def addMetabolomicsReaction(model, metabolites, react_name, coefficient_str=1):
    print(react_name, ":", metabolites)
    # Build a reaction
    coefficient_str = str(coefficient_str)
    reaction_str = coefficient_str + (" + " + coefficient_str).join(
        metabolites) + " <==> " + react_name + "_c"
    reaction = Reaction(react_name)
    reaction.name = react_name
    reaction.subsystem = 'Metabolomics integration'
    # Add the reaction to the model
    model.add_reactions([reaction])
    reaction.build_reaction_from_string(reaction_str)
    #print(reaction,":::::",reaction_str)
    return reaction
示例#2
0
def convert_to_irreversible(model):
    """Split reversible reactions into two irreversible reactions

    These two reactions will proceed in opposite directions. This
    guarentees that all reactions in the model will only allow
    positive flux values, which is useful for some modeling problems.

    Arguments
    ----------
    * model: cobra.Model ~ A Model object which will be modified in place.

    """
    #warn("deprecated, not applicable for optlang solvers", DeprecationWarning)
    reactions_to_add = []
    coefficients = {}
    for reaction in model.reactions:
        # If a reaction is reverse only, the forward reaction (which
        # will be constrained to 0) will be left in the model.
        if reaction.lower_bound < 0 and reaction.upper_bound > 0:
            reverse_reaction = Reaction(reaction.id + "_reverse")
            reverse_reaction.lower_bound = max(0, -reaction.upper_bound)
            reverse_reaction.upper_bound = -reaction.lower_bound
            coefficients[
                reverse_reaction] = reaction.objective_coefficient * -1
            reaction.lower_bound = max(0, reaction.lower_bound)
            reaction.upper_bound = max(0, reaction.upper_bound)
            # Make the directions aware of each other
            reaction.notes["reflection"] = reverse_reaction.id
            reverse_reaction.notes["reflection"] = reaction.id
            reaction_dict = {
                k: v * -1
                for k, v in reaction._metabolites.items()
            }
            reverse_reaction.add_metabolites(reaction_dict)
            reverse_reaction._model = reaction._model
            reverse_reaction._genes = reaction._genes
            for gene in reaction._genes:
                gene._reaction.add(reverse_reaction)
            reverse_reaction.subsystem = reaction.subsystem
            reverse_reaction._gene_reaction_rule = reaction._gene_reaction_rule
            reactions_to_add.append(reverse_reaction)
    model.add_reactions(reactions_to_add)
    set_objective(model, coefficients, additive=True)
示例#3
0
文件: modify.py 项目: cdiener/cobrapy
def convert_to_irreversible(cobra_model):
    """Split reversible reactions into two irreversible reactions

    These two reactions will proceed in opposite directions. This
    guarentees that all reactions in the model will only allow
    positive flux values, which is useful for some modeling problems.

    cobra_model: A Model object which will be modified in place.

    """
    warn("deprecated, not applicable for optlang solvers", DeprecationWarning)
    reactions_to_add = []
    coefficients = {}
    for reaction in cobra_model.reactions:
        # If a reaction is reverse only, the forward reaction (which
        # will be constrained to 0) will be left in the model.
        if reaction.lower_bound < 0:
            reverse_reaction = Reaction(reaction.id + "_reverse")
            reverse_reaction.lower_bound = max(0, -reaction.upper_bound)
            reverse_reaction.upper_bound = -reaction.lower_bound
            coefficients[
                reverse_reaction] = reaction.objective_coefficient * -1
            reaction.lower_bound = max(0, reaction.lower_bound)
            reaction.upper_bound = max(0, reaction.upper_bound)
            # Make the directions aware of each other
            reaction.notes["reflection"] = reverse_reaction.id
            reverse_reaction.notes["reflection"] = reaction.id
            reaction_dict = {k: v * -1
                             for k, v in iteritems(reaction._metabolites)}
            reverse_reaction.add_metabolites(reaction_dict)
            reverse_reaction._model = reaction._model
            reverse_reaction._genes = reaction._genes
            for gene in reaction._genes:
                gene._reaction.add(reverse_reaction)
            reverse_reaction.subsystem = reaction.subsystem
            reverse_reaction._gene_reaction_rule = reaction._gene_reaction_rule
            reactions_to_add.append(reverse_reaction)
    cobra_model.add_reactions(reactions_to_add)
    set_objective(cobra_model, coefficients, additive=True)
示例#4
0
文件: sbml.py 项目: wbryant/cobrapy
def create_cobra_model_from_sbml_file(sbml_filename, old_sbml=False,
                                      legacy_metabolite=False,
                                      print_time=False, use_hyphens=False):
    """convert an SBML XML file into a cobra.Model object.

    Supports SBML Level 2 Versions 1 and 4.  The function will detect if the
    SBML fbc package is used in the file and run the converter if the fbc
    package is used.

