def addMetabolomicsReaction(model, metabolites, react_name, coefficient_str=1): print(react_name, ":", metabolites) # Build a reaction coefficient_str = str(coefficient_str) reaction_str = coefficient_str + (" + " + coefficient_str).join( metabolites) + " <==> " + react_name + "_c" reaction = Reaction(react_name) reaction.name = react_name reaction.subsystem = 'Metabolomics integration' # Add the reaction to the model model.add_reactions([reaction]) reaction.build_reaction_from_string(reaction_str) #print(reaction,":::::",reaction_str) return reaction
def convert_to_irreversible(model): """Split reversible reactions into two irreversible reactions These two reactions will proceed in opposite directions. This guarentees that all reactions in the model will only allow positive flux values, which is useful for some modeling problems. Arguments ---------- * model: cobra.Model ~ A Model object which will be modified in place. """ #warn("deprecated, not applicable for optlang solvers", DeprecationWarning) reactions_to_add = [] coefficients = {} for reaction in model.reactions: # If a reaction is reverse only, the forward reaction (which # will be constrained to 0) will be left in the model. if reaction.lower_bound < 0 and reaction.upper_bound > 0: reverse_reaction = Reaction(reaction.id + "_reverse") reverse_reaction.lower_bound = max(0, -reaction.upper_bound) reverse_reaction.upper_bound = -reaction.lower_bound coefficients[ reverse_reaction] = reaction.objective_coefficient * -1 reaction.lower_bound = max(0, reaction.lower_bound) reaction.upper_bound = max(0, reaction.upper_bound) # Make the directions aware of each other reaction.notes["reflection"] = reverse_reaction.id reverse_reaction.notes["reflection"] = reaction.id reaction_dict = { k: v * -1 for k, v in reaction._metabolites.items() } reverse_reaction.add_metabolites(reaction_dict) reverse_reaction._model = reaction._model reverse_reaction._genes = reaction._genes for gene in reaction._genes: gene._reaction.add(reverse_reaction) reverse_reaction.subsystem = reaction.subsystem reverse_reaction._gene_reaction_rule = reaction._gene_reaction_rule reactions_to_add.append(reverse_reaction) model.add_reactions(reactions_to_add) set_objective(model, coefficients, additive=True)
def convert_to_irreversible(cobra_model): """Split reversible reactions into two irreversible reactions These two reactions will proceed in opposite directions. This guarentees that all reactions in the model will only allow positive flux values, which is useful for some modeling problems. cobra_model: A Model object which will be modified in place. """ warn("deprecated, not applicable for optlang solvers", DeprecationWarning) reactions_to_add = [] coefficients = {} for reaction in cobra_model.reactions: # If a reaction is reverse only, the forward reaction (which # will be constrained to 0) will be left in the model. if reaction.lower_bound < 0: reverse_reaction = Reaction(reaction.id + "_reverse") reverse_reaction.lower_bound = max(0, -reaction.upper_bound) reverse_reaction.upper_bound = -reaction.lower_bound coefficients[ reverse_reaction] = reaction.objective_coefficient * -1 reaction.lower_bound = max(0, reaction.lower_bound) reaction.upper_bound = max(0, reaction.upper_bound) # Make the directions aware of each other reaction.notes["reflection"] = reverse_reaction.id reverse_reaction.notes["reflection"] = reaction.id reaction_dict = {k: v * -1 for k, v in iteritems(reaction._metabolites)} reverse_reaction.add_metabolites(reaction_dict) reverse_reaction._model = reaction._model reverse_reaction._genes = reaction._genes for gene in reaction._genes: gene._reaction.add(reverse_reaction) reverse_reaction.subsystem = reaction.subsystem reverse_reaction._gene_reaction_rule = reaction._gene_reaction_rule reactions_to_add.append(reverse_reaction) cobra_model.add_reactions(reactions_to_add) set_objective(cobra_model, coefficients, additive=True)
