def init_mnist_cifar_transforms(n_channels=1, stage='train'): if n_channels == 1: norm_mean_std = Normalize((0.1307, ), (0.3081, )) elif n_channels == 3: norm_mean_std = Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261)) else: raise ValueError("Not support channels of {}".format(n_channels)) train_trf = Compose([ wrap2solt, slc.Stream([ slt.RandomScale(range_x=(0.9, 1.1), same=False, p=0.5), slt.RandomShear(range_x=(-0.05, 0.05), p=0.5), slt.RandomRotate(rotation_range=(-5, 5), p=0.5), slt.PadTransform(pad_to=34), slt.CropTransform(crop_size=32, crop_mode='r') ]), unpack_solt, ApplyTransform(norm_mean_std) ]) if stage == 'train': return train_trf test_trf = Compose([ wrap2solt, slt.PadTransform(pad_to=32), unpack_solt, ApplyTransform(norm_mean_std) ]) return test_trf
def init_mnist_transforms(): train_trf = Compose([ wrap2solt, slc.Stream([ slt.ResizeTransform(resize_to=(64, 64), interpolation='bilinear'), slt.RandomScale(range_x=(0.9, 1.1), same=False, p=0.5), slt.RandomShear(range_x=(-0.05, 0.05), p=0.5), slt.RandomRotate(rotation_range=(-10, 10), p=0.5), # slt.RandomRotate(rotation_range=(-5, 5), p=0.5), slt.PadTransform(pad_to=70), slt.CropTransform(crop_size=64, crop_mode='r'), slt.ImageAdditiveGaussianNoise(p=1.0) ]), unpack_solt, ApplyTransform(Normalize((0.5, ), (0.5, ))) ]) test_trf = Compose([ wrap2solt, slt.ResizeTransform(resize_to=(64, 64), interpolation='bilinear'), # slt.PadTransform(pad_to=64), unpack_solt, ApplyTransform(Normalize((0.5, ), (0.5, ))), ]) return train_trf, test_trf
def init_transforms(nc=1): if nc == 1: norm_mean_std = Normalize((0.1307, ), (0.3081, )) elif nc == 3: norm_mean_std = Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261)) else: raise ValueError("Not support channels of {}".format(nc)) train_trf = Compose([ wrap2solt, slc.Stream([ # slt.ResizeTransform(resize_to=(32, 32), interpolation='bilinear'), slt.RandomScale(range_x=(0.95, 1.05), same=False, p=0.5), # slt.RandomShear(range_x=(-0.05, 0.05), p=0.5), slt.RandomRotate(rotation_range=(-10, 10), p=0.5), slt.RandomFlip(p=0.5, axis=1), # slt.RandomRotate(rotation_range=(-5, 5), p=0.5), slt.RandomTranslate(range_x=3, range_y=3), # slt.PadTransform(pad_to=34), # slt.CropTransform(crop_size=32, crop_mode='r'), # slt.ImageAdditiveGaussianNoise(p=1.0) ]), unpack_solt, ApplyTransform(norm_mean_std) ]) test_trf = Compose([ wrap2solt, slt.ResizeTransform(resize_to=(32, 32), interpolation='bilinear'), unpack_solt, ApplyTransform(norm_mean_std) ]) def custom_augment(img): tr = Compose([ wrap2solt, slc.Stream([ slt.ResizeTransform(resize_to=(32, 32), interpolation='bilinear'), slt.RandomScale(range_x=(0.9, 1.1), same=False, p=0.5), slt.RandomShear(range_x=(-0.05, 0.05), p=0.5), slt.RandomRotate(rotation_range=(-10, 10), p=0.5), # slt.RandomRotate(rotation_range=(-5, 5), p=0.5), slt.PadTransform(pad_to=36), slt.CropTransform(crop_size=32, crop_mode='r'), slt.ImageAdditiveGaussianNoise(p=1.0) ]), unpack_solt, ApplyTransform(norm_mean_std) ]) img_tr, _ = tr((img, 0)) return img_tr return train_trf, test_trf, custom_augment
def init_mnist_transforms(): norm_mean_std = Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) train_trf = Compose([ wrap2solt, slt.PadTransform(pad_to=32), unpack_solt, ApplyTransform(norm_mean_std, [0, 1]) ]) test_trf = Compose([ wrap2solt, slt.PadTransform(pad_to=32), unpack_solt, ApplyTransform(norm_mean_std, [0, 1]) ]) return train_trf, test_trf
