示例#1
0
    def lstm(dh, dc, sv, x):

        # projected contribution from input(s), hidden, and bias
        proj3 = b + times(x, W) + times(dh, H) + times(sv, Hsv)

        it_proj = slice(proj3, stack_axis, 0 * stacked_dim, 1 * stacked_dim)
        ft_proj = slice(proj3, stack_axis, 1 * stacked_dim, 2 * stacked_dim)
        ot_proj = slice(proj3, stack_axis, 2 * stacked_dim, 3 * stacked_dim)

        it = sigmoid(it_proj)  # input gate(t)
        ft = sigmoid(ft_proj)  # forget-me-not gate(t)
        ot = sigmoid(ot_proj)  # output gate(t)

        # the following is reading gate
        proj3rg = sigmoid(
            times(x, Wrg) + times(dh, Hrg) + times(sv, Hsvrg) + brg)
        v = proj3rg * sv

        cx_t = tanh(times(x, Wcx) + times(dh, Hcx))

        # need to do stablization ??
        # update memory cell
        c = it * cx_t + ft * dc + tanh(times(v, Wfc))

        h = ot * tanh(c)

        return (h, c, v)
示例#2
0
def gru_cell(shape, init=glorot_uniform(), name=''):  # (x, (h,c))
    """ GRU cell function
  """
    shape = _as_tuple(shape)

    if len(shape) != 1:
        raise ValueError("gru_cell: shape must be vectors (rank-1 tensors)")

    # determine stacking dimensions
    cell_shape_stacked = shape * 2  # patched dims with stack_axis duplicated 2 times

    # parameters
    Wz = Parameter(cell_shape_stacked, init=init, name='Wz')
    Wr = Parameter(cell_shape_stacked, init=init, name='Wr')
    Wh = Parameter(cell_shape_stacked, init=init, name='Wh')
    Uz = Parameter(_INFERRED + shape, init=init, name='Uz')
    Ur = Parameter(_INFERRED + shape, init=init, name='Ur')
    Uh = Parameter(_INFERRED + shape, init=init, name='Uh')

    def create_s_placeholder():
        # we pass the known dimensions here, which makes dimension inference easier
        return Placeholder(shape=shape, name='S')  # (h, c)

    # parameters to model function
    x = Placeholder(name='gru_block_arg')
    prev_status = create_s_placeholder()

    # formula of model function
    Sn_1 = prev_status

    z = sigmoid(times(x, Uz, name='x*Uz') + times(Sn_1, Wz, name='Sprev*Wz'),
                name='z')
    r = sigmoid(times(x, Ur, name='x*Ur') + times(Sn_1, Wr, name='Sprev*Wr'),
                name='r')
    h = tanh(times(x, Uh, name='x*Uh') +
             times(element_times(Sn_1, r, name='Sprev*r'), Wh),
             name='h')
    s = plus(element_times((1 - z), h, name='(1-z)*h'),
             element_times(z, Sn_1, name='z*SPrev'),
             name=name)
    apply_x_s = combine([s])
    apply_x_s.create_placeholder = create_s_placeholder
    return apply_x_s
示例#3
0
文件: blocks.py 项目: zhal-x/CNTK
def LSTM(shape, cell_shape=None, use_peepholes=use_peepholes_default_or_False,
         init=init_default_or_glorot_uniform, init_bias=init_bias_default_or_0,
         enable_self_stabilization=enable_self_stabilization_default_or_False): # (x, (h, c))

    use_peepholes             = use_peepholes             if _is_given(use_peepholes)             else _current_default_options.use_peepholes
    enable_self_stabilization = enable_self_stabilization if _is_given(enable_self_stabilization) else _current_default_options.enable_self_stabilization
    has_projection = cell_shape is not None
    has_aux = False

    if has_aux:
        UntestedBranchError("LSTM, has_aux option")

    shape = _as_tuple(shape)

    cell_shape = _as_tuple(cell_shape) if cell_shape is not None else shape
    if len(shape) != 1 or len(cell_shape) != 1:
        raise ValueError("LSTM: shape and cell_shape must be vectors (rank-1 tensors)")
        # otherwise we'd need to fix slicing and Param initializers

    stack_axis = -1  # stacking along the fastest-changing one, to match BS
    # determine stacking dimensions
    cell_shape_list = list(cell_shape)
    stacked_dim = cell_shape_list[0]
    cell_shape_list[stack_axis] = stacked_dim*4
    cell_shape_stacked = tuple(cell_shape_list)  # patched dims with stack_axis duplicated 4 times

