示例#1
0
def tcs_colorimetry_data(
    sd_t: SpectralDistribution,
    sd_r: SpectralDistribution,
    sds_tcs: Dict[str, SpectralDistribution],
    cmfs: MultiSpectralDistributions,
    chromatic_adaptation: Boolean = False,
) -> Tuple[TCS_ColorimetryData, ...]:
    """
    Return the *test colour samples* colorimetry data.

    Parameters
    ----------
    sd_t
        Test spectral distribution.
    sd_r
        Reference spectral distribution.
    sds_tcs
        *Test colour samples* spectral distributions.
    cmfs
        Standard observer colour matching functions.
    chromatic_adaptation
        Perform chromatic adaptation.

    Returns
    -------
    :class:`tuple`
        *Test colour samples* colorimetry data.
    """

    XYZ_t = sd_to_XYZ(sd_t, cmfs)
    uv_t = UCS_to_uv(XYZ_to_UCS(XYZ_t))
    u_t, v_t = uv_t[0], uv_t[1]

    XYZ_r = sd_to_XYZ(sd_r, cmfs)
    uv_r = UCS_to_uv(XYZ_to_UCS(XYZ_r))
    u_r, v_r = uv_r[0], uv_r[1]

    tcs_data = []
    for _key, value in sorted(INDEXES_TO_NAMES_TCS.items()):
        sd_tcs = sds_tcs[value]
        XYZ_tcs = sd_to_XYZ(sd_tcs, cmfs, sd_t)
        xyY_tcs = XYZ_to_xyY(XYZ_tcs)
        uv_tcs = UCS_to_uv(XYZ_to_UCS(XYZ_tcs))
        u_tcs, v_tcs = uv_tcs[0], uv_tcs[1]

        if chromatic_adaptation:

            def c(
                x: FloatingOrNDArray, y: FloatingOrNDArray
            ) -> FloatingOrNDArray:
                """Compute the :math:`c` term."""

                return (4 - x - 10 * y) / y

            def d(
                x: FloatingOrNDArray, y: FloatingOrNDArray
            ) -> FloatingOrNDArray:
                """Compute the :math:`d` term."""

                return (1.708 * y + 0.404 - 1.481 * x) / y

            c_t, d_t = c(u_t, v_t), d(u_t, v_t)
            c_r, d_r = c(u_r, v_r), d(u_r, v_r)
            tcs_c, tcs_d = c(u_tcs, v_tcs), d(u_tcs, v_tcs)
            u_tcs = (
                10.872 + 0.404 * c_r / c_t * tcs_c - 4 * d_r / d_t * tcs_d
            ) / (16.518 + 1.481 * c_r / c_t * tcs_c - d_r / d_t * tcs_d)
            v_tcs = 5.52 / (
                16.518 + 1.481 * c_r / c_t * tcs_c - d_r / d_t * tcs_d
            )

        W_tcs = 25 * spow(xyY_tcs[-1], 1 / 3) - 17
        U_tcs = 13 * W_tcs * (u_tcs - u_r)
        V_tcs = 13 * W_tcs * (v_tcs - v_r)

        tcs_data.append(
            TCS_ColorimetryData(
                sd_tcs.name, XYZ_tcs, uv_tcs, np.array([U_tcs, V_tcs, W_tcs])
            )
        )

    return tuple(tcs_data)
示例#2
0
def XYZ_to_UVW(
        XYZ,
        illuminant=ILLUMINANTS['CIE 1931 2 Degree Standard Observer']['D65']):
    """
    Converts from *CIE XYZ* tristimulus values to *CIE 1964 U\\*V\\*W\\**
    colourspace.

    Parameters
    ----------
    XYZ : array_like
        *CIE XYZ* tristimulus values.
    illuminant : array_like, optional
        Reference *illuminant* *CIE xy* chromaticity coordinates or *CIE xyY*
        colourspace array.

    Returns
    -------
    ndarray
        *CIE 1964 U\\*V\\*W\\** colourspace array.

    Warning
    -------
    The input domain and output range of that definition are non standard!

    Notes
    -----

    +----------------+-----------------------+-----------------+
    | **Domain**     | **Scale - Reference** | **Scale - 1**   |
    +================+=======================+=================+
    | ``XYZ``        | [0, 1]                | [0, 1]          |
    +----------------+-----------------------+-----------------+
    | ``illuminant`` | [0, 1]                | [0, 1]          |
    +----------------+-----------------------+-----------------+

    +----------------+-----------------------+-----------------+
    | **Range**      | **Scale - Reference** | **Scale - 1**   |
    +================+=======================+=================+
    | ``UVW``        | ``U`` : [-100, 100]   | ``U`` : [-1, 1] |
    |                |                       |                 |
    |                | ``V`` : [-100, 100]   | ``V`` : [-1, 1] |
    |                |                       |                 |
    |                | ``W`` : [0, 100]      | ``W`` : [0, 1]  |
    +----------------+-----------------------+-----------------+

    References
    ----------
    :cite:`Wikipedia2008a`

    Examples
    --------
    >>> import numpy as np
    >>> XYZ = np.array([0.20654008, 0.12197225, 0.05136952]) * 100
    >>> XYZ_to_UVW(XYZ)  # doctest: +ELLIPSIS
    array([ 94.5503572...,  11.5553652...,  40.5475740...])
    """

    XYZ = to_domain_100(XYZ)

    xy = xyY_to_xy(illuminant)
    xyY = XYZ_to_xyY(XYZ, xy)
    _x, _y, Y = tsplit(xyY)

    u, v = tsplit(UCS_to_uv(XYZ_to_UCS(XYZ)))
    u_0, v_0 = tsplit(xy_to_UCS_uv(xy))

    W = 25 * spow(Y, 1 / 3) - 17
    U = 13 * W * (u - u_0)
    V = 13 * W * (v - v_0)

    UVW = tstack([U, V, W])

    return from_range_100(UVW)
示例#3
0
def colour_quality_scale(sd_test,
                         additional_data=False,
                         method='NIST CQS 9.0'):
    """
    Returns the *Colour Quality Scale* (CQS) of given spectral distribution
    using given method.

    Parameters
    ----------
    sd_test : SpectralDistribution
        Test spectral distribution.
    additional_data : bool, optional
        Whether to output additional data.
    method : unicode, optional
        **{'NIST CQS 9.0', 'NIST CQS 7.4'}**,
        Computation method.

    Returns
    -------
    numeric or ColourRendering_Specification_CQS
        Color quality scale.

    References
    ----------
    :cite:`Davis2010a`, :cite:`Ohno2008a`, :cite:`Ohno2013`

    Examples
    --------
    >>> from colour import SDS_ILLUMINANTS
    >>> sd = SDS_ILLUMINANTS['FL2']
    >>> colour_quality_scale(sd)  # doctest: +ELLIPSIS
    64.1117031...
    """

    method = method.lower()
    assert method.lower() in [
        m.lower() for m in COLOUR_QUALITY_SCALE_METHODS
    ], ('"{0}" method is invalid, must be one of {1}!'.format(
        method, COLOUR_QUALITY_SCALE_METHODS))

    cmfs = MSDS_CMFS_STANDARD_OBSERVER[
        'CIE 1931 2 Degree Standard Observer'].copy().trim(
            SPECTRAL_SHAPE_DEFAULT)

    shape = cmfs.shape
    sd_test = sd_test.copy().align(shape)
    vs_sds = {
        sd.name: sd.copy().align(shape)
        for sd in SDS_VS[method].values()
    }

    with domain_range_scale('1'):
        XYZ = sd_to_XYZ(sd_test, cmfs)

    uv = UCS_to_uv(XYZ_to_UCS(XYZ))
    CCT, _D_uv = uv_to_CCT_Ohno2013(uv)

    if CCT < 5000:
        sd_reference = sd_blackbody(CCT, shape)
    else:
        xy = CCT_to_xy_CIE_D(CCT)
        sd_reference = sd_CIE_illuminant_D_series(xy)
        sd_reference.align(shape)

    test_vs_colorimetry_data = vs_colorimetry_data(sd_test,
                                                   sd_reference,
                                                   vs_sds,
                                                   cmfs,
                                                   chromatic_adaptation=True)

    reference_vs_colorimetry_data = vs_colorimetry_data(
        sd_reference, sd_reference, vs_sds, cmfs)

    if method == 'nist cqs 9.0':
        CCT_f = 1
        scaling_f = 3.2
    else:
        XYZ_r = sd_to_XYZ(sd_reference, cmfs)
        XYZ_r /= XYZ_r[1]
        CCT_f = CCT_factor(reference_vs_colorimetry_data, XYZ_r)
        scaling_f = 3.104

