示例#1
0
def train(network, trainer, od_minibatch_source, reader_dev, minibatch_size,
          epochs_to_train, cfg):

    input_map = {
        od_minibatch_source.image_si: network['features'],
        od_minibatch_source.roi_si: network['roi_input'],
        od_minibatch_source.dims_si: network['dim_input']
    }
    # Train all minibatches

    progress_printer = ProgressPrinter(tag='Training',
                                       num_epochs=epochs_to_train)

    for epoch in range(epochs_to_train):  # loop over epochs
        sample_count = 0
        while sample_count < cfg[
                "DATA"].NUM_TRAIN_IMAGES:  # loop over minibatches in the epoch
            data = od_minibatch_source.next_minibatch(min(
                cfg.MB_SIZE, cfg["DATA"].NUM_TRAIN_IMAGES - sample_count),
                                                      input_map=input_map)
            trainer.train_minibatch(data)  # update model with it
            sample_count += trainer.previous_minibatch_sample_count  # count samples processed so far
            progress_printer.update_with_trainer(
                trainer, with_metric=True)  # log progress
            if sample_count % 100 == 0:
                print("Processed {} samples".format(sample_count))

        progress_printer.epoch_summary(with_metric=True)

    return create_faster_rcnn_eval_model(network['loss'], network['features'],
                                         network['dim_input'], cfg)
示例#2
0
def train_fast_rcnn(cfg):
    # Train only if no model exists yet
    model_path = cfg['MODEL_PATH']
    if os.path.exists(model_path) and cfg["CNTK"].MAKE_MODE:
        print("Loading existing model from %s" % model_path)
        return load_model(model_path)
    else:
        # Input variables denoting features and labeled ground truth rois (as 5-tuples per roi)
        image_input = input_variable(shape=(cfg.NUM_CHANNELS, cfg.IMAGE_HEIGHT,
                                            cfg.IMAGE_WIDTH),
                                     dynamic_axes=[Axis.default_batch_axis()],
                                     name=cfg["MODEL"].FEATURE_NODE_NAME)
        roi_proposals = input_variable(
            (cfg.NUM_ROI_PROPOSALS, 4),
            dynamic_axes=[Axis.default_batch_axis()],
            name="roi_proposals")
        label_targets = input_variable(
            (cfg.NUM_ROI_PROPOSALS, cfg["DATA"].NUM_CLASSES),
            dynamic_axes=[Axis.default_batch_axis()])
        bbox_targets = input_variable(
            (cfg.NUM_ROI_PROPOSALS, 4 * cfg["DATA"].NUM_CLASSES),
            dynamic_axes=[Axis.default_batch_axis()])
        bbox_inside_weights = input_variable(
            (cfg.NUM_ROI_PROPOSALS, 4 * cfg["DATA"].NUM_CLASSES),
            dynamic_axes=[Axis.default_batch_axis()])

        # Instantiate the Fast R-CNN prediction model and loss function
        loss, pred_error = create_fast_rcnn_model(image_input, roi_proposals,
                                                  label_targets, bbox_targets,
                                                  bbox_inside_weights, cfg)
        if isinstance(loss, cntk.Variable):
            loss = combine([loss])

        if cfg["CNTK"].DEBUG_OUTPUT:
            print("Storing graphs and models to %s." % cfg.OUTPUT_PATH)
            plot(
                loss,
                os.path.join(cfg.OUTPUT_PATH,
                             "graph_frcn_train." + cfg["CNTK"].GRAPH_TYPE))

        # Set learning parameters
        lr_factor = cfg["CNTK"].LR_FACTOR
        lr_per_sample_scaled = [
            x * lr_factor for x in cfg["CNTK"].LR_PER_SAMPLE
        ]
        mm_schedule = momentum_schedule(cfg["CNTK"].MOMENTUM_PER_MB)
        l2_reg_weight = cfg["CNTK"].L2_REG_WEIGHT
        epochs_to_train = cfg["CNTK"].MAX_EPOCHS

        print("Using base model:   {}".format(cfg["MODEL"].BASE_MODEL))
        print("lr_per_sample:      {}".format(lr_per_sample_scaled))

        # --- train ---
        # Instantiate the learners and the trainer object
        params = loss.parameters
        biases = [p for p in params if '.b' in p.name or 'b' == p.name]
        others = [p for p in params if not p in biases]
        bias_lr_mult = cfg["CNTK"].BIAS_LR_MULT
        lr_schedule = learning_parameter_schedule_per_sample(
            lr_per_sample_scaled)
        learner = momentum_sgd(others,
                               lr_schedule,
                               mm_schedule,
                               l2_regularization_weight=l2_reg_weight,
                               unit_gain=False,
                               use_mean_gradient=True)

        bias_lr_per_sample = [
            v * bias_lr_mult for v in cfg["CNTK"].LR_PER_SAMPLE
        ]
        bias_lr_schedule = learning_parameter_schedule_per_sample(
            bias_lr_per_sample)
        bias_learner = momentum_sgd(biases,
                                    bias_lr_schedule,
                                    mm_schedule,
                                    l2_regularization_weight=l2_reg_weight,
                                    unit_gain=False,
                                    use_mean_gradient=True)
        trainer = Trainer(None, (loss, pred_error), [learner, bias_learner])

        # Get minibatches of images and perform model training
        print("Training model for %s epochs." % epochs_to_train)
        log_number_of_parameters(loss)