    Parameters
    ----------
    sbml_filename: string
    old_sbml: bool
        Set to True if the XML file has metabolite formula appended to
        metabolite names. This was a poorly designed artifact that persists in
        some models.
    legacy_metabolite: bool
        If True then assume that the metabolite id has the compartment id
         appended after an underscore (e.g. _c for cytosol). This has not been
         implemented but will be soon.
    print_time: bool
         deprecated
    use_hyphens: bool
        If True, double underscores (__) in an SBML ID will be converted to
        hyphens

    Returns
    -------
    Model : The parsed cobra model
    """
    if not libsbml:
        raise ImportError('create_cobra_model_from_sbml_file '
                          'requires python-libsbml')

    __default_lower_bound = -1000
    __default_upper_bound = 1000
    __default_objective_coefficient = 0
    # Ensure that the file exists
    if not isfile(sbml_filename):
        raise IOError('Your SBML file is not found: %s' % sbml_filename)
    # Expressions to change SBML Ids to Palsson Lab Ids
    metabolite_re = re.compile('^M_')
    reaction_re = re.compile('^R_')
    compartment_re = re.compile('^C_')
    if print_time:
        warn("print_time is deprecated", DeprecationWarning)
    model_doc = libsbml.readSBML(sbml_filename)
    if model_doc.getPlugin("fbc") is not None:
        from libsbml import ConversionProperties, LIBSBML_OPERATION_SUCCESS
        conversion_properties = ConversionProperties()
        conversion_properties.addOption(
            "convert fbc to cobra", True, "Convert FBC model to Cobra model")
        result = model_doc.convert(conversion_properties)
        if result != LIBSBML_OPERATION_SUCCESS:
            raise Exception("Conversion of SBML+fbc to COBRA failed")
    sbml_model = model_doc.getModel()
    sbml_model_id = sbml_model.getId()
    sbml_species = sbml_model.getListOfSpecies()
    sbml_reactions = sbml_model.getListOfReactions()
    sbml_compartments = sbml_model.getListOfCompartments()
    compartment_dict = dict([(compartment_re.split(x.getId())[-1], x.getName())
                             for x in sbml_compartments])
    if legacy_metabolite:
        # Deal with the palsson lab appending the compartment id to the
        # metabolite id
        new_dict = {}
        for the_id, the_name in compartment_dict.items():
            if the_name == '':
                new_dict[the_id[0].lower()] = the_id
            else:
                new_dict[the_id] = the_name
        compartment_dict = new_dict
        legacy_compartment_converter = dict(
            [(v, k) for k, v in iteritems(compartment_dict)])

    cobra_model = Model(sbml_model_id)
    metabolites = []
    metabolite_dict = {}
    # Convert sbml_metabolites to cobra.Metabolites
    for sbml_metabolite in sbml_species:
        # Skip sbml boundary species
        if sbml_metabolite.getBoundaryCondition():
            continue

        if (old_sbml or legacy_metabolite) and \
                sbml_metabolite.getId().endswith('_b'):
            # Deal with incorrect sbml from bigg.ucsd.edu
            continue
        tmp_metabolite = Metabolite()
        metabolite_id = tmp_metabolite.id = sbml_metabolite.getId()
        tmp_metabolite.compartment = compartment_re.split(
            sbml_metabolite.getCompartment())[-1]
        if legacy_metabolite:
            if tmp_metabolite.compartment not in compartment_dict:
                tmp_metabolite.compartment = legacy_compartment_converter[
                    tmp_metabolite.compartment]
            tmp_metabolite.id = parse_legacy_id(
                tmp_metabolite.id, tmp_metabolite.compartment,
                use_hyphens=use_hyphens)
        if use_hyphens:
            tmp_metabolite.id = metabolite_re.split(
                tmp_metabolite.id)[-1].replace('__', '-')
        else:
            # Just in case the SBML ids are ill-formed and use -
            tmp_metabolite.id = metabolite_re.split(
                tmp_metabolite.id)[-1].replace('-', '__')
        tmp_metabolite.name = sbml_metabolite.getName()
        tmp_formula = ''
        tmp_metabolite.notes = parse_legacy_sbml_notes(
            sbml_metabolite.getNotesString())
        if sbml_metabolite.isSetCharge():
            tmp_metabolite.charge = sbml_metabolite.getCharge()
        if "CHARGE" in tmp_metabolite.notes:
            note_charge = tmp_metabolite.notes["CHARGE"][0]
            try:
                note_charge = float(note_charge)
                if note_charge == int(note_charge):
                    note_charge = int(note_charge)
            except:
                warn("charge of %s is not a number (%s)" %
                     (tmp_metabolite.id, str(note_charge)))
            else:
                if ((tmp_metabolite.charge is None) or
                        (tmp_metabolite.charge == note_charge)):
                    tmp_metabolite.notes.pop("CHARGE")
                    # set charge to the one from notes if not assigend before
                    # the same
                    tmp_metabolite.charge = note_charge
                else:  # tmp_metabolite.charge != note_charge
                    msg = "different charges specified for %s (%d and %d)"
                    msg = msg % (tmp_metabolite.id,
                                 tmp_metabolite.charge, note_charge)
                    warn(msg)
                    # Chances are a 0 note charge was written by mistake. We
                    # will default to the note_charge in this case.
                    if tmp_metabolite.charge == 0:
                        tmp_metabolite.charge = note_charge