    Q_as = colour_quality_scales(test_vs_colorimetry_data,
                                 reference_vs_colorimetry_data, scaling_f,
                                 CCT_f)

    D_E_RMS = delta_E_RMS(Q_as, 'D_E_ab')
    D_Ep_RMS = delta_E_RMS(Q_as, 'D_Ep_ab')

    Q_a = scale_conversion(D_Ep_RMS, CCT_f, scaling_f)

    if method == 'nist cqs 9.0':
        scaling_f = 2.93 * 1.0343
    else:
        scaling_f = 2.928

    Q_f = scale_conversion(D_E_RMS, CCT_f, scaling_f)

    G_t = gamut_area(
        [vs_CQS_data.Lab for vs_CQS_data in test_vs_colorimetry_data])
    G_r = gamut_area(
        [vs_CQS_data.Lab for vs_CQS_data in reference_vs_colorimetry_data])

    Q_g = G_t / GAMUT_AREA_D65 * 100

    if method == 'nist cqs 9.0':
        Q_d = Q_p = None
    else:
        p_delta_C = np.average([
            sample_data.D_C_ab if sample_data.D_C_ab > 0 else 0
            for sample_data in Q_as.values()
        ])
        Q_p = 100 - 3.6 * (D_Ep_RMS - p_delta_C)
        Q_d = G_t / G_r * CCT_f * 100

    if additional_data:
        return ColourRendering_Specification_CQS(
            sd_test.name, Q_a, Q_f, Q_p, Q_g, Q_d, Q_as,
            (test_vs_colorimetry_data, reference_vs_colorimetry_data))
    else:
        return Q_a
示例#4
0
def colour_rendering_index(
    sd_test: SpectralDistribution, additional_data: Boolean = False
) -> Union[Floating, ColourRendering_Specification_CRI]:
    """
    Return the *Colour Rendering Index* (CRI) :math:`Q_a` of given spectral
    distribution.

    Parameters
    ----------
    sd_test
        Test spectral distribution.
    additional_data
        Whether to output additional data.

    Returns
    -------
    :class:`numpy.floating` or \
:class:`colour.quality.ColourRendering_Specification_CRI`
        *Colour Rendering Index* (CRI).

    References
    ----------
    :cite:`Ohno2008a`

    Examples
    --------
    >>> from colour import SDS_ILLUMINANTS
    >>> sd = SDS_ILLUMINANTS['FL2']
    >>> colour_rendering_index(sd)  # doctest: +ELLIPSIS
    64.2337241...
    """

    # pylint: disable=E1102
    cmfs = reshape_msds(
        MSDS_CMFS["CIE 1931 2 Degree Standard Observer"],
        SPECTRAL_SHAPE_DEFAULT,
    )

    shape = cmfs.shape
    sd_test = reshape_sd(sd_test, shape)
    tcs_sds = {sd.name: reshape_sd(sd, shape) for sd in SDS_TCS.values()}

    with domain_range_scale("1"):
        XYZ = sd_to_XYZ(sd_test, cmfs)

    uv = UCS_to_uv(XYZ_to_UCS(XYZ))
    CCT, _D_uv = uv_to_CCT_Robertson1968(uv)

    if CCT < 5000:
        sd_reference = sd_blackbody(CCT, shape)
    else:
        xy = CCT_to_xy_CIE_D(CCT)
        sd_reference = sd_CIE_illuminant_D_series(xy)
        sd_reference.align(shape)

    test_tcs_colorimetry_data = tcs_colorimetry_data(
        sd_test, sd_reference, tcs_sds, cmfs, chromatic_adaptation=True
    )

    reference_tcs_colorimetry_data = tcs_colorimetry_data(
        sd_reference, sd_reference, tcs_sds, cmfs
    )

    Q_as = colour_rendering_indexes(
        test_tcs_colorimetry_data, reference_tcs_colorimetry_data
    )

    Q_a = as_float_scalar(
        np.average(
            [v.Q_a for k, v in Q_as.items() if k in (1, 2, 3, 4, 5, 6, 7, 8)]
        )
    )

    if additional_data:
        return ColourRendering_Specification_CRI(
            sd_test.name,
            Q_a,
            Q_as,
            (test_tcs_colorimetry_data, reference_tcs_colorimetry_data),
        )
    else:
        return Q_a
示例#5
0
def RGB_colourspaces_CIE_1960_UCS_chromaticity_diagram_plot(
        colourspaces=None,
        cmfs='CIE 1931 2 Degree Standard Observer',
        **kwargs):
    """
    Plots given *RGB* colourspaces in *CIE 1960 UCS Chromaticity Diagram*.

    Parameters
    ----------
    colourspaces : array_like, optional
        *RGB* colourspaces to plot.
    cmfs : unicode, optional
        Standard observer colour matching functions used for diagram bounds.
    \**kwargs : dict, optional
        Keywords arguments.

    Returns
    -------
    Figure
        Current figure or None.

    Examples
    --------
    >>> c = ['Rec. 709', 'ACEScg', 'S-Gamut']
    >>> RGB_colourspaces_CIE_1960_UCS_chromaticity_diagram_plot(
    ...     c)  # doctest: +SKIP
    """

    settings = {'figure_size': (DEFAULT_FIGURE_WIDTH, DEFAULT_FIGURE_WIDTH)}
    settings.update(kwargs)

    canvas(**settings)

    if colourspaces is None:
        colourspaces = ('Rec. 709', 'ACEScg', 'S-Gamut', 'Pointer Gamut')

    cmfs, name = get_cmfs(cmfs), cmfs

    settings = {
        'title':
        '{0} - {1} - CIE 1960 UCS Chromaticity Diagram'.format(
            ', '.join(colourspaces), name),
        'standalone':
        False
    }
    settings.update(kwargs)

    CIE_1960_UCS_chromaticity_diagram_plot(**settings)

    x_limit_min, x_limit_max = [-0.1], [0.7]
    y_limit_min, y_limit_max = [-0.2], [0.6]

    settings = {
        'colour_cycle_map': 'rainbow',
        'colour_cycle_count': len(colourspaces)
    }
    settings.update(kwargs)

    cycle = colour_cycle(**settings)

    for colourspace in colourspaces:
        if colourspace == 'Pointer Gamut':
            uv = UCS_to_uv(XYZ_to_UCS(xy_to_XYZ(POINTER_GAMUT_BOUNDARIES)))
            alpha_p, colour_p = 0.85, '0.95'
            pylab.plot(uv[..., 0],
                       uv[..., 1],
                       label='Pointer\'s Gamut',
                       color=colour_p,
                       alpha=alpha_p,
                       linewidth=2)
            pylab.plot((uv[-1][0], uv[0][0]), (uv[-1][1], uv[0][1]),
                       color=colour_p,
                       alpha=alpha_p,
                       linewidth=2)

            XYZ = Lab_to_XYZ(LCHab_to_Lab(POINTER_GAMUT_DATA),
                             POINTER_GAMUT_ILLUMINANT)
            uv = UCS_to_uv(XYZ_to_UCS(XYZ))
            pylab.scatter(uv[..., 0],
                          uv[..., 1],
                          alpha=alpha_p / 2,
                          color=colour_p,
                          marker='+')

        else:
            colourspace, name = get_RGB_colourspace(colourspace), colourspace

            r, g, b, _a = next(cycle)

