示例#1
0
def run_bending_magnet():
    electron_beam = ElectronBeamPencil(
        energy_in_GeV=3.0,
        energy_spread=0.89e-3,
        current=0.5,
    )
    bending_magnet = BendingMagnet(
        radius=25.01,
        magnetic_field=0.4,
        length=4.0,
    )
    srw_bending_magnet_setting = SRWBendingMagnetSetting()
    horizontal_angle = 0.1
    vertical_angle = 0.02
    energy = 0.5 * 0.123984
    srw_bending_magnet_setting.set_acceptance_angle(
        horizontal_angle=horizontal_angle,
        vertical_angle=vertical_angle,
    )
    bending_magnet.add_settings(srw_bending_magnet_setting)
    beamline  = Beamline()
    lens_focal_length = 2.5
    lens = LensIdeal(
        'focus lens',
        focal_x=lens_focal_length,
        focal_y=lens_focal_length,
    )
    lens_position = BeamlinePosition(2 * lens_focal_length)
    lens_setting = SRWBeamlineComponentSetting()
    lens_setting.set_auto_resize_before_propagation(1)
    lens_setting.set_auto_resize_after_propagation(1)
    lens_setting.set_auto_resize_relative_precision(1.)
    lens_setting.set_allow_semi_analytical_phase_treatment(0)
    lens_setting.set_resize_on_ft_side(0)
    lens_setting.set_resize_factor_horizontal(1.)
    lens_setting.set_resize_resolution_horizontal(2.)
    lens_setting.set_resize_factor_vertical(1.)
    lens_setting.set_resize_resolution_vertical(2.)
    lens.add_settings(lens_setting)
    beamline.attach_component_at(lens, lens_position)
    plane = ImagePlane('Image screen')
    plane_setting = SRWBeamlineComponentSetting()
    plane.add_settings(plane_setting)
    plane_position = BeamlinePosition(4*lens_focal_length)
    beamline.attach_component_at(plane, plane_position)
    driver = SRWDriver()
    wavefront = driver.calculate_radiation(
        electron_beam=electron_beam,
        magnetic_structure=bending_magnet,
        beamline=beamline,
        energy_min=energy,
        energy_max=energy,
    )
    res = driver.calculate_intensity(wavefront)
    res = pkcollections.OrderedMapping(
        dict(zip(('intensity', 'dim_x', 'dim_y'), res)))
    res.wavefront = wavefront
    return res
示例#2
0
    def calculate_radiation(self, electron_beam, magnetic_structure, beamline, energy_min, energy_max):
        """
        Calculates radiation.

        :param electron_beam: ElectronBeam object
        :param magnetic_structure: Source object
        :param beamline: beamline object
        :param energy_min: Minimal energy for the calculation
        :param energy_max: Maximal energy for the calculation
        :return: SRW wavefront.
        """
        # Get position of the first component. We need this to know where to calculate the source radiation.
        first_component = beamline.component_by_index(0)
        position_first_component = beamline.position_of(first_component)

        # Instanciate an adapter.
        srw_adapter = SRWAdapter()

        # Create srw electron beam from generic electron beam.
        srw_electron_beam = srw_adapter.SRW_electron_beam(electron_beam)

        # Calculate the source radiation depending on the chosen source.
        # Only undulator here.
        # In the real driver this should be refactored to separate functions.
        if isinstance(magnetic_structure, Undulator):
            undulator = magnetic_structure

            srw_undulator = srw_adapter.magnetic_field_from_undulator(undulator)
            max_theta = undulator.gaussianCentralConeDivergence(electron_beam.gamma()) * 2.5

            z_start = undulator.length()+position_first_component.z()
            grid_length = max_theta * z_start / sqrt(2.0)

            wavefront = srw_adapter.create_quadratic_SRW_wavefront_single_energy(grid_size=1000,
                                                                            grid_length=grid_length,
                                                                            z_start=z_start,
                                                                            srw_electron_beam=srw_electron_beam,
                                                                            energy=int(undulator.resonanceEnergy(electron_beam.gamma(),0.0,0.0)))