        for the_key in tmp_metabolite.notes.keys():
            if the_key.lower() == 'formula':
                tmp_formula = tmp_metabolite.notes.pop(the_key)[0]
                break
        if tmp_formula == '' and old_sbml:
            tmp_formula = tmp_metabolite.name.split('_')[-1]
            tmp_metabolite.name = tmp_metabolite.name[:-len(tmp_formula) - 1]
        tmp_metabolite.formula = tmp_formula
        metabolite_dict.update({metabolite_id: tmp_metabolite})
        metabolites.append(tmp_metabolite)
    cobra_model.add_metabolites(metabolites)

    # Construct the vectors and matrices for holding connectivity and numerical
    # info to feed to the cobra toolbox.
    # Always assume steady state simulations so b is set to 0
    cobra_reaction_list = []
    coefficients = {}
    for sbml_reaction in sbml_reactions:
        if use_hyphens:
            # Change the ids to match conventions used by the Palsson lab.
            reaction = Reaction(reaction_re.split(
                sbml_reaction.getId())[-1].replace('__', '-'))
        else:
            # Just in case the SBML ids are ill-formed and use -
            reaction = Reaction(reaction_re.split(
                sbml_reaction.getId())[-1].replace('-', '__'))
        cobra_reaction_list.append(reaction)
        # reaction.exchange_reaction = 0
        reaction.name = sbml_reaction.getName()
        cobra_metabolites = {}
        # Use the cobra.Metabolite class here
        for sbml_metabolite in sbml_reaction.getListOfReactants():
            tmp_metabolite_id = sbml_metabolite.getSpecies()
            # This deals with boundary metabolites
            if tmp_metabolite_id in metabolite_dict:
                tmp_metabolite = metabolite_dict[tmp_metabolite_id]
                cobra_metabolites[tmp_metabolite] = - \
                    sbml_metabolite.getStoichiometry()
        for sbml_metabolite in sbml_reaction.getListOfProducts():
            tmp_metabolite_id = sbml_metabolite.getSpecies()
            # This deals with boundary metabolites
            if tmp_metabolite_id in metabolite_dict:
                tmp_metabolite = metabolite_dict[tmp_metabolite_id]
                # Handle the case where the metabolite was specified both
                # as a reactant and as a product.
                if tmp_metabolite in cobra_metabolites:
                    warn("%s appears as a reactant and product %s" %
                         (tmp_metabolite_id, reaction.id))
                    cobra_metabolites[
                        tmp_metabolite] += sbml_metabolite.getStoichiometry()
                    # if the combined stoichiometry is 0, remove the metabolite
                    if cobra_metabolites[tmp_metabolite] == 0:
                        cobra_metabolites.pop(tmp_metabolite)
                else:
                    cobra_metabolites[
                        tmp_metabolite] = sbml_metabolite.getStoichiometry()
        # check for nan
        for met, v in iteritems(cobra_metabolites):
            if isnan(v) or isinf(v):
                warn("invalid value %s for metabolite '%s' in reaction '%s'" %
                     (str(v), met.id, reaction.id))
        reaction.add_metabolites(cobra_metabolites)
        # Parse the kinetic law info here.
        parameter_dict = {}
        # If lower and upper bounds are specified in the Kinetic Law then
        # they override the sbml reversible attribute.  If they are not
        # specified then the bounds are determined by getReversible.
        if not sbml_reaction.getKineticLaw():

            if sbml_reaction.getReversible():
                parameter_dict['lower_bound'] = __default_lower_bound
                parameter_dict['upper_bound'] = __default_upper_bound
            else:
                # Assume that irreversible reactions only proceed from left to
                # right.
                parameter_dict['lower_bound'] = 0
                parameter_dict['upper_bound'] = __default_upper_bound

            parameter_dict[
                'objective_coefficient'] = __default_objective_coefficient
        else:
            for sbml_parameter in \
                    sbml_reaction.getKineticLaw().getListOfParameters():
                parameter_dict[
                    sbml_parameter.getId().lower()] = sbml_parameter.getValue()

        if 'lower_bound' in parameter_dict:
            reaction.lower_bound = parameter_dict['lower_bound']
        elif 'lower bound' in parameter_dict:
            reaction.lower_bound = parameter_dict['lower bound']
        elif sbml_reaction.getReversible():
            reaction.lower_bound = __default_lower_bound
        else:
            reaction.lower_bound = 0

        if 'upper_bound' in parameter_dict:
            reaction.upper_bound = parameter_dict['upper_bound']
        elif 'upper bound' in parameter_dict:
            reaction.upper_bound = parameter_dict['upper bound']
        else:
            reaction.upper_bound = __default_upper_bound

        objective_coefficient = parameter_dict.get(
            'objective_coefficient', parameter_dict.get(
                'objective_coefficient', __default_objective_coefficient))
        if objective_coefficient != 0:
            coefficients[reaction] = objective_coefficient

