def __init__(self, evaluate, numinputs): self.nout = 5 self.ninp = numinputs self.labels = None ReNCoDeProb.__init__(self,evaluate,printf=printmultiplecircuit) self.terms.extend(["inputs[%i]"%i for i in range(1,numinputs)]) self.funs.extend(self.extrafuns) self.arity.update(zip(self.extrafuns,[0]*len(self.extrafuns)))
def __init__(self, evaluate, **kwargs): self.labels = None ReNCoDeProb.__init__(self,evaluate,**kwargs) self.terms.extend(["inputs[%i]"%i for i in range(1,8)]) #self.funs.extend(self.extrafuns) self.arity.update(zip(self.funs,[0]*len(self.funs))) #print self.arity self.nout = 2 self.ninp = 8
def __init__(self, nbits, evalf, **kwargs): self.ninp = nbits * 2 self.nout = nbits * 2 self.terms = ['inputs[%i]' % (idx, ) for idx in range(nbits * 2)] ReNCoDeProb.__init__(self, evalf, **kwargs)
def __init__(self, nbits, evalf, **kwargs): self.ninp = nbits*2 self.nout = nbits*2 self.terms = ['inputs[%i]'%(idx,) for idx in range(nbits*2)] ReNCoDeProb.__init__(self,evalf, **kwargs)
circuit.output_idx = outidx else: print 'output index is ', circuit.output_idx bestfit = evaluatekeijzer(circuit, target, inputs, test) return bestfit if __name__ == '__main__': #log.setLevel(logging.INFO) #random.seed(1234*int(os.getenv('SGE_TASK_ID'))) #random.seed(1234) evalfun = partial(evaluate, target=kozapolynomial, inputs=list(drange(-1, 1.1, .1))) ##fromlist is needed for classes. Functions may be called directly #mod = __import__(sys.argv[3], fromlist=[sys.argv[2]]) #agentclass = getattr(mod, sys.argv[2]) p = ReNCoDeProb(evalfun) cfg = loadconfig(parsecmd()) edw = EvoDevoWorkbench(cfg, p) edw.run(terminate=(lambda x, y: x <= 1e-3 or y <= 0)) #print wrapevaluate(edw.best.phenotype, # target=kozapolynomial, # inputs=list(drange(-1,1.1,.1)), # device=edw.device, # test = True)
def __init__(self, evalf): self.ninp = 4 self.nout = 1 ReNCoDeProb.__init__(self, evalf, printf=printrencode2)