            # RGB colourspaces such as *ACES2065-1* have primaries with
            # chromaticity coordinates set to 0 thus we prevent nan from being
            # yield by zero division in later colour transformations.
            primaries = np.where(colourspace.primaries == 0, EPSILON,
                                 colourspace.primaries)

            primaries = UCS_to_uv(XYZ_to_UCS(xy_to_XYZ(primaries)))
            whitepoint = UCS_to_uv(
                XYZ_to_UCS(xy_to_XYZ(colourspace.whitepoint)))

            pylab.plot((whitepoint[0], whitepoint[0]),
                       (whitepoint[1], whitepoint[1]),
                       color=(r, g, b),
                       label=colourspace.name,
                       linewidth=2)
            pylab.plot((whitepoint[0], whitepoint[0]),
                       (whitepoint[1], whitepoint[1]),
                       'o',
                       color=(r, g, b),
                       linewidth=2)
            pylab.plot((primaries[0, 0], primaries[1, 0]),
                       (primaries[0, 1], primaries[1, 1]),
                       'o-',
                       color=(r, g, b),
                       linewidth=2)
            pylab.plot((primaries[1, 0], primaries[2, 0]),
                       (primaries[1, 1], primaries[2, 1]),
                       'o-',
                       color=(r, g, b),
                       linewidth=2)
            pylab.plot((primaries[2, 0], primaries[0, 0]),
                       (primaries[2, 1], primaries[0, 1]),
                       'o-',
                       color=(r, g, b),
                       linewidth=2)

            x_limit_min.append(np.amin(primaries[..., 0]) - 0.1)
            y_limit_min.append(np.amin(primaries[..., 1]) - 0.1)
            x_limit_max.append(np.amax(primaries[..., 0]) + 0.1)
            y_limit_max.append(np.amax(primaries[..., 1]) + 0.1)

    settings.update({
        'legend':
        True,
        'legend_location':
        'upper right',
        'x_tighten':
        True,
        'y_tighten':
        True,
        'limits': (min(x_limit_min), max(x_limit_max), min(y_limit_min),
                   max(y_limit_max)),
        'standalone':
        True
    })
    settings.update(kwargs)

    boundaries(**settings)
    decorate(**settings)

    return display(**settings)
示例#6
0
def plot_chromaticity_diagram_colours(
        samples=256,
        diagram_opacity=1.0,
        diagram_clipping_path=None,
        cmfs='CIE 1931 2 Degree Standard Observer',
        method='CIE 1931',
        **kwargs):
    """
    Plots the *Chromaticity Diagram* colours according to given method.

    Parameters
    ----------
    samples : numeric, optional
        Samples count on one axis.
    diagram_opacity : numeric, optional
        Opacity of the *Chromaticity Diagram* colours.
    diagram_clipping_path : array_like, optional
        Path of points used to clip the *Chromaticity Diagram* colours.
    cmfs : unicode, optional
        Standard observer colour matching functions used for
        *Chromaticity Diagram* bounds.
    method : unicode, optional
        **{'CIE 1931', 'CIE 1960 UCS', 'CIE 1976 UCS'}**,
        *Chromaticity Diagram* method.

    Other Parameters
    ----------------
    \\**kwargs : dict, optional
        {:func:`colour.plotting.artist`, :func:`colour.plotting.render`},
        Please refer to the documentation of the previously listed definitions.

    Returns
    -------
    tuple
        Current figure and axes.

    Examples
    --------
    >>> plot_chromaticity_diagram_colours()  # doctest: +ELLIPSIS
    (<Figure size ... with 1 Axes>, \
<matplotlib.axes._subplots.AxesSubplot object at 0x...>)

    .. image:: ../_static/Plotting_Plot_Chromaticity_Diagram_Colours.png
        :align: center
        :alt: plot_chromaticity_diagram_colours
    """

    settings = {'uniform': True}
    settings.update(kwargs)

    _figure, axes = artist(**settings)

    method = method.upper()

    cmfs = first_item(filter_cmfs(cmfs).values())

    illuminant = COLOUR_STYLE_CONSTANTS.colour.colourspace.whitepoint

    ii, jj = np.meshgrid(np.linspace(0, 1, samples),
                         np.linspace(1, 0, samples))
    ij = tstack([ii, jj])

    # NOTE: Various values in the grid have potential to generate
    # zero-divisions, they could be avoided by perturbing the grid, e.g. adding
    # a small epsilon. It was decided instead to disable warnings.
    with suppress_warnings(python_warnings=True):
        if method == 'CIE 1931':
            XYZ = xy_to_XYZ(ij)
            spectral_locus = XYZ_to_xy(cmfs.values, illuminant)
        elif method == 'CIE 1960 UCS':
            XYZ = xy_to_XYZ(UCS_uv_to_xy(ij))
            spectral_locus = UCS_to_uv(XYZ_to_UCS(cmfs.values))
        elif method == 'CIE 1976 UCS':
            XYZ = xy_to_XYZ(Luv_uv_to_xy(ij))
            spectral_locus = Luv_to_uv(XYZ_to_Luv(cmfs.values, illuminant),
                                       illuminant)
        else:
            raise ValueError(
                'Invalid method: "{0}", must be one of '
                '{{\'CIE 1931\', \'CIE 1960 UCS\', \'CIE 1976 UCS\'}}'.format(
                    method))

    RGB = normalise_maximum(XYZ_to_plotting_colourspace(XYZ, illuminant),
                            axis=-1)

    polygon = Polygon(spectral_locus if diagram_clipping_path is None else
                      diagram_clipping_path,
                      facecolor='none',
                      edgecolor='none')
    axes.add_patch(polygon)
    # Preventing bounding box related issues as per
    # https://github.com/matplotlib/matplotlib/issues/10529
    image = axes.imshow(RGB,
                        interpolation='bilinear',
                        extent=(0, 1, 0, 1),
                        clip_path=None,
                        alpha=diagram_opacity)
    image.set_clip_path(polygon)

    settings = {'axes': axes}
    settings.update(kwargs)

    return render(**kwargs)
示例#7
0
def CIE_1960_UCS_chromaticity_diagram_colours_plot(
        surface=1.25,
        spacing=0.00075,
        cmfs='CIE 1931 2 Degree Standard Observer',
        **kwargs):
    """
    Plots the *CIE 1960 UCS Chromaticity Diagram* colours.

    Parameters
    ----------
    surface : numeric, optional
        Generated markers surface.
    spacing : numeric, optional
        Spacing between markers.
    cmfs : unicode, optional
        Standard observer colour matching functions used for diagram bounds.
    \*\*kwargs : \*\*
        Keywords arguments.

    Returns
    -------
    bool
        Definition success.

    Examples
    --------
    >>> CIE_1960_UCS_chromaticity_diagram_colours_plot()  # doctest: +SKIP
    True
    """

    cmfs, name = get_cmfs(cmfs), cmfs

    illuminant = ILLUMINANTS.get('CIE 1931 2 Degree Standard Observer').get(
        'E')

    UVWs = [XYZ_to_UCS(value) for key, value in cmfs]

    u, v = tuple(zip(*([UCS_to_uv(x) for x in UVWs])))

    path = matplotlib.path.Path(tuple(zip(u, v)))
    x_dot, y_dot, colours = [], [], []
    for i in np.arange(0, 1, spacing):
        for j in np.arange(0, 1, spacing):
            if path.contains_path(matplotlib.path.Path([[i, j], [i, j]])):
                x_dot.append(i)
                y_dot.append(j)

                XYZ = xy_to_XYZ(UCS_uv_to_xy((i, j)))
                RGB = normalise(XYZ_to_sRGB(XYZ, illuminant))

                colours.append(RGB)

    pylab.scatter(x_dot, y_dot, color=colours, s=surface)

    settings = {
        'no_ticks': True,
        'bounding_box': [0, 1, 0, 1],
        'bbox_inches': 'tight',
        'pad_inches': 0
    }
    settings.update(kwargs)

    bounding_box(**settings)
    aspect(**settings)

    return display(**settings)
示例#8
0
文件: cri.py 项目: crowsonkb/colour
def colour_rendering_index(spd_test, additional_data=False):
    """
    Returns the *Colour Rendering Index* (CRI) :math:`Q_a` of given spectral
    power distribution.

    Parameters
    ----------
    spd_test : SpectralPowerDistribution
        Test spectral power distribution.
    additional_data : bool, optional
        Output additional data.

    Returns
    -------
    numeric or CRI_Specification
        *Colour Rendering Index* (CRI).

    Examples
    --------
    >>> from colour import ILLUMINANTS_RELATIVE_SPDS
    >>> spd = ILLUMINANTS_RELATIVE_SPDS['F2']
    >>> colour_rendering_index(spd)  # doctest: +ELLIPSIS
    64.1515202...
    """

    cmfs = STANDARD_OBSERVERS_CMFS[
        'CIE 1931 2 Degree Standard Observer'].clone().trim_wavelengths(
            ASTME30815_PRACTISE_SHAPE)

    shape = cmfs.shape
    spd_test = spd_test.clone().align(shape)
    tcs_spds = {
        spd.name: spd.clone().align(shape)
        for spd in TCS_SPDS.values()
    }

    XYZ = spectral_to_XYZ(spd_test, cmfs)
    uv = UCS_to_uv(XYZ_to_UCS(XYZ))
    CCT, _D_uv = uv_to_CCT_Robertson1968(uv)

    if CCT < 5000:
        spd_reference = blackbody_spd(CCT, shape)
    else:
        xy = CCT_to_xy_CIE_D(CCT)
        spd_reference = D_illuminant_relative_spd(xy)
        spd_reference.align(shape)

    test_tcs_colorimetry_data = tcs_colorimetry_data(spd_test,
                                                     spd_reference,
                                                     tcs_spds,
                                                     cmfs,
                                                     chromatic_adaptation=True)

    reference_tcs_colorimetry_data = tcs_colorimetry_data(
        spd_reference, spd_reference, tcs_spds, cmfs)

    Q_as = colour_rendering_indexes(test_tcs_colorimetry_data,
                                    reference_tcs_colorimetry_data)

    Q_a = np.average(
        [v.Q_a for k, v in Q_as.items() if k in (1, 2, 3, 4, 5, 6, 7, 8)])

    if additional_data:
        return CRI_Specification(
            spd_test.name, Q_a, Q_as,
            (test_tcs_colorimetry_data, reference_tcs_colorimetry_data))
    else:
        return Q_a
示例#9
0
def XYZ_to_colourspace_model(XYZ, illuminant, model):
    """
    Converts from *CIE XYZ* tristimulus values to given colourspace model.

