示例#1
0
    def negative_iwae_bound(self, x, iw):
        """
        Computes the Importance Weighted Autoencoder Bound
        Additionally, we also compute the ELBO KL and reconstruction terms

        Args:
            x: tensor: (batch, dim): Observations
            iw: int: (): Number of importance weighted samples

        Returns:
            niwae: tensor: (): Negative IWAE bound
            kl: tensor: (): ELBO KL divergence to prior
            rec: tensor: (): ELBO Reconstruction term
        """
        ################################################################################
        # TODO: Modify/complete the code here
        # Compute niwae (negative IWAE) with iw importance samples, and the KL
        # and Rec decomposition of the Evidence Lower Bound
        #
        # Outputs should all be scalar
        ################################################################################
        # Compute the mixture of Gaussian prior
        pm, pv = ut.gaussian_parameters(self.z_pre, dim=1)
        #
        # Generate samples.
        qm, qv = self.enc.encode(x)
        niwaes = []
        recs = []
        kls = []
        for i in range(iw):
            z_sample = ut.sample_gaussian(qm, qv).view(-1, qm.shape[1])
            rec = self.dec.decode(z_sample)
            logptheta_x_g_z = ut.log_bernoulli_with_logits(x, rec)
            logptheta_z = ut.log_normal_mixture(z_sample, pm, pv)
            logqphi_z_g_x = ut.log_normal(z_sample, qm, qv)
            niwae = logptheta_x_g_z + logptheta_z - logqphi_z_g_x
            #
            # Normal variables.
            rec = -ut.log_bernoulli_with_logits(x, rec)
            kl = ut.log_normal(z_sample, qm, qv) - ut.log_normal_mixture(
                z_sample, pm, pv)
            niwaes.append(niwae)
            recs.append(rec)
            kls.append(kl)
        niwaes = torch.stack(niwaes, -1)
        niwae = ut.log_mean_exp(niwaes, -1)
        kl = torch.stack(kls, -1)
        rec = torch.stack(recs, -1)

        ################################################################################
        # End of code modification
        ################################################################################
        return -niwae.mean(), kl.mean(), rec.mean()
示例#2
0
    def negative_elbo_bound(self, x):
        """
        Computes the Evidence Lower Bound, KL and, Reconstruction costs

        Args:
            x: tensor: (batch, dim): Observations

        Returns:
            nelbo: tensor: (): Negative evidence lower bound
            kl: tensor: (): ELBO KL divergence to prior
            rec: tensor: (): ELBO Reconstruction term
        """
        print(x)
        m, v = self.enc.encode(x)
        z = ut.sample_gaussian(m, v)
        logits = self.dec.decode(z)

        batch_size, dim = m.shape
        # Compute KL term
        # km = torch.zeros(batch_size,self.k,dim)
        # kv = torch.ones(batch_size,self.k,dim)
        km = self.km.repeat(batch_size, 1, 1)
        kv = self.kv.repeat(batch_size, 1, 1)
        kl_vec = ut.log_normal(z, m, v) - ut.log_normal_mixture(z, km, kv)
        kl = torch.mean(kl_vec)

        # Compute reconstruction loss
        rec_vec = torch.neg(ut.log_bernoulli_with_logits(x, logits))
        rec = torch.mean(rec_vec)

        # Compute nelbo
        nelbo = rec + kl

        return nelbo, kl, rec
示例#3
0
    def kl_elem(self, z, qm, qv):
        # Compute the mixture of Gaussian prior
        prior_m, prior_v = ut.gaussian_parameters(self.z_pre, dim=1)

        log_prob_net = ut.log_normal(z, qm, qv)
        log_prob_prior = ut.log_normal_mixture(z, prior_m, prior_v)

        # print("log_prob_net:", log_prob_net.mean(), "log_prob_prior:", log_prob_prior.mean())
        kl_elem = log_prob_net - log_prob_prior
        return kl_elem
示例#4
0
    def negative_iwae_bound(self, x, iw):
        """
        Computes the Importance Weighted Autoencoder Bound
        Additionally, we also compute the ELBO KL and reconstruction terms