            # Use custom settings if present. Otherwise use default SRW settings.
            if undulator.has_settings(self):
                # Mind the self in the next line.
                # It tells the DriverSettingsManager to use SRW settings.
                undulator_settings = undulator.settings(self)
            else:
                undulator_settings = SRWUndulatorSetting()
            print("SRW_driver.calculate_radiation calls CalcElecFieldSR (undulator)...")
            t0 = time.time()
            srwl.CalcElecFieldSR(wavefront, 0, srw_undulator, undulator_settings.toList())
            print("done in ",round(time.time() - t0), "s")
        elif isinstance(magnetic_structure, BendingMagnet):
            bending_magnet = magnetic_structure

            # Use custom settings if present. Otherwise use default SRW settings.
            if bending_magnet.has_settings(self):
                bending_magnet_settings = bending_magnet.settings(self)
            else:
                bending_magnet_settings = SRWBendingMagnetSetting()

            srw_bending_magnet = srw_adapter.magnetic_field_from_bending_magnet(bending_magnet)

            # Determine position of first optical element to calculate initial wavefront there.
            z_start = position_first_component.z()

            # Determine acceptances.
            # Horizontal
            horizontal_angle =  bending_magnet_settings.horizontal_acceptance_angle()
            horizontal_grid_length = 0.5*horizontal_angle*z_start

            # Vertical
            vertical_angle = bending_magnet_settings.vertical_acceptance_angle()
            vertical_grid_length = 0.5*vertical_angle*z_start

            # Create rectangular SRW wavefront.
            wavefront = srw_adapter.create_rectangular_SRW_wavefront(grid_size=10,
                                                                  grid_length_vertical=horizontal_grid_length,
                                                                  grid_length_horizontal=vertical_grid_length,
                                                                  z_start=z_start,
                                                                  srw_electron_beam=srw_electron_beam,
                                                                  energy_min=energy_min,
                                                                  energy_max=energy_max)

            # Calculate initial wavefront.
            print("SRW_driver.calculate_radiation calls CalcElecFieldSR (bending magnet)...")
            t0 = time.time()
            srwl.CalcElecFieldSR(wavefront, 0, srw_bending_magnet, bending_magnet_settings.to_list())
            print("done in ",round(time.time() - t0), "s")
        else:
            raise NotImplementedError

        # Create the srw beamline.
        srw_optical_element = list()
        srw_preferences = list()

        # Iterate over all beamline components and translate them.
        # Translate free space between two components to drift space.
        # Only lenses implemented.
        # In the real driver this should be refactored to separate functions.
        current_z_position = position_first_component.z()
        for component in beamline:
            position = beamline.position_of(component)

            # Add drift space between two components.
            if position.z() > current_z_position:
                distance = position.z()-current_z_position
                srw_optical_element.append(SRWLOptD(distance))

                if component.has_settings(self):
                    component_settings = component.settings(self)

                    if component_settings.has_drift_space_settings():
                        drift_space_settings = component_settings._drift_space_settings
                    else:
                        # If there are no drift space settings use default settings.
                        drift_space_settings = SRWBeamlineComponentSetting()

                    #TODO: check this, it was inside else
                    srw_preferences.append(drift_space_settings.to_list())
                current_z_position = position.z()

            if isinstance(component, LensIdeal):
                srw_component = SRWLOptL(_Fx=component.focalX(),
                                         _Fy=component.focalY())
                srw_optical_element.append(srw_component)
            elif isinstance(component, ImagePlane):
                pass
            else:
                raise NotImplementedError

            # Use custom settings if present. Otherwise use default SRW settings.
            if component.has_settings(self):
                # Mind the self in the next line.
                # It tells the DriverSettingsManager to use SRW settings.
                component_settings = component.settings(self)
            else:
                component_settings = SRWBeamlineComponentSetting()

            srw_preferences.append(component_settings.to_list())

