示例#1
0
def get_combined_counts(table, positions):
    bases = 'ACGT'
    if type(positions) == str:
        counts = reduced_one_position(table, positions)
        mut_counts = counts['M']
        unmut_counts = counts['R']
        positions = [positions]
        states = bases
        header = ['mut', 'base', 'count']
    else:
        counts = reduced_multiple_positions(table, *positions)
        mut_counts = counts['M']
        unmut_counts = counts['R']
        states = product(*list([bases] * len(positions)))
        header = ['mut'] + ['base%d' % (i + 1)
                            for i in range(len(positions))] + ['count']

    combined = []
    for state in states:
        combined.append(['R'] + list(state) + [unmut_counts[state]])
        combined.append(['M'] + list(state) + [mut_counts[state]])

    counts_table = LoadTable(header=header, rows=combined)
    counts_table = counts_table.sorted(columns=header[:-1])
    return counts_table
示例#2
0
def summary_stat_table(table, factors):
    '''returns summary statistics for classifier, feature set combination'''
    fscore_cols = [c for c in table.header if c.startswith('fscore')]
    distinct = table.distinct_values(factors)
    rows = []
    for comb in tqdm(distinct, ncols=80):
        subtable = table.filtered(lambda x: tuple(x) == tuple(comb),
                                  columns=factors)
        aurocs = numpy.array(subtable.tolist('auc'))
        mean_prec = numpy.array(subtable.tolist('mean_precision'))
        accuracy = numpy.array(subtable.tolist('balanced_accuracy'))
        row = list(comb) + [
            aurocs.mean(),
            aurocs.std(ddof=1),
            mean_prec.mean(),
            mean_prec.std(ddof=1),
            accuracy.mean(),
            accuracy.std(ddof=1)
        ]
        for col in fscore_cols:
            data = numpy.array(subtable.tolist(col))
            row.append(data.mean())
            row.append(data.std(ddof=1))
        rows.append(row)

    header = list(factors) + [
        'mean_auc', 'std_auc', 'mean_ap', 'std_ap', 'mean_balanced_accuracy',
        'std_balanced_accuracy'
    ]
    for col in fscore_cols:
        header.extend([f'mean_{col}', f'std_{col}'])

    table = LoadTable(header=header, rows=rows)
    table = table.sorted(reverse='mean_auc')
    return table
示例#3
0
def make_strand_symmetric_table(table):
    '''takes a combined counts table and returns a table with reverse
    complemented seqs

    Uses MUTATION_COMPLEMENTS'''

    new_data = []
    direction_index = [
        i for i in range(len(table.header)) if table.header[i] == 'direction'
    ][0]
    for plus, minus in list(MUTATION_COMPLEMENTS.items()):
        plus_table = table.filtered('direction=="%s"' % plus)
        plus_data = add_strand_column(plus_table.tolist(), '+')
        new_data.extend(plus_data)

        minus_table = table.filtered('direction=="%s"' % minus)
        if minus_table.shape[0] == 0:
            continue
        minus_table = _reverse_complement(minus_table)
        minus_data = minus_table.tolist()
        for row in minus_data:
            row[direction_index] = plus
        minus_data = add_strand_column(minus_data, '-')
        new_data.extend(minus_data)

    return LoadTable(header=table.header[:] + ['strand'], rows=new_data)
示例#4
0
def spectra_table(table, group_label):
    """returns a table with columns without position information"""
    assert 'direction' in table.header
    if 'mut' in table.header:
        # remove redundant category (counts of M == R)
        table = table.filtered("mut=='M'")

    columns = ['count', 'direction', group_label]
    table = table.get_columns(columns)
    # so we have a table with counts per direction
    results = []
    group_categories = table.distinct_values(group_label)
    filter_template = "direction=='%(direction)s' and "\
                      "%(label)s=='%(category)s'"
    for direction in table.distinct_values('direction'):
        start = direction[0]
        for group_category in group_categories:
            condition = dict(direction=direction,
                             label=group_label,
                             category=group_category)
            sub_table = table.filtered(filter_template % condition)
            total = sub_table.summed('count')
            results.append([total, start, direction, group_category])
    result = LoadTable(header=['count', 'start', 'direction', group_label],
                       rows=results)
    return result
示例#5
0
    def test_deserialise_tabular_table(self):
        """correctly deserialises Table"""
        from cogent3 import LoadTable