        # Create the minibatch source
        if cfg.USE_PRECOMPUTED_PROPOSALS:
            proposal_provider = ProposalProvider.fromfile(
                cfg["DATA"].TRAIN_PRECOMPUTED_PROPOSALS_FILE,
                cfg.NUM_ROI_PROPOSALS)
        else:
            proposal_provider = ProposalProvider.fromconfig(cfg)

        od_minibatch_source = ObjectDetectionMinibatchSource(
            cfg["DATA"].TRAIN_MAP_FILE,
            cfg["DATA"].TRAIN_ROI_FILE,
            max_annotations_per_image=cfg.INPUT_ROIS_PER_IMAGE,
            pad_width=cfg.IMAGE_WIDTH,
            pad_height=cfg.IMAGE_HEIGHT,
            pad_value=cfg["MODEL"].IMG_PAD_COLOR,
            randomize=True,
            use_flipping=cfg["TRAIN"].USE_FLIPPED,
            max_images=cfg["DATA"].NUM_TRAIN_IMAGES,
            num_classes=cfg["DATA"].NUM_CLASSES,
            proposal_provider=proposal_provider,
            provide_targets=True,
            proposal_iou_threshold=cfg.BBOX_THRESH,
            normalize_means=None
            if not cfg.BBOX_NORMALIZE_TARGETS else cfg.BBOX_NORMALIZE_MEANS,
            normalize_stds=None
            if not cfg.BBOX_NORMALIZE_TARGETS else cfg.BBOX_NORMALIZE_STDS)

        # define mapping from reader streams to network inputs
        input_map = {
            od_minibatch_source.image_si: image_input,
            od_minibatch_source.proposals_si: roi_proposals,
            od_minibatch_source.label_targets_si: label_targets,
            od_minibatch_source.bbox_targets_si: bbox_targets,
            od_minibatch_source.bbiw_si: bbox_inside_weights
        }

        progress_printer = ProgressPrinter(tag='Training',
                                           num_epochs=epochs_to_train,
                                           gen_heartbeat=True)
        for epoch in range(epochs_to_train):  # loop over epochs
            sample_count = 0
            while sample_count < cfg[
                    "DATA"].NUM_TRAIN_IMAGES:  # loop over minibatches in the epoch
                data = od_minibatch_source.next_minibatch(min(
                    cfg.MB_SIZE, cfg["DATA"].NUM_TRAIN_IMAGES - sample_count),
                                                          input_map=input_map)

                trainer.train_minibatch(data)  # update model with it
                sample_count += trainer.previous_minibatch_sample_count  # count samples processed so far
                progress_printer.update_with_trainer(
                    trainer, with_metric=True)  # log progress
                if sample_count % 100 == 0:
                    continue
                    #print("Processed {} samples".format(sample_count))

            progress_printer.epoch_summary(with_metric=True)

        eval_model = create_fast_rcnn_eval_model(loss, image_input,
                                                 roi_proposals, cfg)
        eval_model.save(cfg['MODEL_PATH'])
        return eval_model
示例#3
0
def train_model(image_input, roi_input, dims_input, loss, pred_error,
                lr_per_sample, mm_schedule, l2_reg_weight, epochs_to_train, cfg,
                rpn_rois_input=None, buffered_rpn_proposals=None):
    if isinstance(loss, cntk.Variable):
        loss = combine([loss])

    params = loss.parameters
    biases = [p for p in params if '.b' in p.name or 'b' == p.name]
    others = [p for p in params if not p in biases]
    bias_lr_mult = cfg["CNTK"].BIAS_LR_MULT

    if cfg["CNTK"].DEBUG_OUTPUT:
        print("biases")
        for p in biases: print(p)
        print("others")
        for p in others: print(p)
        print("bias_lr_mult: {}".format(bias_lr_mult))

    # Instantiate the learners and the trainer object
    lr_schedule = learning_parameter_schedule_per_sample(lr_per_sample)
    learner = momentum_sgd(others, lr_schedule, mm_schedule, l2_regularization_weight=l2_reg_weight,
                           unit_gain=False, use_mean_gradient=True)

    bias_lr_per_sample = [v * bias_lr_mult for v in lr_per_sample]
    bias_lr_schedule = learning_parameter_schedule_per_sample(bias_lr_per_sample)
    bias_learner = momentum_sgd(biases, bias_lr_schedule, mm_schedule, l2_regularization_weight=l2_reg_weight,
                           unit_gain=False, use_mean_gradient=True)
    trainer = Trainer(None, (loss, pred_error), [learner, bias_learner])

    # Get minibatches of images and perform model training
    print("Training model for %s epochs." % epochs_to_train)
    log_number_of_parameters(loss)

    # Create the minibatch source
    if buffered_rpn_proposals is not None:
        proposal_provider = ProposalProvider.fromlist(buffered_rpn_proposals, requires_scaling=False)
    else:
        proposal_provider = None

    od_minibatch_source = ObjectDetectionMinibatchSource(
        cfg["DATA"].TRAIN_MAP_FILE, cfg["DATA"].TRAIN_ROI_FILE,
        num_classes=cfg["DATA"].NUM_CLASSES,
        max_annotations_per_image=cfg.INPUT_ROIS_PER_IMAGE,
        pad_width=cfg.IMAGE_WIDTH,
        pad_height=cfg.IMAGE_HEIGHT,
        pad_value=cfg["MODEL"].IMG_PAD_COLOR,
        randomize=True,
        use_flipping=cfg["TRAIN"].USE_FLIPPED,
        max_images=cfg["DATA"].NUM_TRAIN_IMAGES,
        proposal_provider=proposal_provider)