        # Create the srw beamline object.
        srw_beamline = SRWLOptC(srw_optical_element,
                                srw_preferences)

        # Call SRW to perform propagation.
        print("SRW_driver calls PropagElecField...")
        t0 = time.time()
        srwl.PropagElecField(wavefront, srw_beamline)
        print("done in ",round(time.time() - t0), "s")


        # TODO: Decoration of SRW wavefront with glossary object. Consider to better use a "driver results" object.
        wavefront._electron_beam = deepcopy(electron_beam)

        return wavefront
示例#3
0
def run_bending_magnet_srw(example_index): #  example_index=0 is infrared example, example_index=1 is xrays example
    ###################################################################################################
    # Main idea: abstract definition of the setting (electron beam, radiation source, beamline)
    # We want to put everything in generic classes that is independent of a specific implementation.
    # These are basically the information a scientist would need to physically build the beamline.
    #
    # Then, we need extra information/settings to perform a calculation. And the extra settings
    # vary for different programs. We provide these extra information by attaching program depended
    # "settings".
    ###################################################################################################

    #
    # 1) define first the electron beam
    #

    if example_index == 0:
        electron_beam = ElectronBeamPencil(energy_in_GeV=3.0,energy_spread=0.89e-3,current=0.5)
        # electron_beam = ElectronBeam(energy_in_GeV=3.0,
        #                             energy_spread=0.89e-03,
        #                             current=0.5,
        #                             electrons_per_bunch=500,
        #                             moment_xx   = (127.346e-6)**2 ,
        #                             moment_xxp  = 0.            ,
        #                             moment_xpxp = 100*(91.88e-6)**2,
        #                             moment_yy   = (92.3093e-6)**2 ,
        #                             moment_yyp  = 0             ,
        #                             moment_ypyp = 100*(7.94e-6)**2  )

    else:
        #electron_beam = ElectronBeamPencil(energy_in_GeV=6.0,energy_spread=0.89e-3,current=0.2)
        electron_beam = ElectronBeam(energy_in_GeV=6.0,
                                    energy_spread=0.89e-03,
                                    current=0.2,
                                    electrons_per_bunch=500,
                                    moment_xx   = (77.9e-06)**2 ,
                                    moment_xxp  = 0.            ,
                                    moment_xpxp = (110.9e-06)**2,
                                    moment_yy   = (12.9e-06)**2 ,
                                    moment_yyp  = 0             ,
                                    moment_ypyp = (0.5e-06)**2  )



    #
    # 2) define the magnetic structure
    #

    if example_index == 0:
        #bending_magnet = BendingMagnet(radius=2.25,magnetic_field=0.4,length=4.0)
        bending_magnet = BendingMagnet(radius=25.01,magnetic_field=0.4,length=4.0)
    else:
        bending_magnet = BendingMagnet(radius=23.2655,magnetic_field=0.86,length=0.5)


    # Attach SRW bending magnet settings.
    #TODO: angular acceptance is used to define screen size.
    # NOTE: Maybe angular acceptance is generic and should move to BendingMagnet or Source class??

    srw_bending_magnet_setting = SRWBendingMagnetSetting()

    if example_index == 0:
        horizontal_angle = 0.1
        vertical_angle = 0.02
        energy = 0.5*0.123984
    else:
        horizontal_angle = 1e-3
        vertical_angle = 0.4e-3
        energy = 15000.0
        srw_bending_magnet_setting.set_relPrec(0.003)
        srw_bending_magnet_setting.set_sampFactNxNyForProp(0.0035)

    srw_bending_magnet_setting.set_acceptance_angle(horizontal_angle=horizontal_angle,
                                                    vertical_angle=vertical_angle)

    bending_magnet.add_settings(srw_bending_magnet_setting)


    #
    # 3) define beamline containing the optical elements
    #    In this case, create a beamline that only has one lens attached plus an image (detector) plane
    #