        table = LoadTable(
            header=["id", "foo", "bar"],
            rows=[
                [1, "abc", 11],
                [2, "bca", 22],
                [3, "cab", 33],
                [4, "abc", 44],
                [5, "bca", 55],
            ],
        )
        json = table.to_json()
        got = deserialise_object(json)
        self.assertEqual(got.to_dict(), table.to_dict())
示例#6
0
def get_grouped_combined_counts(table, position, group_label):
    """wraps motif_count.get_combined_counts for groups"""
    group_cats = table.distinct_values(group_label)
    all_data = []
    header = None
    for category in group_cats:
        subtable = table.filtered(lambda x: x == category, columns=group_label)
        counts = motif_count.get_combined_counts(subtable, position)
        if header is None:
            header = [group_label] + list(counts.header)

        counts = counts.with_new_column(group_label, lambda x: category,
                                        columns=counts.header[0])
        all_data.extend(counts.tolist(header))
    counts = LoadTable(header=header, rows=all_data)
    counts.sorted(columns=[group_label, 'mut'])
    return counts
示例#7
0
    def test_reverse_complement(self):
        table = LoadTable(header=self.header, rows=self.data)
        ex = [[1670, 'A', 'A', 'A', 'A', 'M', 'AtoC'],
              [557, 'G', 'T', 'T', 'C', 'M', 'AtoC'],
              [1479, 'T', 'T', 'C', 'T', 'M', 'AtoC'],
              [925, 'C', 'T', 'T', 'C', 'M', 'AtoC'],
              [1919, 'T', 'T', 'G', 'T', 'M', 'AtoC'],
              [442, 'T', 'G', 'T', 'C', 'M', 'AtoC']]
        got = _reverse_complement(table)
        raw_got = got.tolist()

        self.assertEqual(raw_got, ex)
示例#8
0
def load_table_from_delimited_file(path, sep='\t'):
    '''returns a Table object after a quicker loading'''
    with open_(path, 'rt') as infile:
        header = infile.readline().strip().split(sep)
        count_index = header.index('count')
        records = []
        for line in infile:
            line = line.strip().split(sep)
            line[count_index] = int(line[count_index])
            records.append(line)
        table = LoadTable(header=header, rows=records)
    return table
示例#9
0
def missing_species_names(names):
    """returns a Table of missing species names, or None"""
    missing = []
    for name in names:
        n = Species.get_species_name(name)
        if n == "None":
            missing.append([name])

    if missing:
        result = LoadTable(header=["MISSING SPECIES"], rows=missing)
    else:
        result = None
    return result
示例#10
0
def display_available_dbs(account, release=None):
    """displays the available Ensembl databases at the nominated host"""
    db_list = get_db_name(account=account, db_type="core", release=release)
    db_list += get_db_name(account=account, db_type="compara", release=release)
    rows = []
    for db_name in db_list:
        species_name = db_name.species
        if species_name:
            common_name = Species.get_common_name(db_name.species,
                                                  level="ignore")

        if "compara" in db_name.name:
            species_name = common_name = "-"
        rows.append([db_name.release, db_name.name, species_name, common_name])

    table = LoadTable(header=["Release", "Db Name", "Species", "Common Name"],
                      rows=rows,
                      space=2)
    table = table.sorted(["Release", "Db Name"])
    table.legend = (
        "Values of 'None' indicate cogent does not have a value for that database name."
    )
    return table
示例#11
0
    def test_all_counts(self):
        """exercising all_acounts"""
        if os.path.exists(self.dirname):
            shutil.rmtree(self.dirname)

        runner = CliRunner()
        # should fail, as data files not in this directory
        r = runner.invoke(
            all_count_main, ["-cdata/*.txt", "-o%s" % self.dirname])
        self.assertNotEqual(r.exit_code, 0)
        r = runner.invoke(
            all_count_main, ["-cdata/directions/*.txt", "-o%s" % self.dirname])
        # should produce directory containing two files
        dirlist = os.listdir(self.dirname)
        self.assertEqual(set(dirlist),
                         set(["combined_counts.txt", "combined_counts.log"]))
        # check the contents of combined_counts
        counts = LoadTable(os.path.join(
            self.dirname, "combined_counts.txt"), sep="\t")
        # 4**4 nbrs x 12 mutations x 2 (M/R groups) = 6144
        counts = LoadTable(os.path.join(
            self.dirname, "combined_counts.txt"), sep="\t")
        self.assertEqual(counts.shape[0], 6144)
        shutil.rmtree(self.dirname)
示例#12
0
def get_ms_supp_labels(float_type,
                       texdir="../ENU-ms-genetics-v2",
                       verbose=False):
    """returns ordered dicts of labels from the manuscript for
    supplementary and main manuscript body"""
    #     assert float_type in ('fig', 'tab')
    # hardcoding these, in the manuscript order of the sections
    texfns = [
        os.path.join(texdir, tfn) for tfn in (
            "MS-introduction.tex",
            "MS-results.tex",
            "MS-discussion.tex",
            "MS-methods.tex",
        )
    ]
    alllabels = None
    for tfn in texfns:
        tags = get_tags(tfn, "label")
        if alllabels is None:
            alllabels = tags
        else:
            alllabels.update(tags)