    # define mapping from reader streams to network inputs
    input_map = {
        od_minibatch_source.image_si: image_input,
        od_minibatch_source.roi_si: roi_input,
    }
    if buffered_rpn_proposals is not None:
        input_map[od_minibatch_source.proposals_si] = rpn_rois_input
    else:
        input_map[od_minibatch_source.dims_si] = dims_input

    progress_printer = ProgressPrinter(tag='Training', num_epochs=epochs_to_train, gen_heartbeat=True)
    for epoch in range(epochs_to_train):       # loop over epochs
        sample_count = 0
        while sample_count < cfg["DATA"].NUM_TRAIN_IMAGES:  # loop over minibatches in the epoch
            data = od_minibatch_source.next_minibatch(min(cfg.MB_SIZE, cfg["DATA"].NUM_TRAIN_IMAGES-sample_count), input_map=input_map)
            trainer.train_minibatch(data)                                    # update model with it
            sample_count += trainer.previous_minibatch_sample_count          # count samples processed so far
            #progress_printer.update_with_trainer(trainer, with_metric=True)  # log progress
            if sample_count % 100 == 0:
                continue
                #print("Processed {} samples".format(sample_count))

        progress_printer.epoch_summary(with_metric=True)
示例#4
0
def train(train_reader, valid_reader, vocab, i2w, s2smodel, max_epochs,
          epoch_size):

    # Note: We would like to set the signature of 's2smodel' (s2smodel.update_signature()), but that will cause
    # an error since the training criterion uses a reduced sequence axis for the labels.
    # This is because it removes the initial <s> symbol. Hence, we must leave the model
    # with unspecified input shapes and axes.

    # create the training wrapper for the s2smodel, as well as the criterion function
    model_train = create_model_train(s2smodel)
    criterion = create_criterion_function(model_train)

    # also wire in a greedy decoder so that we can properly log progress on a validation example
    # This is not used for the actual training process.
    model_greedy = create_model_greedy(s2smodel)

    # This does not need to be done in training generally though
    # Instantiate the trainer object to drive the model training
    minibatch_size = 72
    lr = 0.001 if use_attention else 0.005  # TODO: can we use the same value for both?
    learner = adam_sgd(
        model_train.parameters,
        lr=learning_rate_schedule([lr] * 2 + [lr / 2] * 3 + [lr / 4],
                                  UnitType.sample, epoch_size),
        momentum=momentum_as_time_constant_schedule(1100),
        gradient_clipping_threshold_per_sample=2.3,
        gradient_clipping_with_truncation=True)
    trainer = Trainer(None, criterion, learner)

    # Get minibatches of sequences to train with and perform model training
    total_samples = 0
    mbs = 0
    eval_freq = 100

    # print out some useful training information
    log_number_of_parameters(model_train)
    print()
    progress_printer = ProgressPrinter(freq=30, tag='Training')
    #progress_printer = ProgressPrinter(freq=30, tag='Training', log_to_file=model_path_stem + ".log") # use this to log to file

    sparse_to_dense = create_sparse_to_dense(input_vocab_dim)

    for epoch in range(max_epochs):
        print("Saving model to '%s'" % model_path(epoch))
        s2smodel.save(model_path(epoch))

        while total_samples < (epoch + 1) * epoch_size:
            # get next minibatch of training data
            mb_train = train_reader.next_minibatch(minibatch_size)
            #trainer.train_minibatch(mb_train[train_reader.streams.features], mb_train[train_reader.streams.labels])
            trainer.train_minibatch({
                criterion.arguments[0]:
                mb_train[train_reader.streams.features],
                criterion.arguments[1]:
                mb_train[train_reader.streams.labels]
            })

            progress_printer.update_with_trainer(
                trainer, with_metric=True)  # log progress

            # every N MBs evaluate on a test sequence to visually show how we're doing
            if mbs % eval_freq == 0:
                mb_valid = valid_reader.next_minibatch(1)

                # run an eval on the decoder output model (i.e. don't use the groundtruth)
                e = model_greedy(mb_valid[valid_reader.streams.features])
                print(
                    format_sequences(
                        sparse_to_dense(
                            mb_valid[valid_reader.streams.features]), i2w))
                print("->")
                print(format_sequences(e, i2w))

                # debugging attention
                if use_attention:
                    debug_attention(model_greedy,
                                    mb_valid[valid_reader.streams.features])

            total_samples += mb_train[train_reader.streams.labels].num_samples
            mbs += 1

        # log a summary of the stats for the epoch
        progress_printer.epoch_summary(with_metric=True)

    # done: save the final model
    print("Saving final model to '%s'" % model_path(max_epochs))
    s2smodel.save(model_path(max_epochs))
    print("%d epochs complete." % max_epochs)
def train_model(image_input,
                roi_input,
                dims_input,
                loss,
                pred_error,
                lr_per_sample,
                mm_schedule,
                l2_reg_weight,
                epochs_to_train,
                rpn_rois_input=None,
                buffered_rpn_proposals=None):
    if isinstance(loss, cntk.Variable):
        loss = combine([loss])

    params = loss.parameters
    biases = [p for p in params if '.b' in p.name or 'b' == p.name]
    others = [p for p in params if not p in biases]
    bias_lr_mult = cfg["CNTK"].BIAS_LR_MULT

    if cfg["CNTK"].DEBUG_OUTPUT:
        print("biases")
        for p in biases:
            print(p)
        print("others")
        for p in others:
            print(p)
        print("bias_lr_mult: {}".format(bias_lr_mult))

