def __plot_classification_report(self, y_test_pred): test_report = classification_report(self.__y_test, y_test_pred, output_dict=True) # dict if self.__testing_mode is False: testing_report_as_array = self.__helper_plot_classification_report(test_report) self.__experiment.log_chart("Test Set - Classification Report", data=Heatmap(z=testing_report_as_array), y_ticks=self.__labels, x_ticks=["precision", "recall", "f1-score", "support"]) else: print(test_report)
def __plot_confusion_matrix(self, y_test_pred=None): if self.__y_test is not None and y_test_pred is not None: confusion_mat_test = confusion_matrix(self.__y_test, y_test_pred) # array confusion_mat_test = self.__helper_plot_confusion_matrix(confusion_mat_test) if self.__testing_mode is False: self.__experiment.log_chart("Test Set - confusion matrix", data=Heatmap(z=confusion_mat_test)) else: print(confusion_mat_test)
def __plot_confusion_matrix(self, labels, predictions): """ Plots the confusion matrix. """ confusion_mat_test = confusion_matrix(labels, predictions) # array confusion_mat_test = TensorflowTrainer.__helper_plot_confusion_matrix( confusion_mat_test, mat_x_ticks=self.__classes, mat_y_ticks=self.__classes) self.__experiment.log_chart("confusion matrix", data=Heatmap(z=confusion_mat_test))