def create_cobra_model_from_sbml_file(sbml_filename, old_sbml=False, legacy_metabolite=False, print_time=False, use_hyphens=False): """convert an SBML XML file into a cobra.Model object. Supports SBML Level 2 Versions 1 and 4. The function will detect if the SBML fbc package is used in the file and run the converter if the fbc package is used. Parameters ---------- sbml_filename: string old_sbml: bool Set to True if the XML file has metabolite formula appended to metabolite names. This was a poorly designed artifact that persists in some models. legacy_metabolite: bool If True then assume that the metabolite id has the compartment id appended after an underscore (e.g. _c for cytosol). This has not been implemented but will be soon. print_time: bool deprecated use_hyphens: bool If True, double underscores (__) in an SBML ID will be converted to hyphens Returns ------- Model : The parsed cobra model """ if not libsbml: raise ImportError('create_cobra_model_from_sbml_file ' 'requires python-libsbml') __default_lower_bound = -1000 __default_upper_bound = 1000 __default_objective_coefficient = 0 # Ensure that the file exists if not isfile(sbml_filename): raise IOError('Your SBML file is not found: %s' % sbml_filename) # Expressions to change SBML Ids to Palsson Lab Ids metabolite_re = re.compile('^M_') reaction_re = re.compile('^R_') compartment_re = re.compile('^C_') if print_time: warn("print_time is deprecated", DeprecationWarning) model_doc = libsbml.readSBML(sbml_filename) if model_doc.getPlugin("fbc") is not None: from libsbml import ConversionProperties, LIBSBML_OPERATION_SUCCESS conversion_properties = ConversionProperties() conversion_properties.addOption( "convert fbc to cobra", True, "Convert FBC model to Cobra model") result = model_doc.convert(conversion_properties) if result != LIBSBML_OPERATION_SUCCESS: raise Exception("Conversion of SBML+fbc to COBRA failed") sbml_model = model_doc.getModel() sbml_model_id = sbml_model.getId() sbml_species = sbml_model.getListOfSpecies() sbml_reactions = sbml_model.getListOfReactions() sbml_compartments = sbml_model.getListOfCompartments() compartment_dict = dict([(compartment_re.split(x.getId())[-1], x.getName()) for x in sbml_compartments]) if legacy_metabolite: # Deal with the palsson lab appending the compartment id to the # metabolite id new_dict = {} for the_id, the_name in compartment_dict.items(): if the_name == '': new_dict[the_id[0].lower()] = the_id else: new_dict[the_id] = the_name compartment_dict = new_dict legacy_compartment_converter = dict( [(v, k) for k, v in iteritems(compartment_dict)]) cobra_model = Model(sbml_model_id) metabolites = [] metabolite_dict = {} # Convert sbml_metabolites to cobra.Metabolites for sbml_metabolite in sbml_species: # Skip sbml boundary species if sbml_metabolite.getBoundaryCondition(): continue if (old_sbml or legacy_metabolite) and \ sbml_metabolite.getId().endswith('_b'): # Deal with incorrect sbml from bigg.ucsd.edu continue tmp_metabolite = Metabolite() metabolite_id = tmp_metabolite.id = sbml_metabolite.getId() tmp_metabolite.compartment = compartment_re.split( sbml_metabolite.getCompartment())[-1] if legacy_metabolite: if tmp_metabolite.compartment not in compartment_dict: tmp_metabolite.compartment = legacy_compartment_converter[ tmp_metabolite.compartment] tmp_metabolite.id = parse_legacy_id( tmp_metabolite.id, tmp_metabolite.compartment, use_hyphens=use_hyphens) if use_hyphens: tmp_metabolite.id = metabolite_re.split( tmp_metabolite.id)[-1].replace('__', '-') else: # Just in case the SBML ids are ill-formed and use - tmp_metabolite.id = metabolite_re.split( tmp_metabolite.id)[-1].replace('-', '__') tmp_metabolite.name = sbml_metabolite.getName() tmp_formula = '' tmp_metabolite.notes = parse_legacy_sbml_notes( sbml_metabolite.getNotesString()) if sbml_metabolite.isSetCharge(): tmp_metabolite.charge = sbml_metabolite.getCharge() if "CHARGE" in tmp_metabolite.notes: note_charge = tmp_metabolite.notes["CHARGE"][0] try: note_charge = float(note_charge) if note_charge == int(note_charge): note_charge = int(note_charge) except: warn("charge of %s is not a number (%s)" % (tmp_metabolite.id, str(note_charge))) else: if ((tmp_metabolite.charge is None) or (tmp_metabolite.charge == note_charge)): tmp_metabolite.notes.pop("CHARGE") # set charge to the one from notes if not assigend before # the same tmp_metabolite.charge = note_charge else: # tmp_metabolite.charge != note_charge msg = "different charges specified for %s (%d and %d)" msg = msg % (tmp_metabolite.id, tmp_metabolite.charge, note_charge) warn(msg) # Chances are a 0 note charge was written by mistake. We # will default to the note_charge in this case. if tmp_metabolite.charge == 0: tmp_metabolite.charge = note_charge for the_key in tmp_metabolite.notes.keys(): if the_key.lower() == 'formula': tmp_formula = tmp_metabolite.notes.pop(the_key)[0] break if tmp_formula == '' and old_sbml: tmp_formula = tmp_metabolite.name.split('_')[-1] tmp_metabolite.name = tmp_metabolite.name[:-len(tmp_formula) - 1] tmp_metabolite.formula = tmp_formula metabolite_dict.update({metabolite_id: tmp_metabolite}) metabolites.append(tmp_metabolite) cobra_model.add_metabolites(metabolites) # Construct the vectors and matrices for holding connectivity and numerical # info to feed to the cobra toolbox. # Always assume steady state simulations so b is set to 0 cobra_reaction_list = [] coefficients = {} for sbml_reaction in sbml_reactions: if use_hyphens: # Change the ids to match conventions used by the Palsson lab. reaction = Reaction(reaction_re.split( sbml_reaction.getId())[-1].replace('__', '-')) else: # Just in case the SBML ids are ill-formed and use - reaction = Reaction(reaction_re.split( sbml_reaction.getId())[-1].replace('-', '__')) cobra_reaction_list.append(reaction) # reaction.exchange_reaction = 0 reaction.name = sbml_reaction.getName() cobra_metabolites = {} # Use the cobra.Metabolite class here for sbml_metabolite in sbml_reaction.getListOfReactants(): tmp_metabolite_id = sbml_metabolite.getSpecies() # This deals with boundary metabolites if tmp_metabolite_id in metabolite_dict: tmp_metabolite = metabolite_dict[tmp_metabolite_id] cobra_metabolites[tmp_metabolite] = - \ sbml_metabolite.getStoichiometry() for sbml_metabolite in sbml_reaction.getListOfProducts(): tmp_metabolite_id = sbml_metabolite.getSpecies() # This deals with boundary metabolites if tmp_metabolite_id in metabolite_dict: tmp_metabolite = metabolite_dict[tmp_metabolite_id] # Handle the case where the metabolite was specified both # as a reactant and as a product. if tmp_metabolite in cobra_metabolites: warn("%s appears as a reactant and product %s" % (tmp_metabolite_id, reaction.id)) cobra_metabolites[ tmp_metabolite] += sbml_metabolite.getStoichiometry() # if the combined stoichiometry