        # ensure values are not set to nan or inf
        if isnan(reaction.lower_bound) or isinf(reaction.lower_bound):
            reaction.lower_bound = __default_lower_bound
        if isnan(reaction.upper_bound) or isinf(reaction.upper_bound):
            reaction.upper_bound = __default_upper_bound

        reaction_note_dict = parse_legacy_sbml_notes(
            sbml_reaction.getNotesString())
        # Parse the reaction notes.
        # POTENTIAL BUG: DEALING WITH LEGACY 'SBML' THAT IS NOT IN A
        # STANDARD FORMAT
        # TODO: READ IN OTHER NOTES AND GIVE THEM A reaction_ prefix.
        # TODO: Make sure genes get added as objects
        if 'GENE ASSOCIATION' in reaction_note_dict:
            rule = reaction_note_dict['GENE ASSOCIATION'][0]
            try:
                rule.encode('ascii')
            except (UnicodeEncodeError, UnicodeDecodeError):
                warn("gene_reaction_rule '%s' is not ascii compliant" % rule)
            if rule.startswith("&quot;") and rule.endswith("&quot;"):
                rule = rule[6:-6]
            reaction.gene_reaction_rule = rule
            if 'GENE LIST' in reaction_note_dict:
                reaction.systematic_names = reaction_note_dict['GENE LIST'][0]
            elif ('GENES' in reaction_note_dict and
                  reaction_note_dict['GENES'] != ['']):
                reaction.systematic_names = reaction_note_dict['GENES'][0]
            elif 'LOCUS' in reaction_note_dict:
                gene_id_to_object = dict([(x.id, x) for x in reaction._genes])
                for the_row in reaction_note_dict['LOCUS']:
                    tmp_row_dict = {}
                    the_row = 'LOCUS:' + the_row.lstrip('_').rstrip('#')
                    for the_item in the_row.split('#'):
                        k, v = the_item.split(':')
                        tmp_row_dict[k] = v
                    tmp_locus_id = tmp_row_dict['LOCUS']
                    if 'TRANSCRIPT' in tmp_row_dict:
                        tmp_locus_id = tmp_locus_id + \
                                       '.' + tmp_row_dict['TRANSCRIPT']

                    if 'ABBREVIATION' in tmp_row_dict:
                        gene_id_to_object[tmp_locus_id].name = tmp_row_dict[
                            'ABBREVIATION']

        if 'SUBSYSTEM' in reaction_note_dict:
            reaction.subsystem = reaction_note_dict.pop('SUBSYSTEM')[0]

        reaction.notes = reaction_note_dict

    # Now, add all of the reactions to the model.
    cobra_model.id = sbml_model.getId()
    # Populate the compartment list - This will be done based on
    # cobra.Metabolites in cobra.Reactions in the future.
    cobra_model.compartments = compartment_dict

    cobra_model.add_reactions(cobra_reaction_list)
    set_objective(cobra_model, coefficients)
    return cobra_model
示例#5
0
def from_mat_struct(mat_struct, model_id=None, inf=inf):
    """create a model from the COBRA toolbox struct