    Parameters
    ----------
    XYZ : array_like
        *CIE XYZ* tristimulus values.
    illuminant : array_like
        *CIE XYZ* tristimulus values *illuminant* *xy* chromaticity
        coordinates.
    model : unicode
        **{'CIE XYZ', 'CIE xyY', 'CIE xy', 'CIE Lab', 'CIE LCHab', 'CIE Luv',
        'CIE Luv uv', 'CIE LCHuv', 'CIE UCS', 'CIE UCS uv', 'CIE UVW', 'IPT',
        'Hunter Lab', 'Hunter Rdab'}**,
        Colourspace model to convert the *CIE XYZ* tristimulus values to.

    Returns
    -------
    ndarray
        Colourspace model values.

    Examples
    --------
    >>> import numpy as np
    >>> XYZ = np.array([0.07049534, 0.10080000, 0.09558313])
    >>> W = np.array([0.34570, 0.35850])
    >>> XYZ_to_colourspace_model(  # doctest: +ELLIPSIS
    ... XYZ, W, 'CIE XYZ')
    array([ 0.0704953...,  0.1008    ,  0.0955831...])
    >>> XYZ_to_colourspace_model(  # doctest: +ELLIPSIS
    ... XYZ, W, 'CIE xyY')
    array([ 0.2641477...,  0.3777000...,  0.1008    ])
    >>> XYZ_to_colourspace_model(  # doctest: +ELLIPSIS
    ... XYZ, W, 'CIE xy')
    array([ 0.2641477...,  0.3777000...])
    >>> XYZ_to_colourspace_model(  # doctest: +ELLIPSIS
    ... XYZ, W, 'CIE Lab')
    array([ 37.9856291..., -23.6290768...,  -4.4174661...])
    >>> XYZ_to_colourspace_model(  # doctest: +ELLIPSIS
    ... XYZ, W, 'CIE LCHab')
    array([  37.9856291...,   24.0384542...,  190.5892337...])
    >>> XYZ_to_colourspace_model(  # doctest: +ELLIPSIS
    ... XYZ, W, 'CIE Luv')
    array([ 37.9856291..., -28.8021959...,  -1.3580070...])
    >>> XYZ_to_colourspace_model(  # doctest: +ELLIPSIS
    ... XYZ, W, 'CIE Luv uv')
    array([ 0.1508531...,  0.4853297...])
    >>> XYZ_to_colourspace_model(  # doctest: +ELLIPSIS
    ... XYZ, W, 'CIE LCHuv')
    array([  37.9856291...,   28.8341927...,  182.6994640...])
    >>> XYZ_to_colourspace_model(  # doctest: +ELLIPSIS
    ... XYZ, W, 'CIE UCS uv')
    array([ 0.1508531...,  0.32355314...])
    >>> XYZ_to_colourspace_model(  # doctest: +ELLIPSIS
    ... XYZ, W, 'CIE UVW')
    array([-28.0579733...,  -0.8819449...,  37.0041149...])
    >>> XYZ_to_colourspace_model(  # doctest: +ELLIPSIS
    ... XYZ, W, 'IPT')
    array([ 0.3657112..., -0.1111479...,  0.0159474...])
    >>> XYZ_to_colourspace_model(  # doctest: +ELLIPSIS
    ... XYZ, W, 'Hunter Lab')
    array([ 31.7490157..., -15.1351736...,  -2.7709606...])
    >>> XYZ_to_colourspace_model(  # doctest: +ELLIPSIS
    ... XYZ, W, 'Hunter Rdab')
    array([ 10.08..., -18.7019271...,  -3.4239649...])
    """

    values = None
    if model == 'CIE XYZ':
        values = XYZ
    elif model == 'CIE xyY':
        values = XYZ_to_xyY(XYZ, illuminant)
    elif model == 'CIE xy':
        values = XYZ_to_xy(XYZ, illuminant)
    elif model == 'CIE Lab':
        values = XYZ_to_Lab(XYZ, illuminant)
    elif model == 'CIE LCHab':
        values = Lab_to_LCHab(XYZ_to_Lab(XYZ, illuminant))
    elif model == 'CIE Luv':
        values = XYZ_to_Luv(XYZ, illuminant)
    elif model == 'CIE Luv uv':
        values = Luv_to_uv(XYZ_to_Luv(XYZ, illuminant), illuminant)
    elif model == 'CIE LCHuv':
        values = Luv_to_LCHuv(XYZ_to_Luv(XYZ, illuminant))
    elif model == 'CIE UCS':
        values = XYZ_to_UCS(XYZ)
    elif model == 'CIE UCS uv':
        values = UCS_to_uv(XYZ_to_UCS(XYZ))
    elif model == 'CIE UVW':
        values = XYZ_to_UVW(XYZ * 100, illuminant)
    elif model == 'IPT':
        values = XYZ_to_IPT(XYZ)
    elif model == 'Hunter Lab':
        values = XYZ_to_Hunter_Lab(XYZ * 100, xy_to_XYZ(illuminant) * 100)
    elif model == 'Hunter Rdab':
        values = XYZ_to_Hunter_Rdab(XYZ * 100, xy_to_XYZ(illuminant) * 100)

    if values is None:
        raise ValueError(
            '"{0}" not found in colourspace models: "{1}".'.format(
                model, ', '.join(COLOURSPACE_MODELS)))

    return values
示例#10
0
def colour_quality_scale(
    sd_test: SpectralDistribution,
    additional_data: Boolean = False,
    method: Union[Literal["NIST CQS 7.4", "NIST CQS 9.0"],
                  str] = "NIST CQS 9.0",
) -> Union[Floating, ColourRendering_Specification_CQS]:
    """
    Return the *Colour Quality Scale* (CQS) of given spectral distribution
    using given method.

    Parameters
    ----------
    sd_test
        Test spectral distribution.
    additional_data
        Whether to output additional data.
    method
        Computation method.

    Returns
    -------
    :class:`numpy.floating` or \
:class:`colour.quality.ColourRendering_Specification_CQS`
        *Colour Quality Scale* (CQS).

    References
    ----------
    :cite:`Davis2010a`, :cite:`Ohno2008a`, :cite:`Ohno2013`

    Examples
    --------
    >>> from colour import SDS_ILLUMINANTS
    >>> sd = SDS_ILLUMINANTS['FL2']
    >>> colour_quality_scale(sd)  # doctest: +ELLIPSIS
    64.1117031...
    """

    method = validate_method(method, COLOUR_QUALITY_SCALE_METHODS)

    # pylint: disable=E1102
    cmfs = reshape_msds(
        MSDS_CMFS["CIE 1931 2 Degree Standard Observer"],
        SPECTRAL_SHAPE_DEFAULT,
    )

    shape = cmfs.shape
    sd_test = reshape_sd(sd_test, shape)
    vs_sds = {sd.name: reshape_sd(sd, shape) for sd in SDS_VS[method].values()}

    with domain_range_scale("1"):
        XYZ = sd_to_XYZ(sd_test, cmfs)

    uv = UCS_to_uv(XYZ_to_UCS(XYZ))
    CCT, _D_uv = uv_to_CCT_Ohno2013(uv)

    if CCT < 5000:
        sd_reference = sd_blackbody(CCT, shape)
    else:
        xy = CCT_to_xy_CIE_D(CCT)
        sd_reference = sd_CIE_illuminant_D_series(xy)
        sd_reference.align(shape)

    test_vs_colorimetry_data = vs_colorimetry_data(sd_test,
                                                   sd_reference,
                                                   vs_sds,
                                                   cmfs,
                                                   chromatic_adaptation=True)

    reference_vs_colorimetry_data = vs_colorimetry_data(
        sd_reference, sd_reference, vs_sds, cmfs)