is 0, remove the metabolite if cobra_metabolites[tmp_metabolite] == 0: cobra_metabolites.pop(tmp_metabolite) else: cobra_metabolites[ tmp_metabolite] = sbml_metabolite.getStoichiometry() # check for nan for met, v in iteritems(cobra_metabolites): if isnan(v) or isinf(v): warn("invalid value %s for metabolite '%s' in reaction '%s'" % (str(v), met.id, reaction.id)) reaction.add_metabolites(cobra_metabolites) # Parse the kinetic law info here. parameter_dict = {} # If lower and upper bounds are specified in the Kinetic Law then # they override the sbml reversible attribute. If they are not # specified then the bounds are determined by getReversible. if not sbml_reaction.getKineticLaw(): if sbml_reaction.getReversible(): parameter_dict['lower_bound'] = __default_lower_bound parameter_dict['upper_bound'] = __default_upper_bound else: # Assume that irreversible reactions only proceed from left to # right. parameter_dict['lower_bound'] = 0 parameter_dict['upper_bound'] = __default_upper_bound parameter_dict[ 'objective_coefficient'] = __default_objective_coefficient else: for sbml_parameter in \ sbml_reaction.getKineticLaw().getListOfParameters(): parameter_dict[ sbml_parameter.getId().lower()] = sbml_parameter.getValue() if 'lower_bound' in parameter_dict: reaction.lower_bound = parameter_dict['lower_bound'] elif 'lower bound' in parameter_dict: reaction.lower_bound = parameter_dict['lower bound'] elif sbml_reaction.getReversible(): reaction.lower_bound = __default_lower_bound else: reaction.lower_bound = 0 if 'upper_bound' in parameter_dict: reaction.upper_bound = parameter_dict['upper_bound'] elif 'upper bound' in parameter_dict: reaction.upper_bound = parameter_dict['upper bound'] else: reaction.upper_bound = __default_upper_bound objective_coefficient = parameter_dict.get( 'objective_coefficient', parameter_dict.get( 'objective_coefficient', __default_objective_coefficient)) if objective_coefficient != 0: coefficients[reaction] = objective_coefficient # ensure values are not set to nan or inf if isnan(reaction.lower_bound) or isinf(reaction.lower_bound): reaction.lower_bound = __default_lower_bound if isnan(reaction.upper_bound) or isinf(reaction.upper_bound): reaction.upper_bound = __default_upper_bound reaction_note_dict = parse_legacy_sbml_notes( sbml_reaction.getNotesString()) # Parse the reaction notes. # POTENTIAL BUG: DEALING WITH LEGACY 'SBML' THAT IS NOT IN A # STANDARD FORMAT # TODO: READ IN OTHER NOTES AND GIVE THEM A reaction_ prefix. # TODO: Make sure genes get added as objects if 'GENE ASSOCIATION' in reaction_note_dict: rule = reaction_note_dict['GENE ASSOCIATION'][0] try: rule.encode('ascii') except (UnicodeEncodeError, UnicodeDecodeError): warn("gene_reaction_rule '%s' is not ascii compliant" % rule) if rule.startswith(""") and rule.endswith("""): rule = rule[6:-6] reaction.gene_reaction_rule = rule if 'GENE LIST' in reaction_note_dict: reaction.systematic_names = reaction_note_dict['GENE LIST'][0] elif ('GENES' in reaction_note_dict and reaction_note_dict['GENES'] != ['']): reaction.systematic_names = reaction_note_dict['GENES'][0] elif 'LOCUS' in reaction_note_dict: gene_id_to_object = dict([(x.id, x) for x in reaction._genes]) for the_row in reaction_note_dict['LOCUS']: tmp_row_dict = {} the_row = 'LOCUS:' + the_row.lstrip('_').rstrip('#') for the_item in the_row.split('#'): k, v = the_item.split(':') tmp_row_dict[k] = v tmp_locus_id = tmp_row_dict['LOCUS'] if 'TRANSCRIPT' in tmp_row_dict: tmp_locus_id = tmp_locus_id + \ '.' + tmp_row_dict['TRANSCRIPT'] if 'ABBREVIATION' in tmp_row_dict: gene_id_to_object[tmp_locus_id].name = tmp_row_dict[ 'ABBREVIATION'] if 'SUBSYSTEM' in reaction_note_dict: reaction.subsystem = reaction_note_dict.pop('SUBSYSTEM')[0] reaction.notes = reaction_note_dict # Now, add all of the reactions to the model. cobra_model.id = sbml_model.getId() # Populate the compartment list - This will be done based on # cobra.Metabolites in cobra.Reactions in the future. cobra_model.compartments = compartment_dict cobra_model.add_reactions(cobra_reaction_list) set_objective(cobra_model, coefficients) return cobra_model
def from_mat_struct(mat_struct, model_id=None, inf=inf): """create a model from the COBRA toolbox struct The struct will be a dict read in by scipy.io.loadmat """ m = mat_struct if m.dtype.names is None: raise ValueError("not a valid mat struct") if not {"rxns", "mets", "S", "lb", "ub"} <= set(m.dtype.names): raise ValueError("not a valid mat struct") if "c" in m.dtype.names: c_vec = m["c"][0, 0] else: c_vec = None warn("objective vector 'c' not found") model = Model() if model_id is not None: model.id = model_id elif "description" in m.dtype.names: description = m["description"][0, 0][0] if not isinstance(description, string_types) and len(description) > 1: model.id = description[0] warn("Several IDs detected, only using the first.") else: model.id = description else: model.id = "imported_model" for i, name in enumerate(m["mets"][0, 0]): new_metabolite = Metabolite() new_metabolite.id = str(name[0][0]) if all(var in m.dtype.names for var in ['metComps', 'comps', 'compNames']): comp_index = m["metComps"][0, 0][i][0] - 1 new_metabolite.compartment = m['comps'][0, 0][comp_index][0][0] if new_metabolite.compartment not in model.compartments: comp_name = m['compNames'][0, 0][comp_index][0][0] model.compartments[new_metabolite.compartment] = comp_name else: new_metabolite.compartment = _get_id_compartment(new_metabolite.id) if new_metabolite.compartment not in model.compartments: model.compartments[ new_metabolite.compartment] = new_metabolite.compartment try: new_metabolite.name = str(m["metNames"][0, 0][i][0][0]) except (IndexError, ValueError): pass try: new_metabolite.formula = str(m["metFormulas"][0][0][i][0][0]) except (IndexError, ValueError): pass try: new_metabolite.charge = float(m["metCharge"][0, 0][i][0]) int_charge = int(new_metabolite.charge) if new_metabolite.charge == int_charge: new_metabolite.charge = int_charge except (IndexError, ValueError): pass model.add_metabolites([new_metabolite]) new_reactions = [] coefficients = {} for i, name in enumerate(m["rxns"][0, 0]): new_reaction = Reaction() new_reaction.id = str(name[0][0]) new_reaction.lower_bound = float(m["lb"][0, 0][i][0]) new_reaction.upper_bound = float(m["ub"][0, 0][i][0]) if isinf(new_reaction.lower_bound) and new_reaction.lower_bound < 0: new_reaction.lower_bound = -inf if isinf(new_reaction.upper_bound) and new_reaction.upper_bound > 0: new_reaction.upper_bound = inf if c_vec is not None: coefficients[new_reaction] = float(c_vec[i][0]) try: new_reaction.gene_reaction_rule = str(m['grRules'][0, 0][i][0][0]) except (IndexError, ValueError): pass try: new_reaction.name = str(m["rxnNames"][0, 0][i][0][0]) except (IndexError, ValueError): pass try: new_reaction.subsystem = str(m['subSystems'][0, 0][i][0][0]) except (IndexError, ValueError): pass new_reactions.append(new_reaction) model.add_reactions(new_reactions) set_objective(model, coefficients) coo = scipy_sparse.coo_matrix(m["S"][0, 0]) for i, j, v in zip(coo.row, coo.col, coo.data): model.reactions[j].add_metabolites({model.metabolites[i]: v}) return model