    print("\n\nWorking on labels")
    alllabels = filtertags(float_type, alllabels)

    allrefs = None
    for tfn in texfns:
        tags = get_tags(tfn, "ref")
        if allrefs is None:
            allrefs = tags
        else:
            allrefs.update(tags)
    print("\n\nWorking on refs")
    allrefs = filtertags(float_type, allrefs)
    mainrefs = filtertags(lambda x: not x.startswith("sup"), allrefs)
    suprefs = filtertags(lambda x: x.startswith("sup"), allrefs)

    missing = set(alllabels) - set(mainrefs)

    rows = [(missed, alllabels[missed]) for missed in missing]
    table = LoadTable(header=["label missing", "referenced in"], rows=rows)
    if verbose:
        print(table)
    return mainrefs, suprefs
示例#13
0
def _reverse_complement(table):
    '''returns a table with sequences reverse complemented'''
    pos_indices = [
        i for i, c in enumerate(table.header) if c.startswith('pos')
    ]

    rows = table.tolist()
    for row in rows:
        # we use the cogent3 DnaSeq object to do reverse complementing
        seq = DNA.make_seq(''.join(row[i] for i in pos_indices))
        seq = list(seq.rc())
        for i, index in enumerate(pos_indices):
            row[index] = seq[i]
    if rows:
        new = LoadTable(header=table.header, rows=rows)
    else:
        new = None
    return new
示例#14
0
    def test_aln_to_counts(self):
        """exercising aln_to_counts"""
        if os.path.exists(self.dirname):
            shutil.rmtree(self.dirname)

        makedirs(self.dirname)
        runner = CliRunner()
        # should fail, as data files not in this directory
        r = runner.invoke(aln_to_counts_main, ["-adata/sample_AtoC.fasta", "-o%s" % self.dirname,
                                               "-f1", "--direction=AtoC", "-S111", "-F"])
        dirlist = os.listdir(self.dirname)
        self.assertEqual(r.exit_code, 0)
        self.assertEqual(set(dirlist),
                         set(["sample_AtoC.txt", "sample_AtoC.log"]))
        counts = LoadTable(os.path.join(
            self.dirname, "sample_AtoC.txt"), sep="\t")
        # two columns with pos, two groups giving shape=2*16
        self.assertEqual(counts.shape[0], 32)
        shutil.rmtree(self.dirname)
示例#15
0
def status(configpath):
    """checks download/install status using checkpoint files and config"""
    release, remote_path, local_path, species_dbs = read_config(configpath)
    content = os.listdir(local_path)
    dbnames = reduce_dirnames(content, species_dbs)
    rows = []
    for db in dbnames:
        row = [
            db.name,
            is_downloaded(local_path, db.name),
            is_installed(local_path, db.name),
        ]
        rows.append(row)

    table = LoadTable(
        header=["dbname", "Downloaded", "Installed"],
        rows=rows,
        title="Status of download and install",
        legend="config=%s; local_path=%s" % (configpath.name, local_path),
    )
    print(table)
示例#16
0
def get_count_table(observed, control, k=None):
    """return table of motif counts

    Each motif position is a separate column. All possible DNA motifs of length
    k are included.