def custom_augment(img): if len(img.shape) == 3: imgs = img.expand_dims(img, axis=0) else: imgs = img out_imgs = [] for b in range(img.shape[0]): img1 = imgs[b, :, :, 0:1].astype(np.uint8) img2 = imgs[b, :, :, 1:2].astype(np.uint8) tr = Compose([ wrap2solt, slc.Stream([ slt.ImageAdditiveGaussianNoise(p=0.5, gain_range=0.3), slt.RandomRotate(p=1, rotation_range=(-10, 10)), slt.PadTransform(pad_to=int(STD_SZ[0] * 1.05)), slt.CropTransform(crop_size=STD_SZ[0], crop_mode='r'), slt.ImageGammaCorrection(p=0.5, gamma_range=(0.5, 1.5)), ]), unpack_solt, ApplyTransform(Normalize((0.5, ), (0.5, ))) ]) img1, _ = tr((img1, 0)) img2, _ = tr((img2, 0)) out_img = torch.cat((img1, img2), dim=0) out_imgs.append(out_img) out_imgs = torch.stack(out_imgs, dim=0) return out_imgs
def custom_augment(img): tr = Compose([ wrap2solt, slc.Stream([ slt.ResizeTransform(resize_to=(32, 32), interpolation='bilinear'), slt.RandomScale(range_x=(0.9, 1.1), same=False, p=0.5), slt.RandomFlip(axis=1, p=0.5), # slt.RandomShear(range_x=(-0.05, 0.05), p=0.5), # slt.RandomRotate(rotation_range=(-10, 10), p=0.5), slt.RandomRotate(rotation_range=(-5, 5), p=0.5), slt.PadTransform(pad_to=36), slt.CropTransform(crop_size=32, crop_mode='r'), slt.ImageAdditiveGaussianNoise(p=1.0) ]), unpack_solt, ApplyTransform(norm_mean_std) ]) if len(img.shape) == 3: imgs = np.expand_dims(img, axis=0) elif len(img.shape) == 4: imgs = img else: raise ValueError('Expect num of dims 3 or 4, but got {}'.format( len(img.shape))) out_imgs = [] for b in range(imgs.shape[0]): _img = imgs[b, :].astype(np.uint8) _img, _ = tr((_img, 0)) out_imgs.append(_img) return torch.stack(out_imgs, dim=0)
def init_mnist_transforms(): return Compose([ wrap2solt, slt.ResizeTransform(resize_to=(64, 64), interpolation='bilinear'), unpack_solt, ApplyTransform(Normalize((0.5, ), (0.5, ))) ])
def init_transform_wo_aug(nc=1): if nc == 1: norm_mean_std = Normalize((0.5, ), (0.5, )) elif nc == 3: norm_mean_std = Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) else: raise ValueError("Not support channels of {}".format(nc)) trf = Compose([wrap2solt, unpack_solt, ApplyTransform(norm_mean_std)]) return trf
def init_transforms(): train_trf = Compose([ wrap2solt, slc.Stream([ slt.ImageAdditiveGaussianNoise(p=0.5, gain_range=0.3), slt.RandomRotate(p=1, rotation_range=(-10, 10)), slt.PadTransform(pad_to=int(STD_SZ[0] * 1.05)), slt.CropTransform(crop_size=STD_SZ[0], crop_mode='r'), slt.ImageGammaCorrection(p=0.5, gamma_range=(0.5, 1.5)), ]), unpack_solt, ApplyTransform(Normalize((0.5,), (0.5,))) ]) test_trf = Compose([ wrap2solt, unpack_solt, ApplyTransform(Normalize((0.5,), (0.5,))) ]) return {"train": train_trf, "eval": test_trf}
def init_transforms(nc=1): if nc == 1: norm_mean_std = Normalize((0.5, ), (0.5, )) elif nc == 3: norm_mean_std = Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) else: raise ValueError("Not support channels of {}".format(nc)) train_trf = Compose([ wrap2solt, slc.Stream([ slt.ImageAdditiveGaussianNoise(p=0.5, gain_range=0.3), slt.RandomRotate(p=1, rotation_range=(-10, 10)), slt.PadTransform(pad_to=int(STD_SZ[0] * 1.05)), slt.CropTransform(crop_size=STD_SZ[0], crop_mode='r'), slt.ImageGammaCorrection(p=0.5, gamma_range=(0.5, 1.5)), ]), unpack_solt, ApplyTransform(norm_mean_std) ]) test_trf = Compose([wrap2solt, unpack_solt, ApplyTransform(norm_mean_std)]) return train_trf, test_trf, custom_augment