    The struct will be a dict read in by scipy.io.loadmat

    """
    m = mat_struct
    if m.dtype.names is None:
        raise ValueError("not a valid mat struct")
    if not {"rxns", "mets", "S", "lb", "ub"} <= set(m.dtype.names):
        raise ValueError("not a valid mat struct")
    if "c" in m.dtype.names:
        c_vec = m["c"][0, 0]
    else:
        c_vec = None
        warn("objective vector 'c' not found")
    model = Model()
    if model_id is not None:
        model.id = model_id
    elif "description" in m.dtype.names:
        description = m["description"][0, 0][0]
        if not isinstance(description, string_types) and len(description) > 1:
            model.id = description[0]
            warn("Several IDs detected, only using the first.")
        else:
            model.id = description
    else:
        model.id = "imported_model"
    for i, name in enumerate(m["mets"][0, 0]):
        new_metabolite = Metabolite()
        new_metabolite.id = str(name[0][0])
        if all(var in m.dtype.names
               for var in ['metComps', 'comps', 'compNames']):
            comp_index = m["metComps"][0, 0][i][0] - 1
            new_metabolite.compartment = m['comps'][0, 0][comp_index][0][0]
            if new_metabolite.compartment not in model.compartments:
                comp_name = m['compNames'][0, 0][comp_index][0][0]
                model.compartments[new_metabolite.compartment] = comp_name
        else:
            new_metabolite.compartment = _get_id_compartment(new_metabolite.id)
            if new_metabolite.compartment not in model.compartments:
                model.compartments[
                    new_metabolite.compartment] = new_metabolite.compartment
        try:
            new_metabolite.name = str(m["metNames"][0, 0][i][0][0])
        except (IndexError, ValueError):
            pass
        try:
            new_metabolite.formula = str(m["metFormulas"][0][0][i][0][0])
        except (IndexError, ValueError):
            pass
        try:
            new_metabolite.charge = float(m["metCharge"][0, 0][i][0])
            int_charge = int(new_metabolite.charge)
            if new_metabolite.charge == int_charge:
                new_metabolite.charge = int_charge
        except (IndexError, ValueError):
            pass
        model.add_metabolites([new_metabolite])
    new_reactions = []
    coefficients = {}
    for i, name in enumerate(m["rxns"][0, 0]):
        new_reaction = Reaction()
        new_reaction.id = str(name[0][0])
        new_reaction.lower_bound = float(m["lb"][0, 0][i][0])
        new_reaction.upper_bound = float(m["ub"][0, 0][i][0])
        if isinf(new_reaction.lower_bound) and new_reaction.lower_bound < 0:
            new_reaction.lower_bound = -inf
        if isinf(new_reaction.upper_bound) and new_reaction.upper_bound > 0:
            new_reaction.upper_bound = inf
        if c_vec is not None:
            coefficients[new_reaction] = float(c_vec[i][0])
        try:
            new_reaction.gene_reaction_rule = str(m['grRules'][0, 0][i][0][0])
        except (IndexError, ValueError):
            pass
        try:
            new_reaction.name = str(m["rxnNames"][0, 0][i][0][0])
        except (IndexError, ValueError):
            pass
        try:
            new_reaction.subsystem = str(m['subSystems'][0, 0][i][0][0])
        except (IndexError, ValueError):
            pass
        new_reactions.append(new_reaction)
    model.add_reactions(new_reactions)
    set_objective(model, coefficients)
    coo = scipy_sparse.coo_matrix(m["S"][0, 0])
    for i, j, v in zip(coo.row, coo.col, coo.data):
        model.reactions[j].add_metabolites({model.metabolites[i]: v})
    return model
示例#6
0
文件: sbml.py 项目: cdiener/cobrapy
def create_cobra_model_from_sbml_file(sbml_filename, old_sbml=False,
                                      legacy_metabolite=False,
                                      print_time=False, use_hyphens=False):
    """convert an SBML XML file into a cobra.Model object.

    Supports SBML Level 2 Versions 1 and 4.  The function will detect if the
    SBML fbc package is used in the file and run the converter if the fbc
    package is used.

    Parameters
    ----------
    sbml_filename: string
    old_sbml: bool
        Set to True if the XML file has metabolite formula appended to
        metabolite names. This was a poorly designed artifact that persists in
        some models.
    legacy_metabolite: bool
        If True then assume that the metabolite id has the compartment id
         appended after an underscore (e.g. _c for cytosol). This has not been
         implemented but will be soon.
    print_time: bool
         deprecated
    use_hyphens: bool
        If True, double underscores (__) in an SBML ID will be converted to
        hyphens

    Returns
    -------
    Model : The parsed cobra model
    """
    if not libsbml:
        raise ImportError('create_cobra_model_from_sbml_file '
                          'requires python-libsbml')

    __default_lower_bound = -1000
    __default_upper_bound = 1000
    __default_objective_coefficient = 0
    # Ensure that the file exists
    if not isfile(sbml_filename):
        raise IOError('Your SBML file is not found: %s' % sbml_filename)
    # Expressions to change SBML Ids to Palsson Lab Ids
    metabolite_re = re.compile('^M_')
    reaction_re = re.compile('^R_')
    compartment_re = re.compile('^C_')
    if print_time:
        warn("print_time is deprecated", DeprecationWarning)
    model_doc = libsbml.readSBML(sbml_filename)
    if model_doc.getPlugin("fbc") is not None:
        from libsbml import ConversionProperties, LIBSBML_OPERATION_SUCCESS
        conversion_properties = ConversionProperties()
        conversion_properties.addOption(
            "convert fbc to cobra", True, "Convert FBC model to Cobra model")
        result = model_doc.convert(conversion_properties)
        if result != LIBSBML_OPERATION_SUCCESS:
            raise Exception("Conversion of SBML+fbc to COBRA failed")
    sbml_model = model_doc.getModel()
    sbml_model_id = sbml_model.getId()
    sbml_species = sbml_model.getListOfSpecies()
    sbml_reactions = sbml_model.getListOfReactions()
    sbml_compartments = sbml_model.getListOfCompartments()
    compartment_dict = dict([(compartment_re.split(x.getId())[-1], x.getName())
                             for x in sbml_compartments])
    if legacy_metabolite:
        # Deal with the palsson lab appending the compartment id to the
        # metabolite id
        new_dict = {}
        for the_id, the_name in compartment_dict.items():
            if the_name == '':
                new_dict[the_id[0].lower()] = the_id
            else:
                new_dict[the_id] = the_name
        compartment_dict = new_dict
        legacy_compartment_converter = dict(
            [(v, k) for k, v in iteritems(compartment_dict)])