    Arguments:
        - observed: the observed counts as {seq: count}
        - control: the control counts as {seq: count}
        - k: size of the motif"""
    rows = []
    lengths = set(
        list(map(len, list(observed.keys()))) +
        list(map(len, list(control.keys()))))
    if len(lengths) != 1:
        raise ValueError("Motifs not all same length: %s" % str(lengths))

    length = list(lengths)[0]
    if k and length != k:
        raise ValueError("k[%d] doesn't match motif length [%d]" % (k, length))
    elif k is None:
        k = length

    states = list(set(observed.keys()) | set(control.keys()))
    states.sort()
    for state in states:
        state = ''.join(state)
        control_counts = control[state]
        observed_counts = observed[state]
        if control_counts == observed_counts == 0:
            # we skip unobserved states
            continue

        rows.append([control_counts] + list(state) + ['R'])
        rows.append([observed_counts] + list(state) + ['M'])

    header = ['count'] + ["pos%d" % i for i in range(k)] + ['mut']
    table = LoadTable(header=header, rows=rows)
    return table
def _parse_db_display(output, columns):
    """finds the table display and accumulates the content"""
    result = output.splitlines()
    header = []
    for index, line in enumerate(result):
        if not header and columns[0] in line:
            header = columns
            break

    if header:
        rows = []
        for i in range(index + 2, len(result)):
            line = result[i].strip()
            if line.startswith("----------"):
                break

            line = line.split()
            rows.append(line[:len(columns)])
        table = LoadTable(header=header, rows=rows)
    else:
        table = None

    return table
示例#18
0
    def test_strandsym_table(self):
        """makes strand symmetric table"""
        data = [[1, 'T', 'T', 'T', 'T', 'M', 'TtoG'],
                [1, 'G', 'A', 'A', 'C', 'M', 'TtoG'],
                [1, 'A', 'G', 'A', 'A', 'M', 'TtoG'],
                [1, 'G', 'A', 'A', 'G', 'M', 'TtoG'],
                [1, 'A', 'C', 'A', 'A', 'M', 'TtoG'],
                [1, 'G', 'A', 'C', 'A', 'M', 'TtoG']]
        exp = []
        for row in self.data:
            n = row[:]
            n.append('+')
            exp.append(n)
        for row in data:
            seq = list(map(DNA.complement, row[1:-2]))
            seq.reverse()
            n = [row[0]] + seq + ['M', 'AtoC']
            n.append('-')
            exp.append(n)

        table = LoadTable(header=self.header, rows=self.data + data)
        r = make_strand_symmetric_table(table)
        self.assertEqual(r.tolist(), exp)
示例#19
0
def single_group(counts_table, outpath, group_label, group_ref, positions,
                 plot_config, first_order, dry_run):
    # Collect statistical analysis results
    summary = []

    max_results = {}
    # Single position analysis
    print("Doing single position analysis")
    single_results = single_position_effects(counts_table, positions,
                                             group_label=group_label)
    summary += make_summary(single_results)

    max_results[1] = max(single_results[p]['rel_entropy']
                         for p in single_results)
    if not dry_run:
        outfilename = os.path.join(outpath, "1.json")
        util.dump_loglin_stats(single_results, outfilename)
        LOGGER.output_file(outfilename, label="analysis1")

    fig = get_single_position_fig(
        single_results, positions,
        plot_config.get('1-way plot', 'figsize'),
        group_label=group_label,
        group_ref=group_ref,
        figwidth=plot_config.get('1-way plot', 'figwidth'),
        xlabel_fontsize=plot_config.get('1-way plot',
                                        'xlabel_fontsize'),
        ylabel_fontsize=plot_config.get('1-way plot',
                                        'ylabel_fontsize'),
        xtick_fontsize=plot_config.get('1-way plot',
                                       'xtick_fontsize'),
        ytick_fontsize=plot_config.get('1-way plot',
                                       'ytick_fontsize'))

    format_offset(fig, int(plot_config.get('1-way plot',
                                           'ytick_fontsize') * .8))
    if not dry_run:
        outfilename = os.path.join(outpath, "1.pdf")
        fig.savefig(outfilename, bbox_inches='tight')
        print("Wrote", outfilename)
        fig.clf()  # refresh for next section

    if first_order:
        msg = "Done! Check %s for your results" % outpath
        summary = LoadTable(header=['Position', 'RE', 'Deviance', 'df',
                                    'prob', 'formula'],
                            rows=summary, digits=2, space=2)
        if not dry_run:
            outfilename = os.path.join(outpath, "summary.txt")
            summary.write(outfilename, sep='\t')
            LOGGER.output_file(outfilename, label="summary")

        return msg

    print("Doing two positions analysis")
    results = get_two_position_effects(counts_table, positions,
                                       group_label=group_label)
    summary += make_summary(results)

    max_results[2] = max(results[p]['rel_entropy'] for p in results)
    if not dry_run:
        outfilename = os.path.join(outpath, "2.json")
        util.dump_loglin_stats(results, outfilename)
        LOGGER.output_file(outfilename, label="analysis2")