    # parameters
    b  = Parameter(            cell_shape_stacked, init=init_bias, name='b')                              # a bias
    W  = Parameter(_INFERRED + cell_shape_stacked, init=init,      name='W')                              # input
    A  = Parameter(_INFERRED + cell_shape_stacked, init=init,      name='A') if has_aux else None         # aux input (optional)
    H  = Parameter(shape     + cell_shape_stacked, init=init,      name='H')                              # hidden-to-hidden
    Ci = Parameter(            cell_shape,         init=init,      name='Ci') if use_peepholes else None  # cell-to-hiddden {note: applied elementwise}
    Cf = Parameter(            cell_shape,         init=init,      name='Cf') if use_peepholes else None  # cell-to-hiddden {note: applied elementwise}
    Co = Parameter(            cell_shape,         init=init,      name='Co') if use_peepholes else None  # cell-to-hiddden {note: applied elementwise}

    Wmr = Parameter(cell_shape + shape, init=init) if has_projection else None  # final projection

    Sdh = Stabilizer() if enable_self_stabilization else identity
    Sdc = Stabilizer() if enable_self_stabilization else identity
    Sct = Stabilizer() if enable_self_stabilization else identity
    Sht = Stabilizer() if enable_self_stabilization else identity

    def create_hc_placeholder():
        # we pass the known dimensions here, which makes dimension inference easier
        return (Placeholder(shape=shape, name='hPh'), Placeholder(shape=cell_shape, name='cPh')) # (h, c)

    # parameters to model function
    x = Placeholder(name='lstm_block_arg')
    prev_state = create_hc_placeholder()

    # formula of model function
    dh, dc = prev_state

    dhs = Sdh(dh)  # previous values, stabilized
    dcs = Sdc(dc)
    # note: input does not get a stabilizer here, user is meant to do that outside

    # projected contribution from input(s), hidden, and bias
    proj4 = b + times(x, W) + times(dhs, H) + times(aux, A) if has_aux else \
            b + times(x, W) + times(dhs, H)

    it_proj  = slice (proj4, stack_axis, 0*stacked_dim, 1*stacked_dim)  # split along stack_axis
    bit_proj = slice (proj4, stack_axis, 1*stacked_dim, 2*stacked_dim)
    ft_proj  = slice (proj4, stack_axis, 2*stacked_dim, 3*stacked_dim)
    ot_proj  = slice (proj4, stack_axis, 3*stacked_dim, 4*stacked_dim)

    # add peephole connection if requested
    def peep(x, c, C):
        return x + C * c if use_peepholes else x

    it = sigmoid (peep (it_proj, dcs, Ci))        # input gate(t)
    bit = it * tanh (bit_proj)                    # applied to tanh of input network

    ft = sigmoid (peep (ft_proj, dcs, Cf))        # forget-me-not gate(t)
    bft = ft * dc                                 # applied to cell(t-1)

    ct = bft + bit                                # c(t) is sum of both

    ot = sigmoid (peep (ot_proj, Sct(ct), Co))    # output gate(t)
    ht = ot * tanh (ct)                           # applied to tanh(cell(t))

    c = ct                                        # cell value
    h = times(Sht(ht), Wmr) if has_projection else \
        ht

    _name_node(h, 'h')
    if _trace_layers:
        _log_node(h)  # this looks right
    _name_node(c, 'c')

    # TODO: figure out how to do scoping, and also rename all the apply... to expression
    apply_x_h_c = combine ([h, c])
    # return to caller a helper function to create placeholders for recurrence
    # Note that this function will only exist in the object returned here, but not any cloned version of it.
    apply_x_h_c.create_placeholder = create_hc_placeholder
    #return Block(apply_x_h_c, 'LSTM') # BUGBUG: fails with "RuntimeError: A Function instance with more than one output cannot be implicitly converted to a Variable"
    return apply_x_h_c