    CCT_f: Floating
    if method == "nist cqs 9.0":
        CCT_f = 1
        scaling_f = 3.2
    else:
        XYZ_r = sd_to_XYZ(sd_reference, cmfs)
        XYZ_r /= XYZ_r[1]
        CCT_f = CCT_factor(reference_vs_colorimetry_data, XYZ_r)
        scaling_f = 3.104

    Q_as = colour_quality_scales(
        test_vs_colorimetry_data,
        reference_vs_colorimetry_data,
        scaling_f,
        CCT_f,
    )

    D_E_RMS = delta_E_RMS(Q_as, "D_E_ab")
    D_Ep_RMS = delta_E_RMS(Q_as, "D_Ep_ab")

    Q_a = scale_conversion(D_Ep_RMS, CCT_f, scaling_f)

    if method == "nist cqs 9.0":
        scaling_f = 2.93 * 1.0343
    else:
        scaling_f = 2.928

    Q_f = scale_conversion(D_E_RMS, CCT_f, scaling_f)

    G_t = gamut_area(
        [vs_CQS_data.Lab for vs_CQS_data in test_vs_colorimetry_data])
    G_r = gamut_area(
        [vs_CQS_data.Lab for vs_CQS_data in reference_vs_colorimetry_data])

    Q_g = G_t / GAMUT_AREA_D65 * 100

    if method == "nist cqs 9.0":
        Q_p = Q_d = None
    else:
        p_delta_C = np.average([
            sample_data.D_C_ab if sample_data.D_C_ab > 0 else 0
            for sample_data in Q_as.values()
        ])
        Q_p = as_float_scalar(100 - 3.6 * (D_Ep_RMS - p_delta_C))
        Q_d = as_float_scalar(G_t / G_r * CCT_f * 100)

    if additional_data:
        return ColourRendering_Specification_CQS(
            sd_test.name,
            Q_a,
            Q_f,
            Q_p,
            Q_g,
            Q_d,
            Q_as,
            (test_vs_colorimetry_data, reference_vs_colorimetry_data),
        )
    else:
        return Q_a
示例#11
0
def planckian_locus_chromaticity_diagram_plot_CIE1960UCS(
        illuminants=None,
        chromaticity_diagram_callable_CIE1960UCS=(
            chromaticity_diagram_plot_CIE1960UCS),
        **kwargs):
    """
    Plots the planckian locus and given illuminants in
    *CIE 1960 UCS Chromaticity Diagram*.

    Parameters
    ----------
    illuminants : array_like, optional
        Factory illuminants to plot.
    chromaticity_diagram_callable_CIE1960UCS : callable, optional
        Callable responsible for drawing the
        *CIE 1960 UCS Chromaticity Diagram*.

    Other Parameters
    ----------------
    \**kwargs : dict, optional
        {:func:`colour.plotting.render`},
        Please refer to the documentation of the previously listed definition.
    show_diagram_colours : bool, optional
        {:func:`colour.plotting.chromaticity_diagram_plot_CIE1960UCS`},
        Whether to display the chromaticity diagram background colours.
    use_cached_diagram_colours : bool, optional
        {:func:`colour.plotting.chromaticity_diagram_plot_CIE1960UCS`},
        Whether to used the cached chromaticity diagram background colours
        image.

    Returns
    -------
    Figure
        Current figure or None.

    Raises
    ------
    KeyError
        If one of the given illuminant is not found in the factory illuminants.

    Examples
    --------
    >>> planckian_locus_chromaticity_diagram_plot_CIE1960UCS(['A', 'C', 'E'])
    ... # doctest: +SKIP
    """

    if illuminants is None:
        illuminants = ('A', 'C', 'E')

    cmfs = CMFS['CIE 1931 2 Degree Standard Observer']

    settings = {
        'title': ('{0} Illuminants - Planckian Locus\n'
                  'CIE 1960 UCS Chromaticity Diagram - '
                  'CIE 1931 2 Degree Standard Observer').format(
                      ', '.join(illuminants)) if illuminants else
        ('Planckian Locus\nCIE 1960 UCS Chromaticity Diagram - '
         'CIE 1931 2 Degree Standard Observer'),
        'standalone':
        False
    }
    settings.update(kwargs)

    chromaticity_diagram_callable_CIE1960UCS(**settings)

    start, end = 1667, 100000
    uv = np.array(
        [CCT_to_uv(x, 'Robertson 1968', D_uv=0)
         for x in np.arange(start, end + 250, 250)])  # yapf: disable

    pylab.plot(uv[..., 0], uv[..., 1], color='black', linewidth=1)

    for i in (1667, 2000, 2500, 3000, 4000, 6000, 10000):
        u0, v0 = CCT_to_uv(i, 'Robertson 1968', D_uv=-0.05)
        u1, v1 = CCT_to_uv(i, 'Robertson 1968', D_uv=0.05)
        pylab.plot((u0, u1), (v0, v1), color='black', linewidth=1)
        pylab.annotate('{0}K'.format(i),
                       xy=(u0, v0),
                       xytext=(0, -10),
                       color='black',
                       textcoords='offset points',
                       size='x-small')

    for illuminant in illuminants:
        xy = ILLUMINANTS.get(cmfs.name).get(illuminant)
        if xy is None:
            raise KeyError(
                ('Illuminant "{0}" not found in factory illuminants: '
                 '"{1}".').format(illuminant,
                                  sorted(ILLUMINANTS[cmfs.name].keys())))

        uv = UCS_to_uv(XYZ_to_UCS(xy_to_XYZ(xy)))

        pylab.plot(uv[0], uv[1], 'o', color='white', linewidth=1)

        pylab.annotate(illuminant,
                       xy=(uv[0], uv[1]),
                       xytext=(-50, 30),
                       color='black',
                       textcoords='offset points',
                       arrowprops=dict(arrowstyle='->',
                                       connectionstyle='arc3, rad=-0.2'))

    settings.update({
        'x_tighten': True,
        'y_tighten': True,
        'limits': (-0.1, 0.7, -0.2, 0.6),
        'standalone': True
    })
    settings.update(kwargs)

    return render(**settings)
示例#12
0
文件: cct.py 项目: Munins-eye/colour
def CCT_to_uv_Ohno2013(
        CCT,
        D_uv=0,
        cmfs=STANDARD_OBSERVERS_CMFS['CIE 1931 2 Degree Standard Observer']):
    """
    Returns the *CIE UCS* colourspace *uv* chromaticity coordinates from given
    correlated colour temperature :math:`T_{cp}`, :math:`\\Delta_{uv}` and
    colour matching functions using *Ohno (2013)* method.

    Parameters
    ----------
    CCT : numeric
        Correlated colour temperature :math:`T_{cp}`.
    D_uv : numeric, optional
        :math:`\\Delta_{uv}`.
    cmfs : XYZ_ColourMatchingFunctions, optional
        Standard observer colour matching functions.

    Returns
    -------
    ndarray
        *CIE UCS* colourspace *uv* chromaticity coordinates.

    References
    ----------
    :cite:`Ohno2014a`

    Examples
    --------
    >>> from colour import STANDARD_OBSERVERS_CMFS
    >>> cmfs = STANDARD_OBSERVERS_CMFS['CIE 1931 2 Degree Standard Observer']
    >>> CCT = 6507.4342201047066
    >>> D_uv = 0.003223690901513
    >>> CCT_to_uv_Ohno2013(CCT, D_uv, cmfs)  # doctest: +ELLIPSIS
    array([ 0.1977999...,  0.3122004...])
    """

    cmfs = cmfs.copy().trim(ASTME30815_PRACTISE_SHAPE)

    shape = cmfs.shape

    delta = 0.01

    sd = sd_blackbody(CCT, shape)
    XYZ = sd_to_XYZ(sd, cmfs)
    XYZ *= 1 / np.max(XYZ)
    UVW = XYZ_to_UCS(XYZ)
    u0, v0 = UCS_to_uv(UVW)

    if D_uv == 0:
        return np.array([u0, v0])
    else:
        sd = sd_blackbody(CCT + delta, shape)
        XYZ = sd_to_XYZ(sd, cmfs)
        XYZ *= 1 / np.max(XYZ)
        UVW = XYZ_to_UCS(XYZ)
        u1, v1 = UCS_to_uv(UVW)

        du = u0 - u1
        dv = v0 - v1

        u = u0 - D_uv * (dv / np.hypot(du, dv))
        v = v0 + D_uv * (du / np.hypot(du, dv))

        return np.array([u, v])
示例#13
0
def plot_spectral_locus(cmfs='CIE 1931 2 Degree Standard Observer',
                        spectral_locus_colours=None,
                        spectral_locus_labels=None,
                        method='CIE 1931',
                        **kwargs):
    """
    Plots the *Spectral Locus* according to given method.