    fig = get_two_position_fig(results, positions,
                               plot_config.get('2-way plot', 'figsize'),
                               group_label=group_label, group_ref=group_ref,
                               xtick_fontsize=plot_config.get(
                                   '2-way plot', 'xtick_fontsize'),
                               ytick_fontsize=plot_config.get('2-way plot', 'ytick_fontsize'))
    fig.set_figwidth(plot_config.get('2-way plot', 'figwidth'))
    x_fsz = plot_config.get('2-way plot', 'xlabel_fontsize')
    y_fsz = plot_config.get('2-way plot', 'ylabel_fontsize')
    fig.text(0.5, plot_config.get('2-way plot', 'xlabel_pad'), 'Position',
             ha='center', va='center', fontsize=x_fsz)
    fig.text(plot_config.get('2-way plot', 'ylabel_pad'), 0.5, 'RE',
             ha='center', va='center', rotation='vertical', fontsize=y_fsz)
    format_offset(fig, int(plot_config.get('2-way plot',
                                           'ytick_fontsize') * .8))
    if not dry_run:
        outfilename = os.path.join(outpath, "2.pdf")
        fig.savefig(outfilename, bbox_inches='tight')
        print("Wrote", outfilename)
        fig.clf()  # refresh for next section

    print("Doing three positions analysis")
    results = get_three_position_effects(counts_table, positions,
                                         group_label=group_label)
    summary += make_summary(results)

    max_results[3] = max(results[p]['rel_entropy'] for p in results)
    if not dry_run:
        outfilename = os.path.join(outpath, "3.json")
        util.dump_loglin_stats(results, outfilename)
        LOGGER.output_file(outfilename, label="analysis3")

    fig = get_three_position_fig(results, positions,
                                 plot_config.get('3-way plot', 'figsize'),
                                 group_label=group_label, group_ref=group_ref,
                                 xtick_fontsize=plot_config.get(
                                     '3-way plot', 'xtick_fontsize'),
                                 ytick_fontsize=plot_config.get('3-way plot', 'ytick_fontsize'))
    fig.set_figwidth(plot_config.get('3-way plot', 'figwidth'))
    x_fsz = plot_config.get('3-way plot', 'xlabel_fontsize')
    y_fsz = plot_config.get('3-way plot', 'ylabel_fontsize')
    fig.text(0.5, plot_config.get('3-way plot', 'xlabel_pad'),
             'Position', ha='center', va='center', fontsize=x_fsz)
    fig.text(plot_config.get('3-way plot', 'ylabel_pad'), 0.5, 'RE',
             ha='center', va='center', rotation='vertical', fontsize=y_fsz)
    format_offset(fig,
                  int(plot_config.get('3-way plot', 'ytick_fontsize') * .8))
    if not dry_run:
        outfilename = os.path.join(outpath, "3.pdf")
        fig.savefig(outfilename, bbox_inches='tight')
        print("Wrote", outfilename)
        fig.clf()  # refresh for next section

    print("Doing four positions analysis")
    results = get_four_position_effects(counts_table, positions,
                                        group_label=group_label)
    summary += make_summary(results)

    max_results[4] = max(results[p]['rel_entropy'] for p in results)
    if not dry_run:
        outfilename = os.path.join(outpath, "4.json")
        util.dump_loglin_stats(results, outfilename)
        LOGGER.output_file(outfilename, label="analysis4")

    fig = get_four_position_fig(results, positions,
                                plot_config.get('4-way plot', 'figsize'),
                                group_label=group_label, group_ref=group_ref)
    fig.set_figwidth(plot_config.get('4-way plot', 'figwidth'))
    ax = fig.gca()
    x_fsz = plot_config.get('4-way plot', 'xlabel_fontsize')
    y_fsz = plot_config.get('4-way plot', 'ylabel_fontsize')
    ax.set_xlabel('Position', fontsize=x_fsz)
    ax.set_ylabel('RE', fontsize=y_fsz)
    format_offset(fig, int(plot_config.get('4-way plot',
                                           'ytick_fontsize') * .8))
    if not dry_run:
        outfilename = os.path.join(outpath, "4.pdf")
        fig.savefig(outfilename, bbox_inches='tight')
        print("Wrote", outfilename)
        fig.clf()  # refresh for next section