        Args:
            x: tensor: (batch, dim): Observations
            iw: int: (): Number of importance weighted samples

        Returns:
            niwae: tensor: (): Negative IWAE bound
            kl: tensor: (): ELBO KL divergence to prior
            rec: tensor: (): ELBO Reconstruction term
        """
        ################################################################################
        # TODO: Modify/complete the code here
        # Compute niwae (negative IWAE) with iw importance samples, and the KL
        # and Rec decomposition of the Evidence Lower Bound
        #
        # Outputs should all be scalar
        ################################################################################
        # Compute the mixture of Gaussian prior
        prior = ut.gaussian_parameters(self.z_pre, dim=1)

        m, v = self.enc.encode(x)

        dist = Normal(loc=m, scale=torch.sqrt(v))
        z_sample = dist.rsample(sample_shape=torch.Size([iw]))
        log_batch_z_sample_prob = []
        kl_batch_z_sample = []

        for i in range(iw):
            recon_logits = self.dec.decode(z_sample[i])
            log_batch_z_sample_prob.append(
                ut.log_bernoulli_with_logits(
                    x, recon_logits))  # [batch, z_sample]
            kl_batch_z_sample.append(
                ut.log_normal(z_sample[i], m, v) -
                ut.log_normal_mixture(z_sample[i], prior[0], prior[1]))

        log_batch_z_sample_prob = torch.stack(log_batch_z_sample_prob, dim=1)
        kl_batch_z_sample = torch.stack(kl_batch_z_sample, dim=1)

        niwae = -ut.log_mean_exp(log_batch_z_sample_prob - kl_batch_z_sample,
                                 dim=1).mean(dim=0)

        rec = -torch.mean(log_batch_z_sample_prob, dim=0)
        kl = torch.mean(kl_batch_z_sample, dim=0)

        ################################################################################
        # End of code modification
        ################################################################################
        return niwae, kl, rec
示例#5
0
    def negative_iwae_bound(self, x, iw):
        """
        Computes the Importance Weighted Autoencoder Bound
        Additionally, we also compute the ELBO KL and reconstruction terms

        Args:
            x: tensor: (batch, dim): Observations
            iw: int: (): Number of importance weighted samples

        Returns:
            niwae: tensor: (): Negative IWAE bound
            kl: tensor: (): ELBO KL divergence to prior
            rec: tensor: (): ELBO Reconstruction term
        """

        m, v = self.enc.encode(x)
        batch_size, dim = m.shape

        # Duplicate
        m = ut.duplicate(m, iw)
        v = ut.duplicate(v, iw)
        x = ut.duplicate(x, iw)
        z = ut.sample_gaussian(m, v)
        logits = self.dec.decode(z)

        km = self.km.repeat(batch_size, 1, 1)
        kv = self.kv.repeat(batch_size, 1, 1)
        km = ut.duplicate(km, iw)
        kv = ut.duplicate(kv, iw)
        kl_vec = ut.log_normal(z, m, v) - ut.log_normal_mixture(z, km, kv)
        kl = torch.mean(kl_vec)

        # TODO: compute the values below
        rec_vec = ut.log_bernoulli_with_logits(x, logits)
        rec = torch.neg(torch.mean(rec_vec))

        if iw > 1:
            iwtensor = torch.zeros(iw)
            j = 0
            while j < iw:
                i = 0
                sum = 0
                while i < batch_size:
                    sum += rec_vec[j * batch_size + i]
                    i += 1
                iwtensor[j] = sum / batch_size - kl
                j += 1
            niwae = torch.neg(ut.log_mean_exp(iwtensor, 0))

        else:
            niwae = rec + kl

        return niwae, kl, rec
示例#6
0
文件: gmvae.py 项目: rsbandhu/VAE
    def negative_elbo_bound(self, x):
        """
        Computes the Evidence Lower Bound, KL and, Reconstruction costs