    Parameters
    ----------
    cmfs : unicode, optional
        Standard observer colour matching functions defining the
        *Spectral Locus*.
    spectral_locus_colours : array_like or unicode, optional
        *Spectral Locus* colours, if ``spectral_locus_colours`` is set to
        *RGB*, the colours will be computed according to the corresponding
        chromaticity coordinates.
    spectral_locus_labels : array_like, optional
        Array of wavelength labels used to customise which labels will be drawn
        around the spectral locus. Passing an empty array will result in no
        wavelength labels being drawn.
    method : unicode, optional
        **{'CIE 1931', 'CIE 1960 UCS', 'CIE 1976 UCS'}**,
        *Chromaticity Diagram* method.

    Other Parameters
    ----------------
    \\**kwargs : dict, optional
        {:func:`colour.plotting.artist`, :func:`colour.plotting.render`},
        Please refer to the documentation of the previously listed definitions.

    Returns
    -------
    tuple
        Current figure and axes.

    Examples
    --------
    >>> plot_spectral_locus(spectral_locus_colours='RGB')  # doctest: +ELLIPSIS
    (<Figure size ... with 1 Axes>, \
<matplotlib.axes._subplots.AxesSubplot object at 0x...>)

    .. image:: ../_static/Plotting_Plot_Spectral_Locus.png
        :align: center
        :alt: plot_spectral_locus
    """

    if spectral_locus_colours is None:
        spectral_locus_colours = COLOUR_STYLE_CONSTANTS.colour.dark

    settings = {'uniform': True}
    settings.update(kwargs)

    _figure, axes = artist(**settings)

    method = method.upper()

    cmfs = first_item(filter_cmfs(cmfs).values())

    illuminant = COLOUR_STYLE_CONSTANTS.colour.colourspace.whitepoint

    wavelengths = cmfs.wavelengths
    equal_energy = np.array([1 / 3] * 2)

    if method == 'CIE 1931':
        ij = XYZ_to_xy(cmfs.values, illuminant)
        labels = ((390, 460, 470, 480, 490, 500, 510, 520, 540, 560, 580, 600,
                   620, 700)
                  if spectral_locus_labels is None else spectral_locus_labels)
    elif method == 'CIE 1960 UCS':
        ij = UCS_to_uv(XYZ_to_UCS(cmfs.values))
        labels = ((420, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540,
                   550, 560, 570, 580, 590, 600, 610, 620, 630, 645, 680)
                  if spectral_locus_labels is None else spectral_locus_labels)
    elif method == 'CIE 1976 UCS':
        ij = Luv_to_uv(XYZ_to_Luv(cmfs.values, illuminant), illuminant)
        labels = ((420, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540,
                   550, 560, 570, 580, 590, 600, 610, 620, 630, 645, 680)
                  if spectral_locus_labels is None else spectral_locus_labels)
    else:
        raise ValueError(
            'Invalid method: "{0}", must be one of '
            '{{\'CIE 1931\', \'CIE 1960 UCS\', \'CIE 1976 UCS\'}}'.format(
                method))

    pl_ij = tstack([
        np.linspace(ij[0][0], ij[-1][0], 20),
        np.linspace(ij[0][1], ij[-1][1], 20)
    ]).reshape(-1, 1, 2)
    sl_ij = np.copy(ij).reshape(-1, 1, 2)

    if spectral_locus_colours.upper() == 'RGB':
        spectral_locus_colours = normalise_maximum(XYZ_to_plotting_colourspace(
            cmfs.values),
                                                   axis=-1)

        if method == 'CIE 1931':
            XYZ = xy_to_XYZ(pl_ij)
        elif method == 'CIE 1960 UCS':
            XYZ = xy_to_XYZ(UCS_uv_to_xy(pl_ij))
        elif method == 'CIE 1976 UCS':
            XYZ = xy_to_XYZ(Luv_uv_to_xy(pl_ij))
        purple_line_colours = normalise_maximum(XYZ_to_plotting_colourspace(
            XYZ.reshape(-1, 3)),
                                                axis=-1)
    else:
        purple_line_colours = spectral_locus_colours

    for slp_ij, slp_colours in ((pl_ij, purple_line_colours),
                                (sl_ij, spectral_locus_colours)):
        line_collection = LineCollection(np.concatenate(
            [slp_ij[:-1], slp_ij[1:]], axis=1),
                                         colors=slp_colours)
        axes.add_collection(line_collection)

    wl_ij = dict(tuple(zip(wavelengths, ij)))
    for label in labels:
        i, j = wl_ij[label]

        index = bisect.bisect(wavelengths, label)
        left = wavelengths[index - 1] if index >= 0 else wavelengths[index]
        right = (wavelengths[index]
                 if index < len(wavelengths) else wavelengths[-1])

        dx = wl_ij[right][0] - wl_ij[left][0]
        dy = wl_ij[right][1] - wl_ij[left][1]

        ij = np.array([i, j])
        direction = np.array([-dy, dx])

        normal = (np.array([
            -dy, dx
        ]) if np.dot(normalise_vector(ij - equal_energy),
                     normalise_vector(direction)) > 0 else np.array([dy, -dx]))
        normal = normalise_vector(normal) / 30

        label_colour = (spectral_locus_colours
                        if is_string(spectral_locus_colours) else
                        spectral_locus_colours[index])
        axes.plot((i, i + normal[0] * 0.75), (j, j + normal[1] * 0.75),
                  color=label_colour)

        axes.plot(i, j, 'o', color=label_colour)

        axes.text(i + normal[0],
                  j + normal[1],
                  label,
                  clip_on=True,
                  ha='left' if normal[0] >= 0 else 'right',
                  va='center',
                  fontdict={'size': 'small'})

    settings = {'axes': axes}
    settings.update(kwargs)

    return render(**kwargs)
示例#14
0
文件: cct.py 项目: yeekzhang/colour
def CCT_to_uv_Ohno2013(
        CCT,
        D_uv=0,
        cmfs=STANDARD_OBSERVERS_CMFS['CIE 1931 2 Degree Standard Observer']):
    """
    Returns the *CIE UCS* colourspace *uv* chromaticity coordinates from given
    correlated colour temperature :math:`T_{cp}`, :math:`\Delta_{uv}` and
    colour matching functions using *Ohno (2013)* method.

    Parameters
    ----------
    CCT : numeric
        Correlated colour temperature :math:`T_{cp}`.
    D_uv : numeric, optional
        :math:`\Delta_{uv}`.
    cmfs : XYZ_ColourMatchingFunctions, optional
        Standard observer colour matching functions.

    Returns
    -------
    ndarray
        *CIE UCS* colourspace *uv* chromaticity coordinates.

    References
    ----------
    .. [4]  Ohno, Y. (2014). Practical Use and Calculation of CCT and Duv.
            LEUKOS, 10(1), 47–55. doi:10.1080/15502724.2014.839020

    Examples
    --------
    >>> from colour import STANDARD_OBSERVERS_CMFS
    >>> cmfs = STANDARD_OBSERVERS_CMFS['CIE 1931 2 Degree Standard Observer']
    >>> CCT = 6507.4342201047066
    >>> D_uv = 0.003223690901513
    >>> CCT_to_uv_Ohno2013(CCT, D_uv, cmfs)  # doctest: +ELLIPSIS
    array([ 0.1977999...,  0.3122004...])
    """

    cmfs = cmfs.clone().trim_wavelengths(ASTME30815_PRACTISE_SHAPE)

    shape = cmfs.shape

    delta = 0.01

    spd = blackbody_spd(CCT, shape)
    XYZ = spectral_to_XYZ(spd, cmfs)
    XYZ *= 1 / np.max(XYZ)
    UVW = XYZ_to_UCS(XYZ)
    u0, v0 = UCS_to_uv(UVW)

    if D_uv == 0:
        return np.array([u0, v0])
    else:
        spd = blackbody_spd(CCT + delta, shape)
        XYZ = spectral_to_XYZ(spd, cmfs)
        XYZ *= 1 / np.max(XYZ)
        UVW = XYZ_to_UCS(XYZ)
        u1, v1 = UCS_to_uv(UVW)

        du = u0 - u1
        dv = v0 - v1

        u = u0 - D_uv * (dv / np.hypot(du, dv))
        v = v0 + D_uv * (du / np.hypot(du, dv))

        return np.array([u, v])
示例#15
0
def CIE_1960_UCS_chromaticity_diagram_plot(
        cmfs='CIE 1931 2 Degree Standard Observer', **kwargs):
    """
    Plots the *CIE 1960 UCS Chromaticity Diagram*.