    # Instantiate the learners and the trainer object
    lr_schedule = learning_rate_schedule(lr_per_sample, unit=UnitType.sample)
    learner = momentum_sgd(others,
                           lr_schedule,
                           mm_schedule,
                           l2_regularization_weight=l2_reg_weight,
                           unit_gain=False,
                           use_mean_gradient=cfg["CNTK"].USE_MEAN_GRADIENT)

    bias_lr_per_sample = [v * bias_lr_mult for v in lr_per_sample]
    bias_lr_schedule = learning_rate_schedule(bias_lr_per_sample,
                                              unit=UnitType.sample)
    bias_learner = momentum_sgd(
        biases,
        bias_lr_schedule,
        mm_schedule,
        l2_regularization_weight=l2_reg_weight,
        unit_gain=False,
        use_mean_gradient=cfg["CNTK"].USE_MEAN_GRADIENT)
    trainer = Trainer(None, (loss, pred_error), [learner, bias_learner])

    # Get minibatches of images and perform model training
    print("Training model for %s epochs." % epochs_to_train)
    log_number_of_parameters(loss)

    # Create the minibatch source
    od_minibatch_source = ObjectDetectionMinibatchSource(
        globalvars['train_map_file'],
        globalvars['train_roi_file'],
        max_annotations_per_image=cfg["CNTK"].INPUT_ROIS_PER_IMAGE,
        pad_width=image_width,
        pad_height=image_height,
        pad_value=img_pad_value,
        randomize=True,
        use_flipping=cfg["TRAIN"].USE_FLIPPED,
        max_images=cfg["CNTK"].NUM_TRAIN_IMAGES,
        buffered_rpn_proposals=buffered_rpn_proposals)

    # define mapping from reader streams to network inputs
    input_map = {
        od_minibatch_source.image_si: image_input,
        od_minibatch_source.roi_si: roi_input,
        od_minibatch_source.dims_si: dims_input
    }

    use_buffered_proposals = buffered_rpn_proposals is not None
    progress_printer = ProgressPrinter(tag='Training',
                                       num_epochs=epochs_to_train,
                                       gen_heartbeat=True)
    for epoch in range(epochs_to_train):  # loop over epochs
        sample_count = 0
        while sample_count < epoch_size:  # loop over minibatches in the epoch
            data, proposals = od_minibatch_source.next_minibatch_with_proposals(
                min(mb_size, epoch_size - sample_count), input_map=input_map)
            if use_buffered_proposals:
                data[rpn_rois_input] = MinibatchData(
                    Value(batch=np.asarray(proposals, dtype=np.float32)), 1, 1,
                    False)
                # remove dims input if no rpn is required to avoid warnings
                del data[[k for k in data if '[6]' in str(k)][0]]

            trainer.train_minibatch(data)  # update model with it
            sample_count += trainer.previous_minibatch_sample_count  # count samples processed so far
            progress_printer.update_with_trainer(
                trainer, with_metric=True)  # log progress
            if sample_count % 100 == 0:
                print("Processed {} samples".format(sample_count))

        progress_printer.epoch_summary(with_metric=True)
示例#6
0
def train_and_evaluate(reader_train, reader_test, max_epochs, model_func):
    # Input variables denoting the features and label data
    input_var = input_variable((num_channels, image_height, image_width))
    label_var = input_variable((num_classes))

    # Normalize the input
    feature_scale = 1.0 / 256.0
    input_var_norm = element_times(feature_scale, input_var)
    
    # apply model to input
    z = model_func(input_var_norm, out_dims=num_classes)

    #
    # Training action
    #

    # loss and metric
    ce = cross_entropy_with_softmax(z, label_var)
    pe = classification_error(z, label_var)

    # training config
    epoch_size     = 20000
    minibatch_size = 64

    # Set training parameters
    lr_per_minibatch       = learning_rate_schedule([0.01]*10 + [0.003]*10 + [0.001],  UnitType.minibatch, epoch_size)
    momentum_time_constant = momentum_as_time_constant_schedule(-minibatch_size/np.log(0.9))
    l2_reg_weight          = 0.001
    
    # trainer object
    progress_printer = ProgressPrinter(0)

    learner     = momentum_sgd(z.parameters, 
                               lr = lr_per_minibatch, momentum = momentum_time_constant, 
                               l2_regularization_weight=l2_reg_weight)
    trainer     = Trainer(z, (ce, pe), [learner], [progress_printer])

    # define mapping from reader streams to network inputs
    input_map = {
        input_var: reader_train.streams.features,
        label_var: reader_train.streams.labels
    }

    log_number_of_parameters(z) ; print()
    #progress_printer = ProgressPrinter(tag='Training')

    # perform model training
    stop_run=False
    batch_index = 0
    plot_data = {'batchindex':[], 'loss':[], 'error':[]}
    for epoch in range(max_epochs):       # loop over epochs
        sample_count = 0
        while sample_count < epoch_size:  # loop over minibatches in the epoch
            data = reader_train.next_minibatch(min(minibatch_size, epoch_size - sample_count), input_map=input_map) # fetch minibatch.
            trainer.train_minibatch(data)                                   # update model with it

            sample_count += data[label_var].num_samples                     # count samples processed so far
            