        Args:
            x: tensor: (batch, dim): Observations

        Returns:
            nelbo: tensor: (): Negative evidence lower bound
            kl: tensor: (): ELBO KL divergence to prior
            rec: tensor: (): ELBO Reconstruction term
        """
        ################################################################################
        # TODO: Modify/complete the code here
        # Compute negative Evidence Lower Bound and its KL and Rec decomposition
        #
        # To help you start, we have computed the mixture of Gaussians prior
        # prior = (m_mixture, v_mixture) for you, where
        # m_mixture and v_mixture each have shape (1, self.k, self.z_dim)
        #
        # Note that nelbo = kl + rec
        #
        # Outputs should all be scalar
        ################################################################################
        # Compute the mixture of Gaussian prior

        (m, v) = self.enc.encode(x)  # compute the encoder output
        #print(" ***** \n")
        #print("x xhape ", x.shape)
        #print("m and v shapes = ", m.shape, v.shape)
        prior = ut.gaussian_parameters(self.z_pre, dim=1)

        #print("prior shapes = ", prior[0].shape, prior[1].shape)
        z = ut.sample_gaussian(m, v)  # sample a point from the multivariate Gaussian
        #print("shape of z = ",z.shape)
        logits = self.dec.decode(z)  # pass the sampled "Z" through the decoder

        #print("logits shape = ", logits.shape)
        rec = -torch.mean(ut.log_bernoulli_with_logits(x, logits), -1)  # Calculate log Prob of the output

        log_prob = ut.log_normal(z, m, v)
        log_prob  -= ut.log_normal_mixture(z, prior[0], prior[1])

        kl = torch.mean(log_prob)

        rec = torch.mean(rec)

        nelbo = kl + rec
        ################################################################################
        # End of code modification
        ################################################################################
        return nelbo, kl, rec
示例#7
0
文件: gmvae.py 项目: wyvern92/cs236
    def negative_elbo_bound(self, x):
        """
        Computes the Evidence Lower Bound, KL and, Reconstruction costs

        Args:
            x: tensor: (batch, dim): Observations

        Returns:
            nelbo: tensor: (): Negative evidence lower bound
            kl: tensor: (): ELBO KL divergence to prior
            rec: tensor: (): ELBO Reconstruction term
        """
        ################################################################################
        # TODO: Modify/complete the code here
        # Compute negative Evidence Lower Bound and its KL and Rec decomposition
        #
        # To help you start, we have computed the mixture of Gaussians prior
        # prior = (m_mixture, v_mixture) for you, where
        # m_mixture and v_mixture each have shape (1, self.k, self.z_dim)
        #
        # Note that nelbo = kl + rec
        #
        # Outputs should all be scalar
        ################################################################################
        # Compute the mixture of Gaussian prior
        prior = ut.gaussian_parameters(self.z_pre, dim=1)
        prior_m, prior_v = prior

        batch = x.shape[0]

        qm, qv = self.enc.encode(x)
        # Now draw Zs from the posterior qm/qv
        z = ut.sample_gaussian(qm, qv)

        l_posterior = ut.log_normal(z, qm, qv)
        multi_m = prior_m.expand(batch, *prior_m.shape[1:])
        multi_v = prior_v.expand(batch, *prior_v.shape[1:])
        l_prior = ut.log_normal_mixture(z, multi_m, multi_v)
        kls = l_posterior - l_prior
        kl = torch.mean(kls)

        probs = self.dec.decode(z)
        recs = ut.log_bernoulli_with_logits(x, probs)
        rec = -1.0 * torch.mean(recs)

        nelbo = kl + rec
        ################################################################################
        # End of code modification
        ################################################################################
        return nelbo, kl, rec
示例#8
0
文件: gmvae.py 项目: ymy4323460/VAEs
    def negative_iwae_bound(self, x, iw):
        """
        Computes the Importance Weighted Autoencoder Bound
        Additionally, we also compute the ELBO KL and reconstruction terms

        Args:
            x: tensor: (batch, dim): Observations
            iw: int: (): Number of importance weighted samples

