enabled ] trs += [ transforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear'), # transforms.mean(mean_file) ] # deserializer image_source=ImageDeserializer(map_file, StreamDefs( features = StreamDef(field='image', transforms=trs), # first column in map file is referred to as 'image' labels = StreamDef(field='label', shape=num_classes) # and second as 'label' )) return MinibatchSource(image_source)
def create_reader(map_file, mean_file, is_training): if not os.path.exists(map_file) or not os.path.exists(mean_file): raise RuntimeError("File '%s' or '%s' does not exist. Please run install_cifar10.py from DataSets/CIFAR-10 to fetch them" % (map_file, mean_file)) # transformation pipeline for the features has jitter/crop only when training transforms = [] if is_training: transforms += [ xforms.crop(crop_type='randomside', side_ratio=0.8, jitter_type='uniratio') # train uses jitter ] transforms += [ xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear'), xforms.mean(mean_file) ] # deserializer return MinibatchSource(ImageDeserializer(map_file, StreamDefs( features=StreamDef(field='image', transforms=transforms), # first column in map file is referred to as 'image' labels=StreamDef(field='label', shape=num_classes))), # and second as 'label' randomize=is_training, max_sweeps = INFINITELY_REPEAT if is_training else 1)
def create_img_reader(Dataset_result,train,train_args): for file in Dataset_result: if file.find('map.txt') != -1: map_file = file if file.find('mean.xml') != -1: mean_file = file if not os.path.exists(map_file) or not os.path.exists(mean_file): return print (r'map.txt or mean.xml file is not found') transforms = [] if train: transforms +=[ xforms.crop(crop_type='randomside',side_ratio=0.8,jitter_type='uniratio') ] transforms += [ xforms.scale(width=train_args.resize,height=train_args.resize,channels=train_args.channels,interpolations='linear'), xforms.mean(mean_file) ] return cntk.io.MinibatchSource(cntk.io.ImageDeserializer(map_file, cntk.io.StreamDefs( features = cntk.io.StreamDef(field='image', transforms=transforms), labels = cntk.io.StreamDef(field='label', shape=train_args.out_dim))), randomize=train)
def create_reader(map_file): transforms = [ xforms.crop(crop_type='randomside', side_ratio=0.85, jitter_type='uniratio'), xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear'), xforms.color(brightness_radius=0.2, contrast_radius=0.2, saturation_radius=0.2) ] return (MinibatchSource( ImageDeserializer( map_file, StreamDefs(features=StreamDef(field='image', transforms=transforms, is_sparse=False), labels=StreamDef(field='label', shape=num_classes, is_sparse=False)))))
def create_reader(map_file, train): print("Reading map file:", map_file) if not os.path.exists(map_file): raise RuntimeError("no training file.") # 定义好transform transforms = [] if train: transforms += [transform.crop(crop_type='randomside', side_ratio=0.8)] transforms += [ transform.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear') ] # 解析 return C.io.MinibatchSource( C.io.ImageDeserializer( map_file, C.io.StreamDefs(features=C.io.StreamDef(field='image', transforms=transforms), labels=C.io.StreamDef(field='label', shape=num_classes))))
def test_image(tmpdir): map_file = "input.txt" mean_file = "mean.txt" feature_name = "f" image_width = 100 image_height = 200 num_channels = 3 label_name = "l" num_classes = 7 transforms = [ xforms.crop(crop_type='randomside', side_ratio=0.5, jitter_type='uniratio'), xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear'), xforms.mean(mean_file)] defs = StreamDefs(f=StreamDef(field='image', transforms=transforms), l=StreamDef(field='label', shape=num_classes)) image = ImageDeserializer(map_file, defs) config = to_dictionary(MinibatchSourceConfig([image], randomize=False)) # Multithreading should be on by default for the