            # For visualization...            
            plot_data['batchindex'].append(batch_index)
            plot_data['loss'].append(trainer.previous_minibatch_loss_average)
            plot_data['error'].append(trainer.previous_minibatch_evaluation_average)
            
            progress_printer.update_with_trainer(trainer, with_metric=True) # log progress
            batch_index += 1
            if trainer.previous_minibatch_evaluation_average < 0.025:
                stop_run=True
                break
        if stop_run:
            break
        progress_printer.epoch_summary(with_metric=True)
        #trainer.save_checkpoint(model_temp_file)
        
    #
    # Evaluation action
    #
    epoch_size     = 6600
    minibatch_size = 32

    # process minibatches and evaluate the model
    metric_numer    = 0
    metric_denom    = 0
    sample_count    = 0
    minibatch_index = 0

    input_map = {
        input_var: reader_test.streams.features,
        label_var: reader_test.streams.labels
    }

    while sample_count < epoch_size:
        current_minibatch = min(minibatch_size, epoch_size - sample_count)

        # Fetch next test min batch.
        data = reader_test.next_minibatch(current_minibatch, input_map=input_map)

        # minibatch data to be trained with
        metric_numer += trainer.test_minibatch(data) * current_minibatch
        metric_denom += current_minibatch

        # Keep track of the number of samples processed so far.
        sample_count += data[label_var].num_samples
        minibatch_index += 1

    print("")
    print("Final Results: Minibatch[1-{}]: errs = {:0.1f}% * {}".format(minibatch_index+1, (metric_numer*100.0)/metric_denom, metric_denom))
    print("")
    
    # Visualize training result:
    window_width            = 32
    loss_cumsum             = np.cumsum(np.insert(plot_data['loss'], 0, 0)) 
    error_cumsum            = np.cumsum(np.insert(plot_data['error'], 0, 0)) 

    # Moving average.
    plot_data['batchindex'] = np.insert(plot_data['batchindex'], 0, 0)[window_width:]
    plot_data['avg_loss']   = (loss_cumsum[window_width:] - loss_cumsum[:-window_width]) / window_width
    plot_data['avg_error']  = (error_cumsum[window_width:] - error_cumsum[:-window_width]) / window_width
    
    plt.figure(1)
    plt.subplot(211)
    plt.plot(plot_data["batchindex"], plot_data["avg_loss"], 'b--')
    plt.xlabel('Minibatch number')
    plt.ylabel('Loss')
    plt.title('Minibatch run vs. Training loss ')
    
    plt.show()

    plt.subplot(212)
    plt.plot(plot_data["batchindex"], plot_data["avg_error"], 'r--')
    plt.xlabel('Minibatch number')
    plt.ylabel('Label Prediction Error')
    plt.title('Minibatch run vs. Label Prediction Error ')
    plt.show()
    
    return softmax(z)
示例#7
0
def train_fast_rcnn(cfg):
    # Train only if no model exists yet
    model_path = cfg['MODEL_PATH']
    if os.path.exists(model_path) and cfg["CNTK"].MAKE_MODE:
        print("Loading existing model from %s" % model_path)
        return load_model(model_path)
    else:
        # Input variables denoting features and labeled ground truth rois (as 5-tuples per roi)
        image_input = input_variable(shape=(cfg.NUM_CHANNELS, cfg.IMAGE_HEIGHT, cfg.IMAGE_WIDTH),
                                     dynamic_axes=[Axis.default_batch_axis()],
                                     name=cfg["MODEL"].FEATURE_NODE_NAME)
        roi_proposals = input_variable((cfg.NUM_ROI_PROPOSALS, 4), dynamic_axes=[Axis.default_batch_axis()], name = "roi_proposals")
        label_targets = input_variable((cfg.NUM_ROI_PROPOSALS, cfg["DATA"].NUM_CLASSES), dynamic_axes=[Axis.default_batch_axis()])
        bbox_targets = input_variable((cfg.NUM_ROI_PROPOSALS, 4*cfg["DATA"].NUM_CLASSES), dynamic_axes=[Axis.default_batch_axis()])
        bbox_inside_weights = input_variable((cfg.NUM_ROI_PROPOSALS, 4*cfg["DATA"].NUM_CLASSES), dynamic_axes=[Axis.default_batch_axis()])

        # Instantiate the Fast R-CNN prediction model and loss function
        loss, pred_error = create_fast_rcnn_model(image_input, roi_proposals, label_targets, bbox_targets, bbox_inside_weights, cfg)
        if isinstance(loss, cntk.Variable):
            loss = combine([loss])

        if cfg["CNTK"].DEBUG_OUTPUT:
            print("Storing graphs and models to %s." % cfg.OUTPUT_PATH)
            plot(loss, os.path.join(cfg.OUTPUT_PATH, "graph_frcn_train." + cfg["CNTK"].GRAPH_TYPE))

        # Set learning parameters
        lr_factor = cfg["CNTK"].LR_FACTOR
        lr_per_sample_scaled = [x * lr_factor for x in cfg["CNTK"].LR_PER_SAMPLE]
        mm_schedule = momentum_schedule(cfg["CNTK"].MOMENTUM_PER_MB)
        l2_reg_weight = cfg["CNTK"].L2_REG_WEIGHT
        epochs_to_train = cfg["CNTK"].MAX_EPOCHS

        print("Using base model:   {}".format(cfg["MODEL"].BASE_MODEL))
        print("lr_per_sample:      {}".format(lr_per_sample_scaled))

