def loader(file): """Resize and crop image to required dims and return as FP32 array.""" image = cv2.imread(file) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) w, h = (224, 224) image = resize_with_aspectratio(image, h, w) image = center_crop(image, h, w) image = np.asarray(image, dtype='float32') # Transpose. image = image.transpose([2, 0, 1]) return image
def loader(file): image = cv2.imread(file) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) w, h = (224, 224) image = resize_with_aspectratio(image, h, w) image = center_crop(image, h, w) image = np.asarray(image, dtype='float32') # Normalize image. means = np.array([123.68, 116.78, 103.94], dtype=np.float32) image -= means # Transpose. image = image.transpose([2, 0, 1]) return image
def loader(file): img = Image.open(file) img = img.convert('RGB') img = resize_with_aspectratio(img, 256) img = center_crop(img, (224, 224)) img = np.asarray(img, dtype='float32') img /= 255.0 mean = np.array([0.485,0.456,0.406], dtype=np.float32) std = np.array([0.229,0.224,0.225], dtype=np.float32) img = (img - mean) / std img = img.transpose([2, 0, 1]) #img = np.asarray(img.reshape((3,224,224)), dtype='float32') return img