示例#1
0
def combine_scores(scores):
    scores = {k[:-9]: v for k, v in scores.items() if v}
    if not scores:
        return {}
    s = {}
    for (k, c), v in co2_utl.stack_nested_keys(scores, depth=2):
        r = {'models': v['models']} if 'models' in v else {}
        r.update(v.get('score', {}))
        co2_utl.get_nested_dicts(s, k, c, default=co2_utl.ret_v(r))

        if not co2_utl.are_in_nested_dicts(s, k, 'best'):
            keys = {'models': 'selected_models', 'success': 'status'}
            best = dsp_utl.map_dict(keys, dsp_utl.selector(keys, r))
            best['from'] = c
            co2_utl.get_nested_dicts(s, k, 'best', default=co2_utl.ret_v(best))

    return {'selections': s, 'scores': scores}
示例#2
0
def split_prediction_models(
        scores, calibrated_models, input_models, cycle_ids=()):
    sbm, model_sel, par = {}, {}, {}
    for (k, c), v in dsp_utl.stack_nested_keys(scores, depth=2):
        r = dsp_utl.selector(['models'], v, allow_miss=True)

        for m in r.get('models', ()):
            dsp_utl.get_nested_dicts(par, m, 'calibration')[c] = c

        r.update(v.get('score', {}))
        dsp_utl.get_nested_dicts(sbm, k, c, default=co2_utl.ret_v(r))
        r = dsp_utl.selector(['success'], r, allow_miss=True)
        r = dsp_utl.map_dict({'success': 'status'}, r, {'from': c})
        dsp_utl.get_nested_dicts(model_sel, k, 'calibration')[c] = r

    p = {i: dict.fromkeys(input_models, 'input') for i in cycle_ids}

    models = {i: input_models.copy() for i in cycle_ids}

    for k, n in sorted(calibrated_models.items()):
        d = n.get(dsp_utl.NONE, (None, True, {}))

        for i in cycle_ids:
            c, s, m = n.get(i, d)
            if m:
                s = {'from': c, 'status': s}
                dsp_utl.get_nested_dicts(model_sel, k, 'prediction')[i] = s
                models[i].update(m)
                p[i].update(dict.fromkeys(m, c))

    for k, v in dsp_utl.stack_nested_keys(p, ('prediction',), depth=2):
        dsp_utl.get_nested_dicts(par, k[-1], *k[:-1], default=co2_utl.ret_v(v))

    s = {
        'param_selections': par,
        'model_selections': model_sel,
        'score_by_model': sbm,
        'scores': scores
    }
    return (s,) + tuple(models.get(k, {}) for k in cycle_ids)
示例#3
0
def select_outputs(outputs, targets, results):

    results = dsp_utl.selector(outputs, results, allow_miss=True)
    results = dsp_utl.map_dict(dict(zip(outputs, targets)), results)
    it = ((k, results[k]) for k in targets if k in results)
    return collections.OrderedDict(it)
示例#4
0
def _chart2excel(writer, sheet, charts):
    try:
        add_chart = writer.book.add_chart
        m, h, w = 3, 300, 512

        for i, (k, v) in enumerate(sorted(charts.items())):
            chart = add_chart({'type': 'scatter', 'subtype': 'straight'})
            for s in v['series']:
                chart.add_series({
                    'name': s['label'],
                    'categories': _data_ref(s['x']),
                    'values': _data_ref(s['y']),
                })
            chart.set_size({'width': w, 'height': h})

            for s, o in v['set'].items():
                eval('chart.set_%s(o)' % s)

            n = int(i / m)
            j = i - n * m
            sheet.insert_chart('A1', chart, {
                'x_offset': w * n,
                'y_offset': h * j
            })
    except AttributeError:
        from openpyxl.chart import ScatterChart, Series
        from xlrd import colname as xl_colname

        sn = writer.book.get_sheet_names()
        named_ranges = {
            '%s!%s' % (sn[d.localSheetId], d.name): d.value
            for d in writer.book.defined_names.definedName
        }
        m, h, w = 3, 7.94, 13.55

        for i, (k, v) in enumerate(sorted(charts.items())):
            chart = ScatterChart()
            chart.height = h
            chart.width = w
            _map = {
                ('title', 'name'): ('title', ),
                ('y_axis', 'name'): ('y_axis', 'title'),
                ('x_axis', 'name'): ('x_axis', 'title'),
            }
            _filter = {
                ('legend', 'position'): lambda x: x[0],
            }
            it = {
                s: _filter[s](o) if s in _filter else o
                for s, o in dsp_utl.stack_nested_keys(v['set'])
            }

            for s, o in dsp_utl.map_dict(_map, it).items():
                c = chart
                for j in s[:-1]:
                    c = getattr(c, j)
                setattr(c, s[-1], o)

            for s in v['series']:
                xvalues = named_ranges[_data_ref(s['x'])]
                values = named_ranges[_data_ref(s['y'])]
                series = Series(values, xvalues, title=s['label'])
                chart.series.append(series)

            n = int(i / m)
            j = i - n * m

            sheet.add_chart(chart, '%s%d' % (xl_colname(8 * n), 1 + 15 * j))