        # --- train ---
        # Instantiate the learners and the trainer object
        params = loss.parameters
        biases = [p for p in params if '.b' in p.name or 'b' == p.name]
        others = [p for p in params if not p in biases]
        bias_lr_mult = cfg["CNTK"].BIAS_LR_MULT
        lr_schedule = learning_rate_schedule(lr_per_sample_scaled, unit=UnitType.sample)
        learner = momentum_sgd(others, lr_schedule, mm_schedule, l2_regularization_weight=l2_reg_weight, unit_gain=False, use_mean_gradient=True)

        bias_lr_per_sample = [v * bias_lr_mult for v in cfg["CNTK"].LR_PER_SAMPLE]
        bias_lr_schedule = learning_rate_schedule(bias_lr_per_sample, unit=UnitType.sample)
        bias_learner = momentum_sgd(biases, bias_lr_schedule, mm_schedule, l2_regularization_weight=l2_reg_weight, unit_gain=False, use_mean_gradient=True)
        trainer = Trainer(None, (loss, pred_error), [learner, bias_learner])

        # Get minibatches of images and perform model training
        print("Training model for %s epochs." % epochs_to_train)
        log_number_of_parameters(loss)

        # Create the minibatch source
        if cfg.USE_PRECOMPUTED_PROPOSALS:
            proposal_provider = ProposalProvider.fromfile(cfg["DATA"].TRAIN_PRECOMPUTED_PROPOSALS_FILE, cfg.NUM_ROI_PROPOSALS)
        else:
            proposal_provider = ProposalProvider.fromconfig(cfg)

        od_minibatch_source = ObjectDetectionMinibatchSource(
            cfg["DATA"].TRAIN_MAP_FILE, cfg["DATA"].TRAIN_ROI_FILE,
            max_annotations_per_image=cfg.INPUT_ROIS_PER_IMAGE,
            pad_width=cfg.IMAGE_WIDTH,
            pad_height=cfg.IMAGE_HEIGHT,
            pad_value=cfg["MODEL"].IMG_PAD_COLOR,
            randomize=True,
            use_flipping=cfg["TRAIN"].USE_FLIPPED,
            max_images=cfg["DATA"].NUM_TRAIN_IMAGES,
            num_classes=cfg["DATA"].NUM_CLASSES,
            proposal_provider=proposal_provider,
            provide_targets=True,
            proposal_iou_threshold = cfg.BBOX_THRESH,
            normalize_means = None if not cfg.BBOX_NORMALIZE_TARGETS else cfg.BBOX_NORMALIZE_MEANS,
            normalize_stds = None if not cfg.BBOX_NORMALIZE_TARGETS else cfg.BBOX_NORMALIZE_STDS)

        # define mapping from reader streams to network inputs
        input_map = {
            od_minibatch_source.image_si: image_input,
            od_minibatch_source.proposals_si: roi_proposals,
            od_minibatch_source.label_targets_si: label_targets,
            od_minibatch_source.bbox_targets_si: bbox_targets,
            od_minibatch_source.bbiw_si: bbox_inside_weights
        }

        progress_printer = ProgressPrinter(tag='Training', num_epochs=epochs_to_train, gen_heartbeat=True)
        for epoch in range(epochs_to_train):  # loop over epochs
            sample_count = 0
            while sample_count < cfg["DATA"].NUM_TRAIN_IMAGES:  # loop over minibatches in the epoch
                data = od_minibatch_source.next_minibatch(min(cfg.MB_SIZE, cfg["DATA"].NUM_TRAIN_IMAGES - sample_count), input_map=input_map)

                trainer.train_minibatch(data)  # update model with it
                sample_count += trainer.previous_minibatch_sample_count  # count samples processed so far
                progress_printer.update_with_trainer(trainer, with_metric=True)  # log progress
                if sample_count % 100 == 0:
                    print("Processed {} samples".format(sample_count))

            progress_printer.epoch_summary(with_metric=True)

        eval_model = create_fast_rcnn_eval_model(loss, image_input, roi_proposals, cfg)
        eval_model.save(cfg['MODEL_PATH'])
        return eval_model
示例#8
0
            label_var].num_samples  # count samples processed so far

        # For visualization...
        plot_data['batchindex'].append(batch_index)
        plot_data['loss'].append(trainer.previous_minibatch_loss_average)
        plot_data['error'].append(
            trainer.previous_minibatch_evaluation_average)

        progress_printer.update_with_trainer(trainer,
                                             with_metric=True)  # log progress
        batch_index += 1
        ev_avg += trainer.previous_minibatch_evaluation_average
        i_count += 1
#    if ev_avg/i_count < 0.02:
#        break
    progress_printer.epoch_summary(with_metric=True)
    #    print(epoch,' : ',ev_avg/i_count)
    try:
        trainer.save_checkpoint(model_temp_file)
    except:
        print('Problem with saving temp model')
#
# Evaluation action
#
epoch_size = 2200  #4000 #5000
minibatch_size = 32