        Returns:
            niwae: tensor: (): Negative IWAE bound
            kl: tensor: (): ELBO KL divergence to prior
            rec: tensor: (): ELBO Reconstruction term
        """
        ################################################################################
        # TODO: Modify/complete the code here
        # Compute niwae (negative IWAE) with iw importance samples, and the KL
        # and Rec decomposition of the Evidence Lower Bound
        #
        # Outputs should all be scalar
        ################################################################################
        # Compute the mixture of Gaussian prior
        prior = ut.gaussian_parameters(self.z_pre, dim=1)

        q_m, q_v = self.enc.encode(x)
        q_m_, q_v_ = ut.duplicate(q_m, rep=iw), ut.duplicate(q_v, rep=iw)

        z_given_x = ut.sample_gaussian(q_m_, q_v_)
        decoded_bernoulli_logits = self.dec.decode(z_given_x)

        #duplicate x
        x_dup = ut.duplicate(x, rep=iw)

        rec = ut.log_bernoulli_with_logits(x_dup, decoded_bernoulli_logits)

        log_p_theta = ut.log_normal_mixture(z_given_x, prior[0], prior[1])
        log_q_phi = ut.log_normal(z_given_x, q_m_, q_v_)

        kl = log_q_phi - log_p_theta

        niwae = rec - kl

        niwae = ut.log_mean_exp(niwae.reshape(iw, -1), dim=0)
        niwae = -torch.mean(niwae)

        #yay!
        ################################################################################
        # End of code modification
        ################################################################################
        return niwae, kl, rec
示例#9
0
文件: gmvae.py 项目: ymy4323460/VAEs
    def negative_elbo_bound(self, x):
        """
        Computes the Evidence Lower Bound, KL and, Reconstruction costs

        Args:
            x: tensor: (batch, dim): Observations

        Returns:
            nelbo: tensor: (): Negative evidence lower bound
            kl: tensor: (): ELBO KL divergence to prior
            rec: tensor: (): ELBO Reconstruction term
        """
        ################################################################################
        # TODO: Modify/complete the code here
        # Compute negative Evidence Lower Bound and its KL and Rec decomposition
        #
        # To help you start, we have computed the mixture of Gaussians prior
        # prior = (m_mixture, v_mixture) for you, where
        # m_mixture and v_mixture each have shape (1, self.k, self.z_dim)
        #
        # Note that nelbo = kl + rec
        #
        # Outputs should all be scalar
        ################################################################################
        # Compute the mixture of Gaussian prior
        prior = ut.gaussian_parameters(self.z_pre, dim=1)

        q_m, q_v = self.enc.encode(x)
        #print("q_m", q_m.size())
        z_given_x = ut.sample_gaussian(q_m, q_v)
        decoded_bernoulli_logits = self.dec.decode(z_given_x)
        rec = -ut.log_bernoulli_with_logits(x, decoded_bernoulli_logits)
        #rec = -torch.mean(rec)

        #terms for KL divergence
        log_q_phi = ut.log_normal(z_given_x, q_m, q_v)
        #print("log_q_phi", log_q_phi.size())
        log_p_theta = ut.log_normal_mixture(z_given_x, prior[0], prior[1])
        #print("log_p_theta", log_p_theta.size())
        kl = log_q_phi - log_p_theta
        #print("kl", kl.size())

        nelbo = torch.mean(kl + rec)

        rec = torch.mean(rec)
        kl = torch.mean(kl)
        ################################################################################
        # End of code modification
        ################################################################################
        return nelbo, kl, rec
示例#10
0
    def negative_iwae_bound(self, x, iw):
        """
        Computes the Importance Weighted Autoencoder Bound
        Additionally, we also compute the ELBO KL and reconstruction terms

        Args:
            x: tensor: (batch, dim): Observations
            iw: int: (): Number of importance weighted samples

        Returns:
            niwae: tensor: (): Negative IWAE bound
            kl: tensor: (): ELBO KL divergence to prior
            rec: tensor: (): ELBO Reconstruction term
        """
        ################################################################################
        # TODO: Modify/complete the code here
        # Compute niwae (negative IWAE) with iw importance samples, and the KL
        # and Rec decomposition of the Evidence Lower Bound
        #
        # Outputs should all be scalar
        ################################################################################
        # Compute the mixture of Gaussian prior
        prior = ut.gaussian_parameters(self.z_pre, dim=1)