    # now generate summary plot
    bar_width = 0.5
    index = numpy.arange(4)
    y_lim = max(max_results.values())
    y_fmt = util.FixedOrderFormatter(numpy.floor(numpy.log10(y_lim)))

    fig = pyplot.figure(figsize=plot_config.get('summary plot', 'figsize'))
    ax = fig.gca()
    ax.yaxis.set_major_formatter(y_fmt)

    bar = pyplot.bar(index, [max_results[i] for i in range(1, 5)], bar_width)
    pyplot.xticks(index + (bar_width / 2.), list(range(1, 5)),
                  fontsize=plot_config.get('summary plot', 'xtick_fontsize'))
    x_sz = plot_config.get('summary plot', 'xlabel_fontsize')
    y_sz = plot_config.get('summary plot', 'ylabel_fontsize')
    ax.set_xlabel("Effect Order", fontsize=x_sz)
    ax.set_ylabel("RE$_{max}$", fontsize=y_sz)

    x_sz = plot_config.get('summary plot', 'xtick_fontsize')
    y_sz = plot_config.get('summary plot', 'ytick_fontsize')
    ax.tick_params(axis='x', labelsize=x_sz, pad=x_sz // 2, length=0)
    ax.tick_params(axis='y', labelsize=y_sz, pad=y_sz // 2)
    format_offset(fig, int(plot_config.get('summary plot',
                                           'ytick_fontsize') * .8))
    if not dry_run:
        outfilename = os.path.join(outpath, "summary.pdf")
        pyplot.savefig(outfilename, bbox_inches='tight')
        print("Wrote", outfilename)

    summary = LoadTable(header=['Position', 'RE', 'Deviance', 'df',
                                'prob', 'formula'],
                        rows=summary, digits=2, space=2)
    if not dry_run:
        outfilename = os.path.join(outpath, "summary.txt")
        summary.write(outfilename, sep='\t')
        LOGGER.output_file(outfilename, label="summary")

    print(summary)
    pyplot.close('all')
    msg = "Done! Check %s for your results" % outpath
    return msg
示例#20
0
def main(countsfile, outpath, countsfile2, strand_symmetry, force_overwrite,
         dry_run, verbose):
    args = locals()

    table = LoadTable(countsfile, sep='\t')
    if not dry_run:
        log_file_path = os.path.join(util.abspath(outpath),
                                     'spectra_analysis.log')
        LOGGER.log_file_path = log_file_path
        LOGGER.log_message(str(args), label='vars')

    LOGGER.input_file(countsfile)
    # if there's a strand symmetry argument then we don't need a second file
    if strand_symmetry:
        group_label = 'strand'
        counts_table = util.spectra_table(table, group_label)

    if not strand_symmetry:
        group_label = 'group'

        # be sure there's two files
        counts_table2 = LoadTable(countsfile2, sep='\t')
        LOGGER.input_file(countsfile2)
        counts_table2 = counts_table2.with_new_column('group',
                                                      lambda x: '2', columns=counts_table2.header[0])
        counts_table1 = table.with_new_column('group',
                                              lambda x: '1', columns=table.header[0])

        counts_table1 = util.spectra_table(counts_table1, group_label)
        counts_table2 = util.spectra_table(counts_table2, group_label)

        # now combine
        header = ['group'] + counts_table2.header[:-1]
        raw1 = counts_table1.tolist(header)
        raw2 = counts_table2.tolist(header)
        counts_table = LoadTable(header=header, rows=raw1 + raw2)

        if verbose:
            print(counts_table)

    # spectra table has [count, start, end, group] order
    # we reduce comparisons to a start base
    results = []
    saveable = {}
    for start_base in counts_table.distinct_values('start'):
        subtable = counts_table.filtered('start == "%s"' % start_base)
        columns = [c for c in counts_table.header if c != 'start']
        subtable = subtable.get_columns(columns)
        total_re, dev, df, collated, formula = log_lin.spectra_difference(
            subtable, group_label)
        r = [list(x) for x in collated.to_records(index=False)]

        if not strand_symmetry:
            grp_labels = {'1': countsfile,
                          '2': countsfile2}
            grp_index = list(collated.columns).index('group')
            for row in r:
                row[grp_index] = grp_labels[row[grp_index]]

        p = chisqprob(dev, df)
        if p < 1e-6:
            prob = "%.2e" % p
        else:
            prob = "%.6f" % p

        for row in r:
            row.insert(0, start_base)
            row.append(prob)

        results += r

        significance = ["RE=%.6f" % total_re, "Dev=%.2f" % dev, "df=%d" % df,
                        "p=%s" % p]