# process minibatches and evaluate the model
metric_numer = 0
metric_denom = 0
sample_count = 0
示例#9
0
def train_model(image_input, roi_input, dims_input, loss, pred_error,
                lr_per_sample, mm_schedule, l2_reg_weight, epochs_to_train, cfg,
                rpn_rois_input=None, buffered_rpn_proposals=None):
    if isinstance(loss, cntk.Variable):
        loss = combine([loss])

    params = loss.parameters
    biases = [p for p in params if '.b' in p.name or 'b' == p.name]
    others = [p for p in params if not p in biases]
    bias_lr_mult = cfg["CNTK"].BIAS_LR_MULT

    if cfg["CNTK"].DEBUG_OUTPUT:
        print("biases")
        for p in biases: print(p)
        print("others")
        for p in others: print(p)
        print("bias_lr_mult: {}".format(bias_lr_mult))

    # Instantiate the learners and the trainer object
    lr_schedule = learning_parameter_schedule_per_sample(lr_per_sample)
    learner = momentum_sgd(others, lr_schedule, mm_schedule, l2_regularization_weight=l2_reg_weight,
                           unit_gain=False, use_mean_gradient=True)

    bias_lr_per_sample = [v * bias_lr_mult for v in lr_per_sample]
    bias_lr_schedule = learning_parameter_schedule_per_sample(bias_lr_per_sample)
    bias_learner = momentum_sgd(biases, bias_lr_schedule, mm_schedule, l2_regularization_weight=l2_reg_weight,
                           unit_gain=False, use_mean_gradient=True)
    trainer = Trainer(None, (loss, pred_error), [learner, bias_learner])

    # Get minibatches of images and perform model training
    print("Training model for %s epochs." % epochs_to_train)
    log_number_of_parameters(loss)

    # Create the minibatch source
    if buffered_rpn_proposals is not None:
        proposal_provider = ProposalProvider.fromlist(buffered_rpn_proposals, requires_scaling=False)
    else:
        proposal_provider = None

    od_minibatch_source = ObjectDetectionMinibatchSource(
        cfg["DATA"].TRAIN_MAP_FILE, cfg["DATA"].TRAIN_ROI_FILE,
        num_classes=cfg["DATA"].NUM_CLASSES,
        max_annotations_per_image=cfg.INPUT_ROIS_PER_IMAGE,
        pad_width=cfg.IMAGE_WIDTH,
        pad_height=cfg.IMAGE_HEIGHT,
        pad_value=cfg["MODEL"].IMG_PAD_COLOR,
        randomize=True,
        use_flipping=cfg["TRAIN"].USE_FLIPPED,
        max_images=cfg["DATA"].NUM_TRAIN_IMAGES,
        proposal_provider=proposal_provider)

    # define mapping from reader streams to network inputs
    input_map = {
        od_minibatch_source.image_si: image_input,
        od_minibatch_source.roi_si: roi_input,
    }
    if buffered_rpn_proposals is not None:
        input_map[od_minibatch_source.proposals_si] = rpn_rois_input
    else:
        input_map[od_minibatch_source.dims_si] = dims_input

    progress_printer = ProgressPrinter(tag='Training', num_epochs=epochs_to_train, gen_heartbeat=True)
    for epoch in range(epochs_to_train):       # loop over epochs
        sample_count = 0
        while sample_count < cfg["DATA"].NUM_TRAIN_IMAGES:  # loop over minibatches in the epoch
            data = od_minibatch_source.next_minibatch(min(cfg.MB_SIZE, cfg["DATA"].NUM_TRAIN_IMAGES-sample_count), input_map=input_map)
            trainer.train_minibatch(data)                                    # update model with it
            sample_count += trainer.previous_minibatch_sample_count          # count samples processed so far
            progress_printer.update_with_trainer(trainer, with_metric=True)  # log progress
            if sample_count % 100 == 0:
                print("Processed {} samples".format(sample_count))

        progress_printer.epoch_summary(with_metric=True)
示例#10
0
def train_model(image_input, roi_input, dims_input, loss, pred_error,
                lr_per_sample, mm_schedule, l2_reg_weight, epochs_to_train,
                rpn_rois_input=None, buffered_rpn_proposals=None):
    if isinstance(loss, cntk.Variable):
        loss = combine([loss])

    params = loss.parameters
    biases = [p for p in params if '.b' in p.name or 'b' == p.name]
    others = [p for p in params if not p in biases]
    bias_lr_mult = cfg["CNTK"].BIAS_LR_MULT

    if cfg["CNTK"].DEBUG_OUTPUT:
        print("biases")
        for p in biases: print(p)
        print("others")
        for p in others: print(p)
        print("bias_lr_mult: {}".format(bias_lr_mult))

    # Instantiate the learners and the trainer object
    lr_schedule = learning_rate_schedule(lr_per_sample, unit=UnitType.sample)
    learner = momentum_sgd(others, lr_schedule, mm_schedule, l2_regularization_weight=l2_reg_weight,
                           unit_gain=False, use_mean_gradient=cfg["CNTK"].USE_MEAN_GRADIENT)

    bias_lr_per_sample = [v * bias_lr_mult for v in lr_per_sample]
    bias_lr_schedule = learning_rate_schedule(bias_lr_per_sample, unit=UnitType.sample)
    bias_learner = momentum_sgd(biases, bias_lr_schedule, mm_schedule, l2_regularization_weight=l2_reg_weight,
                           unit_gain=False, use_mean_gradient=cfg["CNTK"].USE_MEAN_GRADIENT)
    trainer = Trainer(None, (loss, pred_error), [learner, bias_learner])