    cobra_model = Model(sbml_model_id)
    metabolites = []
    metabolite_dict = {}
    # Convert sbml_metabolites to cobra.Metabolites
    for sbml_metabolite in sbml_species:
        # Skip sbml boundary species
        if sbml_metabolite.getBoundaryCondition():
            continue

        if (old_sbml or legacy_metabolite) and \
                sbml_metabolite.getId().endswith('_b'):
            # Deal with incorrect sbml from bigg.ucsd.edu
            continue
        tmp_metabolite = Metabolite()
        metabolite_id = tmp_metabolite.id = sbml_metabolite.getId()
        tmp_metabolite.compartment = compartment_re.split(
            sbml_metabolite.getCompartment())[-1]
        if legacy_metabolite:
            if tmp_metabolite.compartment not in compartment_dict:
                tmp_metabolite.compartment = legacy_compartment_converter[
                    tmp_metabolite.compartment]
            tmp_metabolite.id = parse_legacy_id(
                tmp_metabolite.id, tmp_metabolite.compartment,
                use_hyphens=use_hyphens)
        if use_hyphens:
            tmp_metabolite.id = metabolite_re.split(
                tmp_metabolite.id)[-1].replace('__', '-')
        else:
            # Just in case the SBML ids are ill-formed and use -
            tmp_metabolite.id = metabolite_re.split(
                tmp_metabolite.id)[-1].replace('-', '__')
        tmp_metabolite.name = sbml_metabolite.getName()
        tmp_formula = ''
        tmp_metabolite.notes = parse_legacy_sbml_notes(
            sbml_metabolite.getNotesString())
        if sbml_metabolite.isSetCharge():
            tmp_metabolite.charge = sbml_metabolite.getCharge()
        if "CHARGE" in tmp_metabolite.notes:
            note_charge = tmp_metabolite.notes["CHARGE"][0]
            try:
                note_charge = float(note_charge)
                if note_charge == int(note_charge):
                    note_charge = int(note_charge)
            except:
                warn("charge of %s is not a number (%s)" %
                     (tmp_metabolite.id, str(note_charge)))
            else:
                if ((tmp_metabolite.charge is None) or
                        (tmp_metabolite.charge == note_charge)):
                    tmp_metabolite.notes.pop("CHARGE")
                    # set charge to the one from notes if not assigend before
                    # the same
                    tmp_metabolite.charge = note_charge
                else:  # tmp_metabolite.charge != note_charge
                    msg = "different charges specified for %s (%d and %d)"
                    msg = msg % (tmp_metabolite.id,
                                 tmp_metabolite.charge, note_charge)
                    warn(msg)
                    # Chances are a 0 note charge was written by mistake. We
                    # will default to the note_charge in this case.
                    if tmp_metabolite.charge == 0:
                        tmp_metabolite.charge = note_charge

        for the_key in tmp_metabolite.notes.keys():
            if the_key.lower() == 'formula':
                tmp_formula = tmp_metabolite.notes.pop(the_key)[0]
                break
        if tmp_formula == '' and old_sbml:
            tmp_formula = tmp_metabolite.name.split('_')[-1]
            tmp_metabolite.name = tmp_metabolite.name[:-len(tmp_formula) - 1]
        tmp_metabolite.formula = tmp_formula
        metabolite_dict.update({metabolite_id: tmp_metabolite})
        metabolites.append(tmp_metabolite)
    cobra_model.add_metabolites(metabolites)