def custom_augment(img): tr = Compose([ wrap2solt, slc.Stream([ slt.ResizeTransform(resize_to=(32, 32), interpolation='bilinear'), slt.RandomScale(range_x=(0.9, 1.1), same=False, p=0.5), slt.RandomShear(range_x=(-0.05, 0.05), p=0.5), slt.RandomRotate(rotation_range=(-10, 10), p=0.5), # slt.RandomRotate(rotation_range=(-5, 5), p=0.5), slt.PadTransform(pad_to=36), slt.CropTransform(crop_size=32, crop_mode='r'), slt.ImageAdditiveGaussianNoise(p=1.0) ]), unpack_solt, ApplyTransform(norm_mean_std) ]) img_tr, _ = tr((img, 0)) return img_tr
def custom_augment(img): img1 = img[:, :, 0:1].astype(np.uint8) img2 = img[:, :, 1:2].astype(np.uint8) tr = Compose([ wrap2solt, slc.Stream([ slt.ImageAdditiveGaussianNoise(p=0.5, gain_range=0.3), slt.RandomRotate(p=1, rotation_range=(-10, 10)), slt.PadTransform(pad_to=int(STD_SZ[0] * 1.05)), slt.CropTransform(crop_size=STD_SZ[0], crop_mode='r'), slt.ImageGammaCorrection(p=0.5, gamma_range=(0.5, 1.5)), ]), unpack_solt, ApplyTransform(Normalize((0.5, ), (0.5, ))) ]) img1, _ = tr((img1, 0)) img2, _ = tr((img2, 0)) out_img = torch.cat((img1, img2), dim=0) return out_img
def train_test_transforms(conf, mean=None, std=None): trf = conf['training'] prob = trf['transform_probability'] crop_size = tuple(trf['crop_size']) # Training transforms if trf['uCT']: train_transforms = [ slt.RandomProjection(slc.Stream([ slt.RandomRotate(rotation_range=tuple(trf['rotation_range']), p=prob), slt.RandomScale(range_x=tuple(trf['scale_range']), range_y=tuple(trf['scale_range']), same=False, p=prob), slt.RandomShear(range_x=tuple(trf['shear_range']), range_y=tuple(trf['shear_range']), p=prob), slt.RandomTranslate(range_x=trf['translation_range'], range_y=trf['translation_range'], p=prob) ]), v_range=tuple(trf['v_range'])), # Spatial slt.RandomFlip(p=prob), slt.PadTransform(pad_to=crop_size), slt.CropTransform(crop_mode='r', crop_size=crop_size), # Intensity #slt.ImageGammaCorrection(gamma_range=tuple(trf['gamma_range']), p=prob), #slt.ImageRandomHSV(h_range=tuple(trf['hsv_range']), # s_range=tuple(trf['hsv_range']), # v_range=tuple(trf['hsv_range']), p=prob), # Brightness/contrast slc.SelectiveStream([ slt.ImageRandomBrightness(brightness_range=tuple( trf['brightness_range']), p=prob), slt.ImageRandomContrast(contrast_range=trf['contrast_range'], p=prob) ]), # Noise slc.SelectiveStream([ slt.ImageSaltAndPepper(p=prob, gain_range=trf['gain_range_sp']), slt.ImageAdditiveGaussianNoise( p=prob, gain_range=trf['gain_range_gn']), slc.SelectiveStream([ slt.ImageBlur(p=prob, blur_type='g', k_size=(3, 7, 11), gaussian_sigma=tuple(trf['sigma'])), slt.ImageBlur(p=prob, blur_type='m', k_size=(3, 7, 11), gaussian_sigma=tuple(trf['sigma'])) ]) ]) ] else: train_transforms = [ # Projection slt.RandomProjection( slc.Stream([ slt.RandomRotate(rotation_range=tuple( trf['rotation_range']), p=prob), slt.RandomScale(range_x=tuple(trf['scale_range']), range_y=tuple(trf['scale_range']), same=False, p=prob), #slt.RandomShear(range_x=tuple(trf['shear_range']), # range_y=tuple(trf['shear_range']), p=prob), #slt.RandomTranslate(range_x=trf['translation_range'], range_y=trf['translation_range'], p=prob) ]), v_range=tuple(trf['v_range'])), # Spatial