ImageDeserializer. assert config['multiThreadedDeserialization'] is True assert len(config['deserializers']) == 1 d = config['deserializers'][0] assert d['type'] == 'ImageDeserializer' assert d['file'] == map_file assert set(d['input'].keys()) == {label_name, feature_name} l = d['input'][label_name] assert l['labelDim'] == num_classes f = d['input'][feature_name] assert set(f.keys()) == {'transforms'} t0, t1, t2, _ = f['transforms'] assert t0['type'] == 'Crop' assert t1['type'] == 'Scale' assert t2['type'] == 'Mean' assert t0['cropType'] == 'randomside' assert t0['cropSize'] == '0:0' assert t0['sideRatio'] == '0.5:0.5' assert t0['aspectRatio'] == '1:1' assert t0['areaRatio'] == '0:0' assert t0['jitterType'] == 'uniratio' assert t1['width'] == image_width assert t1['height'] == image_height assert t1['channels'] == num_channels assert t1['interpolations'] == 'linear' assert t2['meanFile'] == mean_file config = to_dictionary(MinibatchSourceConfig([image, image])) assert len(config['deserializers']) == 2 ctf = create_ctf_deserializer(tmpdir) config = to_dictionary(MinibatchSourceConfig([image, ctf, image])) # Multithreading should still be enabled. assert config['multiThreadedDeserialization'] is True assert len(config['deserializers']) == 3 # TODO depends on ImageReader.dll '''
def test_image(): map_file = "input.txt" mean_file = "mean.txt" epoch_size = 150 feature_name = "f" image_width = 100 image_height = 200 num_channels = 3 label_name = "l" num_classes = 7 transforms = [xforms.crop(crop_type='randomside', side_ratio=0.5, jitter_type='uniratio'), xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear'), xforms.mean(mean_file)] image = ImageDeserializer(map_file, StreamDefs(f = StreamDef(field='image', transforms=transforms), l = StreamDef(field='label', shape=num_classes))) rc = _ReaderConfig(image, randomize=False, epoch_size=epoch_size) assert rc['epochSize'].value == epoch_size assert rc['randomize'] == False assert rc['sampleBasedRandomizationWindow'] == False assert len(rc['deserializers']) == 1 d = rc['deserializers'][0] assert d['type'] == 'ImageDeserializer' assert d['file'] == map_file assert set(d['input'].keys()) == {label_name, feature_name} l = d['input'][label_name] assert l['labelDim'] == num_classes f = d['input'][feature_name] assert set(f.keys()) == { 'transforms' } t0, t1, t2 = f['transforms'] assert t0['type'] == 'Crop' assert t1['type'] == 'Scale' assert t2['type'] == 'Mean' assert t0['cropType'] == 'randomside' assert t0['sideRatio'] == 0.5 assert t0['aspectRatio'] == 1.0 assert t0['jitterType'] == 'uniratio' assert t1['width'] == image_width assert t1['height'] == image_height assert t1['channels'] == num_channels assert t1['interpolations'] == 'linear' assert t2['meanFile'] == mean_file rc = _ReaderConfig(image, randomize=False, randomization_window = 100, sample_based_randomization_window = True, epoch_size=epoch_size) assert rc['epochSize'].value == epoch_size assert rc['randomize'] == False assert rc['sampleBasedRandomizationWindow'] == True assert len(rc['deserializers']) == 1 d = rc['deserializers'][0] assert d['type'] == 'ImageDeserializer' assert d['file'] == map_file assert set(d['input'].keys()) == {label_name, feature_name} l = d['input'][label_name] assert l['labelDim'] == num_classes rc = _ReaderConfig(image, randomize=True, randomization_window = 100, sample_based_randomization_window = True, epoch_size=epoch_size) assert rc['epochSize'].value == epoch_size assert rc['randomize'] == True assert rc['sampleBasedRandomizationWindow'] == True assert len(rc['deserializers']) == 1 d = rc['deserializers'][0] assert d['type'] == 'ImageDeserializer' assert d['file'] == map_file assert set(d['input'].keys()) == {label_name, feature_name} l = d['input'][label_name] assert l['labelDim'] == num_classes # TODO depends on ImageReader.dll '''