    # Get minibatches of images and perform model training
    print("Training model for %s epochs." % epochs_to_train)
    log_number_of_parameters(loss)

    # Create the minibatch source
    od_minibatch_source = ObjectDetectionMinibatchSource(
        globalvars['train_map_file'], globalvars['train_roi_file'],
        max_annotations_per_image=cfg["CNTK"].INPUT_ROIS_PER_IMAGE,
        pad_width=image_width, pad_height=image_height, pad_value=img_pad_value,
        randomize=True, use_flipping=cfg["TRAIN"].USE_FLIPPED,
        max_images=cfg["CNTK"].NUM_TRAIN_IMAGES,
        buffered_rpn_proposals=buffered_rpn_proposals)

    # define mapping from reader streams to network inputs
    input_map = {
        od_minibatch_source.image_si: image_input,
        od_minibatch_source.roi_si: roi_input,
        od_minibatch_source.dims_si: dims_input
    }

    use_buffered_proposals = buffered_rpn_proposals is not None
    progress_printer = ProgressPrinter(tag='Training', num_epochs=epochs_to_train, gen_heartbeat=True)
    for epoch in range(epochs_to_train):       # loop over epochs
        sample_count = 0
        while sample_count < epoch_size:  # loop over minibatches in the epoch
            data, proposals = od_minibatch_source.next_minibatch_with_proposals(min(mb_size, epoch_size-sample_count), input_map=input_map)
            if use_buffered_proposals:
                data[rpn_rois_input] = MinibatchData(Value(batch=np.asarray(proposals, dtype=np.float32)), 1, 1, False)
                # remove dims input if no rpn is required to avoid warnings
                del data[[k for k in data if '[6]' in str(k)][0]]

            trainer.train_minibatch(data)                                    # update model with it
            sample_count += trainer.previous_minibatch_sample_count          # count samples processed so far
            progress_printer.update_with_trainer(trainer, with_metric=True)  # log progress
            if sample_count % 100 == 0:
                print("Processed {} samples".format(sample_count))

        progress_printer.epoch_summary(with_metric=True)
示例#11
0
def train(train_reader, valid_reader, vocab, i2w, s2smodel, max_epochs, epoch_size):

    # Note: We would like to set the signature of 's2smodel' (s2smodel.update_signature()), but that will cause
    # an error since the training criterion uses a reduced sequence axis for the labels.
    # This is because it removes the initial <s> symbol. Hence, we must leave the model
    # with unspecified input shapes and axes.

    # create the training wrapper for the s2smodel, as well as the criterion function
    model_train = create_model_train(s2smodel)
    criterion = create_criterion_function(model_train)

    # also wire in a greedy decoder so that we can properly log progress on a validation example
    # This is not used for the actual training process.
    model_greedy = create_model_greedy(s2smodel)

    # This does not need to be done in training generally though
    # Instantiate the trainer object to drive the model training
    minibatch_size = 72
    lr = 0.001 if use_attention else 0.005   # TODO: can we use the same value for both?
    learner = fsadagrad(model_train.parameters,
                        lr       = learning_rate_schedule([lr]*2+[lr/2]*3+[lr/4], UnitType.sample, epoch_size),
                        momentum = momentum_as_time_constant_schedule(1100),
                        gradient_clipping_threshold_per_sample=2.3,
                        gradient_clipping_with_truncation=True)
    trainer = Trainer(None, criterion, learner)

    # Get minibatches of sequences to train with and perform model training
    total_samples = 0
    mbs = 0
    eval_freq = 100

    # print out some useful training information
    log_number_of_parameters(model_train) ; print()
    progress_printer = ProgressPrinter(freq=30, tag='Training')
    #progress_printer = ProgressPrinter(freq=30, tag='Training', log_to_file=model_path_stem + ".log") # use this to log to file

    sparse_to_dense = create_sparse_to_dense(input_vocab_dim)

    for epoch in range(max_epochs):
        print("Saving model to '%s'" % model_path(epoch))
        s2smodel.save(model_path(epoch))

        while total_samples < (epoch+1) * epoch_size:
            # get next minibatch of training data
            mb_train = train_reader.next_minibatch(minibatch_size)
            #trainer.train_minibatch(mb_train[train_reader.streams.features], mb_train[train_reader.streams.labels])
            trainer.train_minibatch({criterion.arguments[0]: mb_train[train_reader.streams.features], criterion.arguments[1]: mb_train[train_reader.streams.labels]})

            progress_printer.update_with_trainer(trainer, with_metric=True) # log progress

            # every N MBs evaluate on a test sequence to visually show how we're doing
            if mbs % eval_freq == 0:
                mb_valid = valid_reader.next_minibatch(1)

                # run an eval on the decoder output model (i.e. don't use the groundtruth)
                e = model_greedy(mb_valid[valid_reader.streams.features])
                print(format_sequences(sparse_to_dense(mb_valid[valid_reader.streams.features]), i2w))
                print("->")
                print(format_sequences(e, i2w))

                # debugging attention
                if use_attention:
                    debug_attention(model_greedy, mb_valid[valid_reader.streams.features])

            total_samples += mb_train[train_reader.streams.labels].num_samples
            mbs += 1

        # log a summary of the stats for the epoch
        progress_printer.epoch_summary(with_metric=True)

    # done: save the final model
    print("Saving final model to '%s'" % model_path(max_epochs))
    s2smodel.save(model_path(max_epochs))
    print("%d epochs complete." % max_epochs)