        stats = "  :  ".join(significance)
        print("Start base=%s  %s" % (start_base, stats))
        saveable[start_base] = dict(rel_entropy=total_re, deviance=dev,
                                    df=df, prob=p,
                                    formula=formula, stats=collated.to_json())

    table = LoadTable(header=['start_base'] + list(collated.columns) +
                             ['prob'],
                      rows=results, digits=5).sorted(columns='ret')
    json_path = None

    outpath = util.abspath(outpath)
    if not dry_run:
        util.makedirs(outpath)
        json_path = os.path.join(outpath, 'spectra_analysis.json')
        dump_json(saveable, json_path)
        LOGGER.output_file(json_path)
        table_path = os.path.join(outpath, 'spectra_summary.txt')
        table.write(table_path, sep='\t')
        LOGGER.output_file(table_path)
        LOGGER.log_message(str(significance), label="significance")
示例#21
0
def main(counts_pattern, output_path, strand_symmetric, split_dir, dry_run,
         force_overwrite):
    """export tab delimited combined counts table by appending the 12 mutation
    direction tables, adding a new column ``direction``."""
    args = locals()
    output_path = abspath(output_path)
    if strand_symmetric and split_dir:
        split_dir = abspath(split_dir)
    else:
        split_dir = None

    # check we the glob pattern produces the correct number of files
    counts_files = glob.glob(counts_pattern)
    check_found_filenames(counts_files)

    counts_filename = os.path.join(output_path, 'combined_counts.txt')
    runlog_path = os.path.join(output_path, "combined_counts.log")

    if not dry_run:
        if not force_overwrite and (os.path.exists(counts_filename)
                                    or os.path.exists(runlog_path)):
            msg = "Either %s or %s already exist. Force overwrite of "\
                  "existing files with -F."
            raise ValueError(msg % (counts_filename, runlog_path))

        makedirs(output_path)
        if split_dir:
            makedirs(split_dir)

        LOGGER.log_file_path = runlog_path
        LOGGER.log_message(str(args), label='vars')
        for fn in counts_files:
            LOGGER.input_file(fn, label="count_file")

    start_time = time.time()

    # run the program
    all_counts = []
    header = None
    num_rows = 0
    basenames = []
    for fn in counts_files:
        basenames.append(os.path.basename(fn))
        mutation = direction.findall(fn)[0]
        table = LoadTable(fn, sep='\t')
        if header is None:
            header = list(table.header)
            header.append('direction')
            num_rows = table.shape[0]

        data = table.tolist()
        new = []
        for row in data:
            row.append(mutation)
            new.append(row)
        all_counts += new

    table = LoadTable(header=header, rows=all_counts)

    if strand_symmetric:
        table = make_strand_symmetric_table(table)

    if split_dir:
        group_subtables = get_subtables(table, group_label='direction')

    if not dry_run:
        table.write(counts_filename, sep='\t')
        LOGGER.output_file(counts_filename)

        if split_dir:
            for group, subtable in group_subtables:
                # we first assume that group is part of the filenames!
                fn = [bn for bn in basenames if group in bn]
                if len(fn) == 1:
                    fn = fn[0]
                else:
                    fn = "%s.txt" % group

                counts_filename = os.path.join(split_dir, fn)
                subtable.write(counts_filename, sep='\t')
                LOGGER.output_file(counts_filename)

    # determine runtime
    duration = time.time() - start_time
    if not dry_run:
        LOGGER.log_message("%.2f" % (duration / 60.),
                           label="run duration (minutes)")

    print("Done!")
示例#22
0
def nbr(countsfile, outpath, countsfile2, first_order, strand_symmetry,
        group_label, group_ref, plot_cfg, no_type3, format, verbose, dry_run):
    '''log-linear analysis of neighbouring base influence on point mutation

    Writes estimated statistics, figures and a run log to the specified
    directory outpath.

    See documentation for count table format requirements.
    '''
    if no_type3:
        util.exclude_type3_fonts()

    args = locals()

    outpath = util.abspath(outpath)

    if not dry_run:
        util.makedirs(outpath)
        runlog_path = os.path.join(outpath, "analysis.log")
        LOGGER.log_file_path = runlog_path
        LOGGER.log_message(str(args), label='vars')

    counts_filename = util.abspath(countsfile)
    counts_table = util.load_table_from_delimited_file(counts_filename,
                                                       sep='\t')