slt.RandomFlip(p=prob), slt.PadTransform(pad_to=crop_size[1]), slt.CropTransform(crop_mode='r', crop_size=crop_size), # Intensity # Add an empty stream #slc.SelectiveStream([]), slc.SelectiveStream([ slt.ImageGammaCorrection(gamma_range=tuple(trf['gamma_range']), p=prob), slt.ImageRandomHSV(h_range=tuple(trf['hsv_range']), s_range=tuple(trf['hsv_range']), v_range=tuple(trf['hsv_range']), p=prob) ]), slc.SelectiveStream([ slt.ImageRandomBrightness(brightness_range=tuple( trf['brightness_range']), p=prob), slt.ImageRandomContrast(contrast_range=trf['contrast_range'], p=prob) ]), slc.SelectiveStream([ slt.ImageSaltAndPepper(p=prob, gain_range=trf['gain_range_sp']), slt.ImageAdditiveGaussianNoise( p=prob, gain_range=trf['gain_range_gn']), slc.SelectiveStream([ slt.ImageBlur(p=prob, blur_type='g', k_size=(3, 7, 11), gaussian_sigma=tuple(trf['sigma'])), slt.ImageBlur(p=prob, blur_type='m', k_size=(3, 7, 11), gaussian_sigma=tuple(trf['sigma'])) ]) ]) ] train_trf = [ wrap_solt, #slc.Stream(train_transforms), slc.Stream([ slt.PadTransform(pad_to=crop_size[1]), slt.CropTransform(crop_mode='r', crop_size=crop_size) ]), unwrap_solt, ApplyTransform(numpy2tens, (0, 1, 2)) ] # Validation transforms val_trf = [ wrap_solt, slc.Stream([ slt.PadTransform(pad_to=crop_size[1]), slt.CropTransform(crop_mode='r', crop_size=crop_size) ]), unwrap_solt, ApplyTransform(numpy2tens, idx=(0, 1, 2)) ] # Test transforms test_trf = [unwrap_solt, ApplyTransform(numpy2tens, idx=(0, 1, 2))] # Use normalize_channel_wise if mean and std not calculated if mean is not None and std is not None: train_trf.append( ApplyTransform(partial(normalize_channel_wise, mean=mean, std=std))) if mean is not None and std is not None: val_trf.append( ApplyTransform(partial(normalize_channel_wise, mean=mean, std=std))) # Compose transforms train_trf_cmp = Compose(train_trf) val_trf_cmp = Compose(val_trf) test_trf_cmp = Compose(test_trf) return { 'train': train_trf_cmp, 'val': val_trf_cmp, 'test': test_trf_cmp, 'train_list': train_trf, 'val_list': val_trf, 'test_list': test_trf }
def train_test_transforms(conf, mean=None, std=None, crop_size=(512, 1024)): """ Compiles the different image augmentations that are used for input images. :param conf: Transformation parameters :param mean: Dataset image mean :param std: Dataset image std :param crop_size: Image size for the segmentation model :return: Compiled transformation objects, and lists of the used transforms """ trf = conf['training'] prob = trf['transform_probability'] # Training transforms # 3D transforms if trf['experiment'] == '3D': train_transforms = [ slc.SelectiveStream([ slc.Stream([ slt.RandomProjection( slc.Stream([ slt.RandomRotate(rotation_range=tuple( trf['rotation_range']), p=prob), slt.RandomScale(range_x=tuple(trf['scale_range']), range_y=tuple(trf['scale_range']), same=False, p=prob), #slt.RandomShear(range_x=tuple(trf['shear_range']), # range_y=tuple(trf['shear_range']), p=prob), slt.RandomTranslate( range_x=trf['translation_range'], range_y=trf['translation_range'], p=prob) ]), v_range=None #tuple(trf['v_range']) ), # Spatial slt.RandomFlip(p=prob), slt.PadTransform(pad_to=crop_size), slt.CropTransform(crop_mode='r', crop_size=crop_size), # Intensity # Brightness/contrast slc.SelectiveStream([ slt.ImageRandomBrightness(brightness_range=tuple( trf['brightness_range']), p=prob), slt.ImageRandomContrast( contrast_range=trf['contrast_range'], p=prob) ]), # Noise slc.SelectiveStream([ slt.ImageSaltAndPepper( p=prob, gain_range=trf['gain_range_sp']), slt.ImageAdditiveGaussianNoise( p=prob, gain_range=trf['gain_range_gn']), slc.SelectiveStream([ slt.ImageBlur(p=prob, blur_type='g', k_size=(3, 7, 11), gaussian_sigma=tuple(trf['sigma'])), slt.ImageBlur(p=prob, blur_type='m', k_size=(3, 7, 11), gaussian_sigma=tuple(trf['sigma'])) ]) ]) ]), # Empty stream slc.Stream([ slt.PadTransform(pad_to=crop_size), slt.CropTransform(crop_mode='r', crop_size=crop_size) ]) ]) ] # 2D transforms else: train_transforms = [ slc.SelectiveStream([ slc.Stream([ # Projection slt.RandomProjection( slc.Stream([ slt.RandomRotate(rotation_range=tuple( trf['rotation_range']), p=prob), slt.RandomScale(range_x=tuple(trf['scale_range']), range_y=tuple(trf['scale_range']), same=False, p=prob), # slt.RandomShear(range_x=tuple(trf['shear_range']), # range_y=tuple(trf['shear_range']), p=prob), slt.RandomTranslate( range_x=trf['translation_range'], range_y=trf['translation_range'], p=prob) ]), v_range=tuple(trf['v_range'])), # Spatial slt.RandomFlip(p=prob), slt.PadTransform(pad_to=crop_size), slt.CropTransform(crop_mode='r', crop_size=crop_size), # Intensity slc.SelectiveStream([ slt.ImageGammaCorrection(gamma_range=tuple( trf['gamma_range']), p=prob), slt.ImageRandomHSV(h_range=tuple(trf['hsv_range']), s_range=tuple(trf['hsv_range']), v_range=tuple(trf['hsv_range']), p=prob) ]), slc.SelectiveStream([ slt.ImageRandomBrightness(brightness_range=tuple( trf['brightness_range']), p=prob), slt.ImageRandomContrast( contrast_range=trf['contrast_range'], p=prob) ]), slc.SelectiveStream([ slt.ImageSaltAndPepper( p=prob, gain_range=trf['gain_range_sp']), slt.ImageAdditiveGaussianNoise( p=prob, gain_range=trf['gain_range_gn']), slc.SelectiveStream([ slt.ImageBlur(p=prob, blur_type='g', k_size=(3, 7, 11), gaussian_sigma=tuple(trf['sigma'])), slt.ImageBlur(p=prob, blur_type='m', k_size=(3, 7, 11), gaussian_sigma=tuple(trf['sigma'])) ]) ]) ]), # Empty stream slc.Stream([ slt.PadTransform(pad_to=crop_size), slt.CropTransform(crop_mode='r', crop_size=crop_size) ]) ]) ] # Compile training transforms train_trf = [ # Move to SOLT format wrap_solt, # Transforms slc.Stream(train_transforms), # Extract image unwrap_solt, # Move to tensor ApplyTransform(numpy2tens, (0, 1, 2)) ] # Validation transforms val_trf = [ wrap_solt, slc.Stream([ slt.PadTransform(pad_to=crop_size[1]), slt.CropTransform(crop_mode='r', crop_size=crop_size) ]), unwrap_solt, ApplyTransform(numpy2tens, idx=(0, 1, 2)) ] # Test transforms test_trf = [unwrap_solt, ApplyTransform(numpy2tens, idx=(0, 1, 2))] # Normalize train and val images if mean and std are given if mean is not None and std is not None: train_trf.append( ApplyTransform(partial(normalize_channel_wise, mean=mean, std=std))) if mean is not None and std is not None: val_trf.append( ApplyTransform(partial(normalize_channel_wise, mean=mean, std=std))) # Compose transforms train_trf_cmp = Compose(train_trf) val_trf_cmp = Compose(val_trf) test_trf_cmp = Compose(test_trf) return { 'train': train_trf_cmp, 'val': val_trf_cmp, 'test': test_trf_cmp, 'train_list': train_trf, 'val_list': val_trf, 'test_list': test_trf }