    Parameters
    ----------
    cmfs : unicode, optional
        Standard observer colour matching functions used for diagram bounds.
    \*\*kwargs : \*\*
        Keywords arguments.

    Returns
    -------
    bool
        Definition success.

    Examples
    --------
    >>> CIE_1960_UCS_chromaticity_diagram_plot()  # doctest: +SKIP
    True
    """

    cmfs, name = get_cmfs(cmfs), cmfs

    image = matplotlib.image.imread(
        os.path.join(
            PLOTTING_RESOURCES_DIRECTORY,
            'CIE_1960_UCS_Chromaticity_Diagram_{0}_Small.png'.format(
                cmfs.name.replace(' ', '_'))))
    pylab.imshow(image, interpolation='nearest', extent=(0, 1, 0, 1))

    labels = [
        420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550,
        560, 570, 580, 590, 600, 610, 620, 630, 640, 680
    ]

    wavelengths = cmfs.wavelengths
    equal_energy = np.array([1 / 3] * 2)

    UVWs = [XYZ_to_UCS(value) for key, value in cmfs]

    u, v = tuple(zip(*([UCS_to_uv(x) for x in UVWs])))

    wavelengths_chromaticity_coordinates = dict(
        tuple(zip(wavelengths, tuple(zip(u, v)))))

    pylab.plot(u, v, color='black', linewidth=2)
    pylab.plot((u[-1], u[0]), (v[-1], v[0]), color='black', linewidth=2)

    for label in labels:
        u, v = wavelengths_chromaticity_coordinates.get(label)
        pylab.plot(u, v, 'o', color='black', linewidth=2)

        index = bisect.bisect(wavelengths, label)
        left = wavelengths[index - 1] if index >= 0 else wavelengths[index]
        right = (wavelengths[index]
                 if index < len(wavelengths) else wavelengths[-1])

        dx = (wavelengths_chromaticity_coordinates.get(right)[0] -
              wavelengths_chromaticity_coordinates.get(left)[0])
        dy = (wavelengths_chromaticity_coordinates.get(right)[1] -
              wavelengths_chromaticity_coordinates.get(left)[1])

        norme = lambda x: x / np.linalg.norm(x)

        uv = np.array([u, v])
        direction = np.array((-dy, dx))

        normal = (np.array(
            (-dy,
             dx)) if np.dot(norme(uv - equal_energy), norme(direction)) > 0
                  else np.array((dy, -dx)))
        normal = norme(normal)
        normal /= 25

        pylab.plot([u, u + normal[0] * 0.75], [v, v + normal[1] * 0.75],
                   color='black',
                   linewidth=1.5)
        pylab.text(u + normal[0],
                   v + normal[1],
                   label,
                   clip_on=True,
                   ha='left' if normal[0] >= 0 else 'right',
                   va='center',
                   fontdict={'size': 'small'})

    settings = {
        'title': 'CIE 1960 UCS Chromaticity Diagram - {0}'.format(name),
        'x_label': 'CIE u',
        'y_label': 'CIE v',
        'x_ticker': True,
        'y_ticker': True,
        'grid': True,
        'bounding_box': [-0.075, 0.675, -0.15, 0.6],
        'bbox_inches': 'tight',
        'pad_inches': 0
    }
    settings.update(kwargs)

    bounding_box(**settings)
    aspect(**settings)

    return display(**settings)
示例#16
0
文件: cri.py 项目: crowsonkb/colour
def tcs_colorimetry_data(spd_t,
                         spd_r,
                         spds_tcs,
                         cmfs,
                         chromatic_adaptation=False):
    """
    Returns the *test colour samples* colorimetry data.

    Parameters
    ----------
    spd_t : SpectralPowerDistribution
        Test spectral power distribution.
    spd_r : SpectralPowerDistribution
        Reference spectral power distribution.
    spds_tcs : dict
        *Test colour samples* spectral power distributions.
    cmfs : XYZ_ColourMatchingFunctions
        Standard observer colour matching functions.
    chromatic_adaptation : bool, optional
        Perform chromatic adaptation.

    Returns
    -------
    list
        *Test colour samples* colorimetry data.
    """

    XYZ_t = spectral_to_XYZ(spd_t, cmfs)
    uv_t = UCS_to_uv(XYZ_to_UCS(XYZ_t))
    u_t, v_t = uv_t[0], uv_t[1]

    XYZ_r = spectral_to_XYZ(spd_r, cmfs)
    uv_r = UCS_to_uv(XYZ_to_UCS(XYZ_r))
    u_r, v_r = uv_r[0], uv_r[1]

    tcs_data = []
    for _key, value in sorted(TCS_INDEXES_TO_NAMES.items()):
        spd_tcs = spds_tcs[value]
        XYZ_tcs = spectral_to_XYZ(spd_tcs, cmfs, spd_t)
        xyY_tcs = XYZ_to_xyY(XYZ_tcs)
        uv_tcs = UCS_to_uv(XYZ_to_UCS(XYZ_tcs))
        u_tcs, v_tcs = uv_tcs[0], uv_tcs[1]

        if chromatic_adaptation:

            def c(x, y):
                """
                Computes the :math:`c` term.
                """

                return (4 - x - 10 * y) / y

            def d(x, y):
                """
                Computes the :math:`d` term.
                """

                return (1.708 * y + 0.404 - 1.481 * x) / y

            c_t, d_t = c(u_t, v_t), d(u_t, v_t)
            c_r, d_r = c(u_r, v_r), d(u_r, v_r)
            tcs_c, tcs_d = c(u_tcs, v_tcs), d(u_tcs, v_tcs)
            u_tcs = (
                (10.872 + 0.404 * c_r / c_t * tcs_c - 4 * d_r / d_t * tcs_d) /
                (16.518 + 1.481 * c_r / c_t * tcs_c - d_r / d_t * tcs_d))
            v_tcs = (5.52 /
                     (16.518 + 1.481 * c_r / c_t * tcs_c - d_r / d_t * tcs_d))

        W_tcs = 25 * xyY_tcs[-1]**(1 / 3) - 17
        U_tcs = 13 * W_tcs * (u_tcs - u_r)
        V_tcs = 13 * W_tcs * (v_tcs - v_r)

        tcs_data.append(
            TCS_ColorimetryData(spd_tcs.name, XYZ_tcs, uv_tcs,
                                np.array([U_tcs, V_tcs, W_tcs])))

    return tcs_data
示例#17
0
def plot_RGB_chromaticities_in_chromaticity_diagram(
        RGB,
        colourspace='sRGB',
        chromaticity_diagram_callable=(
            plot_RGB_colourspaces_in_chromaticity_diagram),
        method='CIE 1931',
        scatter_parameters=None,
        **kwargs):
    """
    Plots given *RGB* colourspace array in the *Chromaticity Diagram* according
    to given method.

    Parameters
    ----------
    RGB : array_like
        *RGB* colourspace array.
    colourspace : optional, unicode
        *RGB* colourspace of the *RGB* array.
    chromaticity_diagram_callable : callable, optional
        Callable responsible for drawing the *Chromaticity Diagram*.
    method : unicode, optional
        **{'CIE 1931', 'CIE 1960 UCS', 'CIE 1976 UCS'}**,
        *Chromaticity Diagram* method.
    scatter_parameters : dict, optional
        Parameters for the :func:`plt.scatter` definition, if ``c`` is set to
        *RGB*, the scatter will use given ``RGB`` colours.

    Other Parameters
    ----------------
    \\**kwargs : dict, optional
        {:func:`colour.plotting.artist`,
        :func:`colour.plotting.diagrams.plot_chromaticity_diagram`,
        :func:`colour.plotting.diagrams.\
plot_RGB_colourspaces_in_chromaticity_diagram`,
        :func:`colour.plotting.render`},
        Please refer to the documentation of the previously listed definitions.

    Returns
    -------
    tuple
        Current figure and axes.