    #
    beamline  = Beamline()

    # First create the lens.

    if example_index == 0:
        lens_focal_length = 2.5
    else:
        lens_focal_length = 12.5

    lens = LensIdeal("focus lens",
                   focal_x=lens_focal_length,
                   focal_y=lens_focal_length)

    # Specify the position of the lens (could set extra parameters for: off-axis and inclination)
    # lens_position=p  verifies lens equation (1/F = 1/p + 1/q, and p=q for 1:1 magnification)
    lens_position = BeamlinePosition(2*lens_focal_length)

    # Set settings for SRW.
    # These are settings that depend on the "driver" to use.
    # If no special settings are set the driver will use its default settings.

    lens_setting = SRWBeamlineComponentSetting()

    if example_index == 0:
        #for SRW experts:
        #lens_setting.from_list([1, 1, 1., 0, 0, 1., 2., 1., 2., 0, 0, 0])

        lens_setting.set_auto_resize_before_propagation(1)         #[0]: Auto-Resize (1) or not (0) Before propagation
        lens_setting.set_auto_resize_after_propagation(1)          #[1]: Auto-Resize (1) or not (0) After propagation
        lens_setting.set_auto_resize_relative_precision(1.)        #[2]: Relative Precision for propagation with Auto-Resizing (1. is nominal)
        lens_setting.set_allow_semi_analytical_phase_treatment(0)  #[3]: Allow (1) or not (0) for semi-analytical treatment of the quadratic (leading) phase terms at the propagation
        lens_setting.set_resize_on_ft_side(0)                      #[4]: Do any Resizing on Fourier side, using FFT, (1) or not (0)
        lens_setting.set_resize_factor_horizontal(1.)              #[5]: Horizontal Range modification factor at Resizing (1. means no modification)
        lens_setting.set_resize_resolution_horizontal(2.)          #[6]: Horizontal Resolution modification factor at Resizing
        lens_setting.set_resize_factor_vertical(1.)                #[7]: Vertical Range modification factor at Resizing
        lens_setting.set_resize_resolution_vertical(2.)            #[8]: Vertical Resolution modification factor at Resizing
    else:
        #lens_setting.from_list([0, 0, 1., 0, 0, 1., 5., 1., 8., 0, 0, 0])
        lens_setting.set_auto_resize_before_propagation(0)
        lens_setting.set_auto_resize_after_propagation(0)
        lens_setting.set_auto_resize_relative_precision(1.)
        lens_setting.set_allow_semi_analytical_phase_treatment(0)
        lens_setting.set_resize_on_ft_side(0)
        lens_setting.set_resize_factor_horizontal(1.)
        lens_setting.set_resize_resolution_horizontal(5.)
        lens_setting.set_resize_factor_vertical(1.)
        lens_setting.set_resize_resolution_vertical(8.)

    lens.add_settings(lens_setting)

    # We could also _simultaneously_ add settings for shadow here:
    # lens_setting = ShadowBeamlineComponentSetting()
    # lens_setting.setSOMETHING(..)
    # lens.addSettings(lens_setting)
    # The lens would be configured _simultaneously_ for SRW and SHADOW.

    # Attach the component at its position to the beamline.
    beamline.attach_component_at(lens, lens_position)


    # Second create the image plane.

    plane = ImagePlane("Image screen")


    plane_setting = SRWBeamlineComponentSetting()

    if example_index == 0:
        pass #these are default values, so no need to set
        #plane_setting.from_list([1, 1, 1., 0, 0, 1., 1., 1., 1., 0, 0, 0])
        #plane_setting.set_auto_resize_before_propagation(0)
        #plane_setting.set_auto_resize_after_propagation(0)
        #plane_setting.set_auto_resize_relative_precision(1.)
        #plane_setting.set_allow_semi_analytical_phase_treatment(0)
        #plane_setting.set_resize_on_ft_side(0)
        #plane_setting.set_resize_factor_horizontal(1.)
        #plane_setting.set_resize_resolution_horizontal(1.)
        #plane_setting.set_resize_factor_vertical(1.)
        #plane_setting.set_resize_resolution_vertical(1.)
    else:
        #define non-default settings for the propagation in the drift space
        #note that although in SRW the driftSpace is a component, in the present beamline
        #definition it is not necessary to be defined, as it is automatically added by the
        #driver. However, we set here the settings of the drift space that is inserted upstream
        #of the "plane" element
        drift_space_settings = SRWBeamlineComponentSetting()
        drift_space_settings.from_list([0, 0, 1., 1, 0, 1., 1., 1., 1., 0, 0, 0])