    # Construct the vectors and matrices for holding connectivity and numerical
    # info to feed to the cobra toolbox.
    # Always assume steady state simulations so b is set to 0
    cobra_reaction_list = []
    coefficients = {}
    for sbml_reaction in sbml_reactions:
        if use_hyphens:
            # Change the ids to match conventions used by the Palsson lab.
            reaction = Reaction(reaction_re.split(
                sbml_reaction.getId())[-1].replace('__', '-'))
        else:
            # Just in case the SBML ids are ill-formed and use -
            reaction = Reaction(reaction_re.split(
                sbml_reaction.getId())[-1].replace('-', '__'))
        cobra_reaction_list.append(reaction)
        # reaction.exchange_reaction = 0
        reaction.name = sbml_reaction.getName()
        cobra_metabolites = {}
        # Use the cobra.Metabolite class here
        for sbml_metabolite in sbml_reaction.getListOfReactants():
            tmp_metabolite_id = sbml_metabolite.getSpecies()
            # This deals with boundary metabolites
            if tmp_metabolite_id in metabolite_dict:
                tmp_metabolite = metabolite_dict[tmp_metabolite_id]
                cobra_metabolites[tmp_metabolite] = - \
                    sbml_metabolite.getStoichiometry()
        for sbml_metabolite in sbml_reaction.getListOfProducts():
            tmp_metabolite_id = sbml_metabolite.getSpecies()
            # This deals with boundary metabolites
            if tmp_metabolite_id in metabolite_dict:
                tmp_metabolite = metabolite_dict[tmp_metabolite_id]
                # Handle the case where the metabolite was specified both
                # as a reactant and as a product.
                if tmp_metabolite in cobra_metabolites:
                    warn("%s appears as a reactant and product %s" %
                         (tmp_metabolite_id, reaction.id))
                    cobra_metabolites[
                        tmp_metabolite] += sbml_metabolite.getStoichiometry()
                    # if the combined stoichiometry is 0, remove the metabolite
                    if cobra_metabolites[tmp_metabolite] == 0:
                        cobra_metabolites.pop(tmp_metabolite)
                else:
                    cobra_metabolites[
                        tmp_metabolite] = sbml_metabolite.getStoichiometry()
        # check for nan
        for met, v in iteritems(cobra_metabolites):
            if isnan(v) or isinf(v):
                warn("invalid value %s for metabolite '%s' in reaction '%s'" %
                     (str(v), met.id, reaction.id))
        reaction.add_metabolites(cobra_metabolites)
        # Parse the kinetic law info here.
        parameter_dict = {}
        # If lower and upper bounds are specified in the Kinetic Law then
        # they override the sbml reversible attribute.  If they are not
        # specified then the bounds are determined by getReversible.
        if not sbml_reaction.getKineticLaw():

            if sbml_reaction.getReversible():
                parameter_dict['lower_bound'] = __default_lower_bound
                parameter_dict['upper_bound'] = __default_upper_bound
            else:
                # Assume that irreversible reactions only proceed from left to
                # right.
                parameter_dict['lower_bound'] = 0
                parameter_dict['upper_bound'] = __default_upper_bound

            parameter_dict[
                'objective_coefficient'] = __default_objective_coefficient
        else:
            for sbml_parameter in \
                    sbml_reaction.getKineticLaw().getListOfParameters():
                parameter_dict[
                    sbml_parameter.getId().lower()] = sbml_parameter.getValue()

        if 'lower_bound' in parameter_dict:
            reaction.lower_bound = parameter_dict['lower_bound']
        elif 'lower bound' in parameter_dict:
            reaction.lower_bound = parameter_dict['lower bound']
        elif sbml_reaction.getReversible():
            reaction.lower_bound = __default_lower_bound
        else:
            reaction.lower_bound = 0

        if 'upper_bound' in parameter_dict:
            reaction.upper_bound = parameter_dict['upper_bound']
        elif 'upper bound' in parameter_dict:
            reaction.upper_bound = parameter_dict['upper bound']
        else:
            reaction.upper_bound = __default_upper_bound

        objective_coefficient = parameter_dict.get(
            'objective_coefficient', parameter_dict.get(
                'objective_coefficient', __default_objective_coefficient))
        if objective_coefficient != 0:
            coefficients[reaction] = objective_coefficient

        # ensure values are not set to nan or inf
        if isnan(reaction.lower_bound) or isinf(reaction.lower_bound):
            reaction.lower_bound = __default_lower_bound
        if isnan(reaction.upper_bound) or isinf(reaction.upper_bound):
            reaction.upper_bound = __default_upper_bound

        reaction_note_dict = parse_legacy_sbml_notes(
            sbml_reaction.getNotesString())
        # Parse the reaction notes.
        # POTENTIAL BUG: DEALING WITH LEGACY 'SBML' THAT IS NOT IN A
        # STANDARD FORMAT
        # TODO: READ IN OTHER NOTES AND GIVE THEM A reaction_ prefix.
        # TODO: Make sure genes get added as objects
        if 'GENE ASSOCIATION' in reaction_note_dict:
            rule = reaction_note_dict['GENE ASSOCIATION'][0]
            try:
                rule.encode('ascii')
            except (UnicodeEncodeError, UnicodeDecodeError):
                warn("gene_reaction_rule '%s' is not ascii compliant" % rule)
            if rule.startswith("&quot;") and rule.endswith("&quot;"):
                rule = rule[6:-6]
            reaction.gene_reaction_rule = rule
            if 'GENE LIST' in reaction_note_dict:
                reaction.systematic_names = reaction_note_dict['GENE LIST'][0]
            elif ('GENES' in reaction_note_dict and
                  reaction_note_dict['GENES'] != ['']):
                reaction.systematic_names = reaction_note_dict['GENES'][0]
            elif 'LOCUS' in reaction_note_dict:
                gene_id_to_object = dict([(x.id, x) for x in reaction._genes])
                for the_row in reaction_note_dict['LOCUS']:
                    tmp_row_dict = {}
                    the_row = 'LOCUS:' + the_row.lstrip('_').rstrip('#')
                    for the_item in the_row.split('#'):
                        k, v = the_item.split(':')
                        tmp_row_dict[k] = v
                    tmp_locus_id = tmp_row_dict['LOCUS']
                    if 'TRANSCRIPT' in tmp_row_dict:
                        tmp_locus_id = tmp_locus_id + \
                                       '.' + tmp_row_dict['TRANSCRIPT']