        N_batches, dims = x.size()

        x = ut.duplicate(x, iw)

        q_mu, q_var = self.enc.encode(x)

        z_samp = ut.sample_gaussian(q_mu, q_var)

        logits = self.dec.decode(z_samp)

        probs = ut.log_bernoulli_with_logits(x, logits)

        kl_vals = -ut.log_normal(z_samp, q_mu, q_var) + ut.log_normal_mixture(z_samp, *prior)

        probs = probs + kl_vals

        niwae = torch.mean(-ut.log_mean_exp(probs.reshape(N_batches, iw), 1))

        kl = torch.tensor(0)
        rec = torch.tensor(0)
        ################################################################################
        # End of code modification
        ################################################################################
        return niwae, kl, rec
示例#11
0
    def negative_elbo_bound(self, x):
        """
        Computes the Evidence Lower Bound, KL and, Reconstruction costs

        Args:
            x: tensor: (batch, dim): Observations

        Returns:
            nelbo: tensor: (): Negative evidence lower bound
            kl: tensor: (): ELBO KL divergence to prior
            rec: tensor: (): ELBO Reconstruction term
        """
        ################################################################################
        # TODO: Modify/complete the code here
        # Compute negative Evidence Lower Bound and its KL and Rec decomposition
        #
        # To help you start, we have computed the mixture of Gaussians prior
        # prior = (m_mixture, v_mixture) for you, where
        # m_mixture and v_mixture each have shape (1, self.k, self.z_dim)
        #
        # Note that nelbo = kl + rec
        #
        # Outputs should all be scalar
        ################################################################################
        #
        # Compute the mixture of Gaussian prior
        pm, pv = ut.gaussian_parameters(self.z_pre, dim=1)
        #
        # Generate samples.
        qm, qv = self.enc.encode(x)
        z_sample = ut.sample_gaussian(qm, qv)
        rec = self.dec.decode(z_sample)
        #
        # Compute loss.
        # KL divergence between the latent distribution and the prior.
        rec = -ut.log_bernoulli_with_logits(x, rec)
        # kl = ut.kl_normal(qm, qv, pm, pv)
        kl = ut.log_normal(z_sample, qm, qv) - ut.log_normal_mixture(
            z_sample, pm, pv)
        #
        # The liklihood of reproducing the sample image given the parameters.
        # Would need to take the average of this otherwise.
        nelbo = (kl + rec).mean()
        # NELBO: 89.24684143066406. KL: 10.346451759338379. Rec: 78.90038299560547
        ################################################################################
        # End of code modification
        ################################################################################
        return nelbo, kl.mean(), rec.mean()
示例#12
0
    def negative_elbo_bound(self, x):
        """
        Computes the Evidence Lower Bound, KL and, Reconstruction costs

        Args:
            x: tensor: (batch, dim): Observations

        Returns:
            nelbo: tensor: (): Negative evidence lower bound
            kl: tensor: (): ELBO KL divergence to prior
            rec: tensor: (): ELBO Reconstruction term
        """
        ################################################################################
        # TODO: Modify/complete the code here
        # Compute negative Evidence Lower Bound and its KL and Rec decomposition
        #
        # To help you start, we have computed the mixture of Gaussians prior
        # prior = (m_mixture, v_mixture) for you, where
        # m_mixture and v_mixture each have shape (1, self.k, self.z_dim)
        #
        # Note that nelbo = kl + rec
        #
        # Outputs should all be scalar
        ################################################################################
        # Compute the mixture of Gaussian prior
        prior = ut.gaussian_parameters(self.z_pre, dim=1)

        N_samp, dim = x.size()

        q_mu, q_var = self.enc.encode(x)

        z_samp = ut.sample_gaussian(q_mu, q_var)

        logits = self.dec.decode(z_samp)

        rec = -torch.mean(ut.log_bernoulli_with_logits(x, logits))

        kl = torch.mean(ut.log_normal(z_samp, q_mu, q_var) - ut.log_normal_mixture(z_samp, *prior))

        nelbo = kl + rec
        ################################################################################
        # End of code modification
        ################################################################################
        return nelbo, kl, rec
示例#13
0
    def negative_iwae_bound(self, x, iw):
        """
        Computes the Importance Weighted Autoencoder Bound
        Additionally, we also compute the ELBO KL and reconstruction terms