    LOGGER.input_file(counts_filename, label="countsfile1_path")

    positions = [c for c in counts_table.header if c.startswith('pos')]
    if not first_order and len(positions) != 4:
        raise ValueError("Requires four positions for analysis")

    group_label = group_label or None
    group_ref = group_ref or None
    if strand_symmetry:
        group_label = 'strand'
        group_ref = group_ref or '+'
        if group_label not in counts_table.header:
            print("ERROR: no column named 'strand', exiting.")
            exit(-1)

    if countsfile2:
        print("Performing 2 group analysis")
        group_label = group_label or 'group'
        group_ref = group_ref or '1'
        counts_table1 = counts_table.with_new_column(group_label,
                                                     lambda x: '1',
                                                     columns=counts_table.header[0])

        fn2 = util.abspath(countsfile2)
        counts_table2 = util.load_table_from_delimited_file(fn2, sep='\t')

        LOGGER.input_file(fn2, label="countsfile2_path")

        counts_table2 = counts_table2.with_new_column(group_label,
                                                      lambda x: '2',
                                                      columns=counts_table2.header[0])
        # now combine
        header = [group_label] + counts_table2.header[:-1]
        raw1 = counts_table1.tolist(header)
        raw2 = counts_table2.tolist(header)
        counts_table = LoadTable(header=header, rows=raw1 + raw2)

        if not dry_run:
            outfile = os.path.join(outpath, 'group_counts_table.txt')
            counts_table.write(outfile, sep='\t')
            LOGGER.output_file(outfile, label="group_counts")

    if dry_run or verbose:
        print()
        print(counts_table)
        print()

    plot_config = util.get_plot_configs(cfg_path=plot_cfg)

    msg = single_group(counts_table, outpath, group_label, group_ref,
                       positions, plot_config, first_order,
                       dry_run)
    print(msg)
示例#23
0
def collate(base_path, output_path, exclude_paths, overwrite):
    """collates all classifier performance stats and writes
    to a single tsv file"""
    LOGGER.log_args()
    outpath = os.path.join(output_path, "collated.tsv.gz")
    logfile_path = os.path.join(output_path, "collated.log")
    if os.path.exists(outpath) and not overwrite:
        click.secho(f"Skipping. {outpath} exists. "
                    "Use overwrite to force.",
                    fg='green')
        exit(0)

    stat_fns = exec_command(f'find {base_path} -name' ' "*performance.json*"')
    stat_fns = stat_fns.splitlines()
    if not stat_fns:
        msg = f'No files matching "*performance.json*" in {base_path}'
        click.secho(msg, fg='red')
        return

    LOGGER.log_file_path = logfile_path

    records = []
    keys = set()
    exclude_paths = [] if exclude_paths is None else exclude_paths.split(',')
    num_skipped = 0
    for fn in tqdm(stat_fns, ncols=80):
        if skip_path(exclude_paths, fn):
            num_skipped += 1
            LOGGER.log_message(fn, label="SKIPPED FILE")
            continue

        LOGGER.input_file(fn)
        data = load_json(fn)
        labels = data['classification_report']['labels']
        fscores = data['classification_report']['f-score']
        row = {
            "stat_path": fn,
            "classifier_path": data["classifier_path"],
            "auc": data["auc"],
            "algorithm": data["classifier_label"],
            "mean_precision": data["mean_precision"],
            f"fscore({labels[0]})": fscores[0],
            f"fscore({labels[1]})": fscores[1],
            'balanced_accuracy': data['balanced_accuracy']
        }
        row.update(data["feature_params"])
        keys.update(row.keys())
        records.append(row)

    columns = sorted(keys)
    rows = list(map(lambda r: [r.get(c, None) for c in columns], records))
    table = LoadTable(header=columns, rows=rows)
    table = table.sorted(reverse="auc")
    table = table.with_new_column(
        "name",
        lambda x: model_name_from_features(*x),
        columns=["flank_size", "feature_dim", "usegc", "proximal"])
    table = table.with_new_column("size",
                                  sample_size_from_path,
                                  columns="classifier_path")
    table.write(outpath)
    LOGGER.output_file(outpath)

    # make summary statistics via grouping by factors
    factors = [
        "algorithm", "name", "flank_size", "feature_dim", "proximal", "usegc",
        "size"
    ]
    summary = summary_stat_table(table, factors=factors)
    outpath = os.path.join(output_path, "summary_statistics.tsv.gz")
    summary.write(outpath)
    LOGGER.output_file(outpath)
    if num_skipped:
        click.secho("Skipped %d files that matched exclude_paths" %
                    num_skipped,
                    fg='red')