        plane_setting.set_drift_space_settings(drift_space_settings)

        #plane_setting.from_list([0, 0, 1., 0, 0, 4., 1.,1.5, 1., 0, 0, 0])
        plane_setting.set_auto_resize_before_propagation(0)
        plane_setting.set_auto_resize_after_propagation(0)
        plane_setting.set_auto_resize_relative_precision(1.)
        plane_setting.set_allow_semi_analytical_phase_treatment(0)
        plane_setting.set_resize_on_ft_side(0)
        plane_setting.set_resize_factor_horizontal(4.)
        plane_setting.set_resize_resolution_horizontal(1.)
        plane_setting.set_resize_factor_vertical(1.5)
        plane_setting.set_resize_resolution_vertical(1.)



    # Attach a screen/image plane.
    # Absolute position = distance_source_lens + distance_lens_plane =
    #                       2*lens_focal_length + 2*lens_focal_lengh = 4*lens_focal_length
    plane.add_settings(plane_setting)
    plane_position = BeamlinePosition(4*lens_focal_length)


    beamline.attach_component_at(plane, plane_position)


    #
    #  Print a summary of the elements used
    #
    components = [electron_beam,bending_magnet,lens]
    print("===========================================================================================================")
    for component_index,component in enumerate(components):
        tmp = component.to_dictionary()
        #tmp = electron_beam.to_dictionary()

        print("Component index %d:"%component_index,inspect.getmodule(component))
        for i,var in enumerate(tmp):
            print("   %20s = %10.5f %5s  %s"%(var,tmp[var][0],tmp[var][1],tmp[var][2]))
        print("===========================================================================================================")


    #
    #  Calculate the radiation (i.e., run the codes). It returns a native SRWLWfr()
    #

    # Specify to use SRW.
    driver = SRWDriver()

    srw_wavefront = driver.calculate_radiation(electron_beam=electron_beam,
                                               magnetic_structure=bending_magnet,
                                               beamline=beamline,
                                               energy_min=energy,
                                               energy_max=energy)

    #
    # extract the intensity
    #
    intensity, dim_x, dim_y = driver.calculate_intensity(srw_wavefront)


    # # Do some tests.
    # # assert abs(1.7063003e+09 - intensity[10, 10])<1e+6, \
    # #     'Quick verification of intensity value'
    # flux = intensity.sum() * (dim_x[1]-dim_x[0]) * (dim_y[1]-dim_y[0])
    # print("Total flux = %10.5e photons/s/.1%%bw"%flux)
    # if example_index == 0:
    #     assert abs(2.40966e+08 - flux)<1e+3, \
    #         'Quick verification of intensity value'
    # else:
    #     assert abs(2.14704e+07 - flux)<1e+3, \
    #         'Quick verification of intensity value'

    # Calculate phases.
    #phase = driver.calculate_phase(srw_wavefront)


    # # Do some tests.
    # checksum = np.sum( np.abs(srw_wavefront.arEx) ) + np.abs( np.sum(srw_wavefront.arEy) )
    # print("checksum is: ",checksum)
    #
    # if example_index == 0:
    #     assert np.abs(checksum - 1.1845644e+10) < 1e3, "Test electric field checksum"
    # else:
    #     assert np.abs(checksum - 1.53895e+13) < 1e8, "Test electric field checksum"

    return srw_wavefront, dim_x, dim_y, intensity