                    if 'ABBREVIATION' in tmp_row_dict:
                        gene_id_to_object[tmp_locus_id].name = tmp_row_dict[
                            'ABBREVIATION']

        if 'SUBSYSTEM' in reaction_note_dict:
            reaction.subsystem = reaction_note_dict.pop('SUBSYSTEM')[0]

        reaction.notes = reaction_note_dict

    # Now, add all of the reactions to the model.
    cobra_model.id = sbml_model.getId()
    # Populate the compartment list - This will be done based on
    # cobra.Metabolites in cobra.Reactions in the future.
    cobra_model.compartments = compartment_dict

    cobra_model.add_reactions(cobra_reaction_list)
    set_objective(cobra_model, coefficients)
    return cobra_model
示例#7
0
文件: mat.py 项目: opencobra/cobrapy
def from_mat_struct(mat_struct, model_id=None, inf=inf):
    """create a model from the COBRA toolbox struct

    The struct will be a dict read in by scipy.io.loadmat

    """
    m = mat_struct
    if m.dtype.names is None:
        raise ValueError("not a valid mat struct")
    if not {"rxns", "mets", "S", "lb", "ub"} <= set(m.dtype.names):
        raise ValueError("not a valid mat struct")
    if "c" in m.dtype.names:
        c_vec = m["c"][0, 0]
    else:
        c_vec = None
        warn("objective vector 'c' not found")
    model = Model()
    if model_id is not None:
        model.id = model_id
    elif "description" in m.dtype.names:
        description = m["description"][0, 0][0]
        if not isinstance(description, string_types) and len(description) > 1:
            model.id = description[0]
            warn("Several IDs detected, only using the first.")
        else:
            model.id = description
    else:
        model.id = "imported_model"
    for i, name in enumerate(m["mets"][0, 0]):
        new_metabolite = Metabolite()
        new_metabolite.id = str(name[0][0])
        if all(var in m.dtype.names for var in
               ['metComps', 'comps', 'compNames']):
            comp_index = m["metComps"][0, 0][i][0] - 1
            new_metabolite.compartment = m['comps'][0, 0][comp_index][0][0]
            if new_metabolite.compartment not in model.compartments:
                comp_name = m['compNames'][0, 0][comp_index][0][0]
                model.compartments[new_metabolite.compartment] = comp_name
        else:
            new_metabolite.compartment = _get_id_compartment(new_metabolite.id)
            if new_metabolite.compartment not in model.compartments:
                model.compartments[
                    new_metabolite.compartment] = new_metabolite.compartment
        try:
            new_metabolite.name = str(m["metNames"][0, 0][i][0][0])
        except (IndexError, ValueError):
            pass
        try:
            new_metabolite.formula = str(m["metFormulas"][0][0][i][0][0])
        except (IndexError, ValueError):
            pass
        try:
            new_metabolite.charge = float(m["metCharge"][0, 0][i][0])
            int_charge = int(new_metabolite.charge)
            if new_metabolite.charge == int_charge:
                new_metabolite.charge = int_charge
        except (IndexError, ValueError):
            pass
        model.add_metabolites([new_metabolite])
    new_reactions = []
    coefficients = {}
    for i, name in enumerate(m["rxns"][0, 0]):
        new_reaction = Reaction()
        new_reaction.id = str(name[0][0])
        new_reaction.lower_bound = float(m["lb"][0, 0][i][0])
        new_reaction.upper_bound = float(m["ub"][0, 0][i][0])
        if isinf(new_reaction.lower_bound) and new_reaction.lower_bound < 0:
            new_reaction.lower_bound = -inf
        if isinf(new_reaction.upper_bound) and new_reaction.upper_bound > 0:
            new_reaction.upper_bound = inf
        if c_vec is not None:
            coefficients[new_reaction] = float(c_vec[i][0])
        try:
            new_reaction.gene_reaction_rule = str(m['grRules'][0, 0][i][0][0])
        except (IndexError, ValueError):
            pass
        try:
            new_reaction.name = str(m["rxnNames"][0, 0][i][0][0])
        except (IndexError, ValueError):
            pass
        try:
            new_reaction.subsystem = str(m['subSystems'][0, 0][i][0][0])
        except (IndexError, ValueError):
            pass
        new_reactions.append(new_reaction)
    model.add_reactions(new_reactions)
    set_objective(model, coefficients)
    coo = scipy_sparse.coo_matrix(m["S"][0, 0])
    for i, j, v in zip(coo.row, coo.col, coo.data):
        model.reactions[j].add_metabolites({model.metabolites[i]: v})
    return model