示例#1
0
    def attention(query, key, value):
        dk = C.reduce_sum(C.ones_like(query))  # cannot use sequence.last, will conflict with recurrence
        # dk: [#, *] [1, ] and value = int(dim_of_query)

        unpacked_key = C.sequence.unpack(key, padding_value=0, no_mask_output=True)  # [#] [-3, key_dim]
        unpacked_value = C.sequence.unpack(value, padding_value=0, no_mask_output=True)  # [#] [-3, value_dim]

        broadcasted_key = C.sequence.broadcast_as(unpacked_key, query)  # [#, *] [-3, key_dim]
        scaled = C.times_transpose(query, broadcasted_key) / dk
        # [#, *] [q_dim] @ [#, *] [key_dim, -3], assert q_dim == key_dim
        # scaled: [#, *] [-3, ] => for every key seq element, there is a corresponding score

        # masked out invalid temporal connections to obey_sequence_order
        if obey_sequence_order and max_seq_len:
            unpacked_scaled, scaled_mask = C.sequence.unpack(scaled, padding_value=0).outputs
            # unpacked_scaled: [#] [-3, -3]  <== matrix will be top right diagonally zero-ed
            # scaled_mask: [#] [-3,]

            minus_inf = C.constant(-1e+30)
            valid_connections = C.Constant(np.tril(np.ones((max_seq_len, max_seq_len)), k=0))  # [] [max_seq, max_seq]
            valid_connections = C.reconcile_dynamic_axes(valid_connections, unpacked_scaled)  # [#] [max_seq, max_seq]
            valid_connections = C.crop_manual(valid_connections, unpacked_scaled, 0, 0)  # [#] [-3, -3]
            unpacked_scaled = C.element_select(valid_connections, unpacked_scaled, minus_inf)  # [#] [-3, -3]
            scaled = C.to_sequence_like(unpacked_scaled, query)  # [#, *] [-3]

        elif obey_sequence_order and not max_seq_len:
            raise ValueError("max_seq_len must be defined when obey_sequence_order is True")

        attended = C.times(C.softmax(scaled, axis=-1), C.sequence.broadcast_as(unpacked_value, query))  # [#, *] [value_dim,]
        return attended
示例#2
0
def centre_crop(larger_image, smaller_image, name: str = ''):
    """ Centre crop spatial dimensions only.

    Arguments:
        larger_image: class:`~cntk.ops.functions.Function` that outputs the tensor to be centre cropped
        smaller_image: class:`~cntk.ops.functions.Function` that outputs the reference tensor
        name (str, optional): the name of the Function instance in the network

    Returns:
        :class:`~cntk.ops.functions.Function`

    """
    input_shape = larger_image.shape  # larger
    referent_shape = smaller_image.shape  # smaller
    row_offset = int((input_shape[1] - referent_shape[1]) / 2)
    col_offset = int((input_shape[2] - referent_shape[2]) / 2)

    if row_offset == 0 and col_offset == 0:
        return larger_image

    elif row_offset < 0 or col_offset < 0:
        raise ValueError(
            f"offset became negative, check if image was passed correctly. "
            f"larger image {larger_image.shape}, smaller image {smaller_image.shape}"
        )

    return C.crop_manual(larger_image,
                         smaller_image,
                         row_offset,
                         col_offset,
                         name=name)
示例#3
0
def test_crop():
    # Small network.
    node_input = C.input_variable((1, 5, 5))
    node_referent = C.input_variable((1, 5, 5))
    node_output = C.layers.Sequential([
        C.layers.Convolution2D(filter_shape=(3, 3),
                               num_filters=1,
                               init=1,
                               strides=(2, 2),
                               pad=True,
                               bias=False),
        C.layers.MaxPooling(filter_shape=(3, 3), strides=(2, 2), pad=True),
        C.layers.ConvolutionTranspose(filter_shape=(4, 4),
                                      num_filters=1,
                                      strides=(4, 4),
                                      init=1,
                                      bias=False)
    ])(node_input)

    # Input data.
    input_map = {
        node_input: -np.arange(25).reshape(1, 1, 5, 5).astype(np.float32),
        node_referent: np.zeros([1, 1, 5, 5]).astype(np.float32)
    }

    # Expected cropped output.
    expected = [-12, -12, -12, -24, -24] * 3 + [-63, -63, -63, -81, -81] * 2
    expected = np.asarray(expected, dtype=np.float32).reshape(1, 1, 5, 5)

    # Test crop with explicitly specified offsets.
    cropped = C.crop_manual(node_output, node_referent, 1, 1).eval(input_map)
    assert np.array_equal(cropped, expected)

    # Test crop with automatically computed offsets where inputs
    # have common ancestor.
    cropped = C.crop_automatic(node_output, node_input).eval(input_map)
    assert np.array_equal(cropped, expected)

    # Test crop with automatically computed offsets where inputs do not
    # have common ancestor.
    cropped = C.crop_automatic_with_ancestors(node_output, node_referent,
                                              node_input,
                                              node_referent).eval(input_map)
    assert np.array_equal(cropped, expected)
示例#4
0
def test_crop():
    # Small network.
    node_input = C.input_variable((1, 5, 5))
    node_referent = C.input_variable((1, 5, 5))
    node_output = C.layers.Sequential([
        C.layers.Convolution2D(filter_shape = (3, 3),
                               num_filters = 1,
                               init = 1,
                               strides = (2, 2),
                               pad = True,
                               bias = False),
        C.layers.MaxPooling(filter_shape = (3, 3),
                            strides = (2, 2),
                            pad = True),
        C.layers.ConvolutionTranspose(filter_shape = (4, 4),
                                      num_filters = 1,
                                      strides = (4, 4),
                                      init = 1,
                                      bias = False)])(node_input)

    # Input data.
    input_map = {
        node_input: -np.arange(25).reshape(1, 1, 5, 5).astype(np.float32),
        node_referent: np.zeros([1, 1, 5, 5]).astype(np.float32)
    }

    # Expected cropped output.
    expected = [-12, -12, -12, -24, -24] * 3 + [-63, -63, -63, -81, -81] * 2
    expected = np.asarray(expected, dtype = np.float32).reshape(1, 1, 5, 5)

    # Test crop with explicitly specified offsets.
    cropped = C.crop_manual(node_output, node_referent, 1, 1).eval(input_map)
    assert np.array_equal(cropped, expected)

    # Test crop with automatically computed offsets where inputs
    # have common ancestor.
    cropped = C.crop_automatic(node_output, node_input).eval(input_map)
    assert np.array_equal(cropped, expected)

    # Test crop with automatically computed offsets where inputs do not
    # have common ancestor.
    cropped = C.crop_automatic_with_ancestors(
        node_output, node_referent, node_input, node_referent).eval(input_map)
    assert np.array_equal(cropped, expected)