        Args:
            x: tensor: (batch, dim): Observations
            iw: int: (): Number of importance weighted samples

        Returns:
            niwae: tensor: (): Negative IWAE bound
            kl: tensor: (): ELBO KL divergence to prior
            rec: tensor: (): ELBO Reconstruction term
        """
        ################################################################################
        # TODO: Modify/complete the code here
        # Compute niwae (negative IWAE) with iw importance samples, and the KL
        # and Rec decomposition of the Evidence Lower Bound
        #
        # Outputs should all be scalar
        ################################################################################
        # Compute the mixture of Gaussian prior
        prior = ut.gaussian_parameters(self.z_pre, dim=1)

        m, v = self.enc.encode(x)
        m = ut.duplicate(m, iw)
        v = ut.duplicate(v, iw)
        x = ut.duplicate(x, iw)
        z = ut.sample_gaussian(m, v)
        logits = self.dec.decode(z)

        kl = ut.log_normal(z, m, v) - ut.log_normal_mixture(z, *prior)
        rec = -ut.log_bernoulli_with_logits(x, logits)
        nelbo = kl + rec
        niwae = -ut.log_mean_exp(-nelbo.reshape(iw, -1), dim=0)

        niwae, kl, rec = niwae.mean(), kl.mean(), rec.mean()

        ################################################################################
        # End of code modification
        ################################################################################
        return niwae, kl, rec
示例#14
0
文件: gmvae.py 项目: wyvern92/cs236
    def negative_iwae_bound(self, x, iw):
        """
        Computes the Importance Weighted Autoencoder Bound
        Additionally, we also compute the ELBO KL and reconstruction terms

        Args:
            x: tensor: (batch, dim): Observations
            iw: int: (): Number of importance weighted samples

        Returns:
            niwae: tensor: (): Negative IWAE bound
            kl: tensor: (): ELBO KL divergence to prior
            rec: tensor: (): ELBO Reconstruction term
        """
        ################################################################################
        # TODO: Modify/complete the code here
        # Compute niwae (negative IWAE) with iw importance samples, and the KL
        # and Rec decomposition of the Evidence Lower Bound
        #
        # Outputs should all be scalar
        ################################################################################
        # Compute the mixture of Gaussian prior
        prior = ut.gaussian_parameters(self.z_pre, dim=1)
        prior_m, prior_v = prior

        batch = x.shape[0]
        multi_x = ut.duplicate(x, iw)

        qm, qv = self.enc.encode(x)
        multi_qm = ut.duplicate(qm, iw)
        multi_qv = ut.duplicate(qv, iw)

        # z will be (batch*iw x z_dim)
        # with sampled z's for a given x non-contiguous!
        z = ut.sample_gaussian(multi_qm, multi_qv)

        probs = self.dec.decode(z)
        recs = ut.log_bernoulli_with_logits(multi_x, probs)
        rec = -1.0 * torch.mean(recs)

        multi_m = prior_m.expand(batch * iw, *prior_m.shape[1:])
        multi_v = prior_v.expand(batch * iw, *prior_v.shape[1:])
        z_priors = ut.log_normal_mixture(z, multi_m, multi_v)
        x_posteriors = recs
        z_posteriors = ut.log_normal(z, multi_qm, multi_qv)

        kls = z_posteriors - z_priors
        kl = torch.mean(kls)

        log_ratios = z_priors + x_posteriors - z_posteriors
        # Should be (batch*iw, z_dim), batch ratios non contiguous

        unflat_log_ratios = log_ratios.reshape(iw, batch)

        niwaes = ut.log_mean_exp(unflat_log_ratios, 0)
        niwae = -1.0 * torch.mean(niwaes)

        ################################################################################
        # End of code modification
        ################################################################################
        return niwae, kl, rec