    Examples
    --------
    >>> RGB = np.random.random((128, 128, 3))
    >>> plot_RGB_chromaticities_in_chromaticity_diagram(
    ...     RGB, 'ITU-R BT.709')
    ... # doctest: +SKIP

    .. image:: ../_static/Plotting_\
Plot_RGB_Chromaticities_In_Chromaticity_Diagram_Plot.png
        :align: center
        :alt: plot_RGB_chromaticities_in_chromaticity_diagram
    """

    RGB = as_float_array(RGB).reshape(-1, 3)

    settings = {'uniform': True}
    settings.update(kwargs)

    _figure, axes = artist(**settings)

    method = method.upper()

    scatter_settings = {
        's': 40,
        'c': 'RGB',
        'marker': 'o',
        'alpha': 0.85,
    }
    if scatter_parameters is not None:
        scatter_settings.update(scatter_parameters)

    settings = dict(kwargs)
    settings.update({'axes': axes, 'standalone': False})

    colourspace = first_item(filter_RGB_colourspaces(colourspace).values())
    settings['colourspaces'] = (['^{0}$'.format(colourspace.name)] +
                                settings.get('colourspaces', []))

    chromaticity_diagram_callable(**settings)

    use_RGB_colours = scatter_settings['c'].upper() == 'RGB'
    if use_RGB_colours:
        RGB = RGB[RGB[:, 1].argsort()]
        scatter_settings['c'] = np.clip(
            RGB_to_RGB(RGB,
                       colourspace,
                       COLOUR_STYLE_CONSTANTS.colour.colourspace,
                       apply_encoding_cctf=True).reshape(-1, 3), 0, 1)

    XYZ = RGB_to_XYZ(RGB, colourspace.whitepoint, colourspace.whitepoint,
                     colourspace.RGB_to_XYZ_matrix)

    if method == 'CIE 1931':
        ij = XYZ_to_xy(XYZ, colourspace.whitepoint)
    elif method == 'CIE 1960 UCS':
        ij = UCS_to_uv(XYZ_to_UCS(XYZ))

    elif method == 'CIE 1976 UCS':
        ij = Luv_to_uv(XYZ_to_Luv(XYZ, colourspace.whitepoint),
                       colourspace.whitepoint)

    axes.scatter(ij[..., 0], ij[..., 1], **scatter_settings)

    settings.update({'standalone': True})
    settings.update(kwargs)

    return render(**settings)
示例#18
0
def planckian_table(uv, cmfs, start, end, count):
    """
    Returns a planckian table from given *CIE UCS* colourspace *uv*
    chromaticity coordinates, colour matching functions and temperature range
    using *Ohno (2013)* method.

    Parameters
    ----------
    uv : array_like
        *uv* chromaticity coordinates.
    cmfs : XYZ_ColourMatchingFunctions
        Standard observer colour matching functions.
    start : numeric
        Temperature range start in kelvins.
    end : numeric
        Temperature range end in kelvins.
    count : int
        Temperatures count in the planckian table.

    Returns
    -------
    list
        Planckian table.

    Examples
    --------
    >>> from colour import STANDARD_OBSERVERS_CMFS
    >>> from pprint import pprint
    >>> cmfs = STANDARD_OBSERVERS_CMFS['CIE 1931 2 Degree Standard Observer']
    >>> uv = np.array([0.1978, 0.3122])
    >>> pprint(planckian_table(uv, cmfs, 1000, 1010, 10))
    ... # doctest: +ELLIPSIS
    [PlanckianTable_Tuvdi(Ti=1000.0, \
ui=0.4479628..., vi=0.3546296..., di=0.2537355...),
     PlanckianTable_Tuvdi(Ti=1001.1111111..., \
ui=0.4477030..., vi=0.3546521..., di=0.2534831...),
     PlanckianTable_Tuvdi(Ti=1002.2222222..., \
ui=0.4474434..., vi=0.3546746..., di=0.2532310...),
     PlanckianTable_Tuvdi(Ti=1003.3333333..., \
ui=0.4471842..., vi=0.3546970..., di=0.2529792...),
     PlanckianTable_Tuvdi(Ti=1004.4444444..., \
ui=0.4469252..., vi=0.3547194..., di=0.2527277...),
     PlanckianTable_Tuvdi(Ti=1005.5555555..., \
ui=0.4466666..., vi=0.3547417..., di=0.2524765...),
     PlanckianTable_Tuvdi(Ti=1006.6666666..., \
ui=0.4464083..., vi=0.3547640..., di=0.2522256...),
     PlanckianTable_Tuvdi(Ti=1007.7777777..., \
ui=0.4461502..., vi=0.3547862..., di=0.2519751...),
     PlanckianTable_Tuvdi(Ti=1008.8888888..., \
ui=0.4458925..., vi=0.3548084..., di=0.2517248...),
     PlanckianTable_Tuvdi(Ti=1010.0, \
ui=0.4456351..., vi=0.3548306..., di=0.2514749...)]
    """

    ux, vx = uv

    cmfs = cmfs.copy().trim(ASTME30815_PRACTISE_SHAPE)

    shape = cmfs.shape

    table = []
    for Ti in np.linspace(start, end, count):
        sd = sd_blackbody(Ti, shape)
        XYZ = sd_to_XYZ(sd, cmfs)
        XYZ /= np.max(XYZ)
        UVW = XYZ_to_UCS(XYZ)
        ui, vi = UCS_to_uv(UVW)
        di = np.hypot(ux - ui, vx - vi)
        table.append(PLANCKIAN_TABLE_TUVD(Ti, ui, vi, di))

    return table
示例#19
0
def colour_rendering_index(sd_test, additional_data=False):
    """
    Returns the *Colour Rendering Index* (CRI) :math:`Q_a` of given spectral
    distribution.

    Parameters
    ----------
    sd_test : SpectralDistribution
        Test spectral distribution.
    additional_data : bool, optional
        Whether to output additional data.

    Returns
    -------
    numeric or ColourRendering_Specification_CRI
        *Colour Rendering Index* (CRI).

    References
    ----------
    :cite:`Ohno2008a`

    Examples
    --------
    >>> from colour import SDS_ILLUMINANTS
    >>> sd = SDS_ILLUMINANTS['FL2']
    >>> colour_rendering_index(sd)  # doctest: +ELLIPSIS
    64.2337241...
    """

    cmfs = MSDS_CMFS_STANDARD_OBSERVER[
        'CIE 1931 2 Degree Standard Observer'].copy().trim(
            SPECTRAL_SHAPE_DEFAULT)

    shape = cmfs.shape
    sd_test = sd_test.copy().align(shape)
    tcs_sds = {sd.name: sd.copy().align(shape) for sd in SDS_TCS.values()}

    with domain_range_scale('1'):
        XYZ = sd_to_XYZ(sd_test, cmfs)

    uv = UCS_to_uv(XYZ_to_UCS(XYZ))
    CCT, _D_uv = uv_to_CCT_Robertson1968(uv)

    if CCT < 5000:
        sd_reference = sd_blackbody(CCT, shape)
    else:
        xy = CCT_to_xy_CIE_D(CCT)
        sd_reference = sd_CIE_illuminant_D_series(xy)
        sd_reference.align(shape)

    test_tcs_colorimetry_data = tcs_colorimetry_data(sd_test,
                                                     sd_reference,
                                                     tcs_sds,
                                                     cmfs,
                                                     chromatic_adaptation=True)

    reference_tcs_colorimetry_data = tcs_colorimetry_data(
        sd_reference, sd_reference, tcs_sds, cmfs)

    Q_as = colour_rendering_indexes(test_tcs_colorimetry_data,
                                    reference_tcs_colorimetry_data)

    Q_a = np.average(
        [v.Q_a for k, v in Q_as.items() if k in (1, 2, 3, 4, 5, 6, 7, 8)])

    if additional_data:
        return ColourRendering_Specification_CRI(
            sd_test.name, Q_a, Q_as,
            (test_tcs_colorimetry_data, reference_tcs_colorimetry_data))
    else:
        return Q_a
示例#20
0
def CIE_1960_UCS_chromaticity_diagram_colours_plot(
        surface=1,
        samples=4096,
        cmfs='CIE 1931 2 Degree Standard Observer',
        **kwargs):
    """
    Plots the *CIE 1960 UCS Chromaticity Diagram* colours.

    Parameters
    ----------
    surface : numeric, optional
        Generated markers surface.
    samples : numeric, optional
        Samples count on one axis.
    cmfs : unicode, optional
        Standard observer colour matching functions used for diagram bounds.
    \**kwargs : dict, optional
        Keywords arguments.

    Returns
    -------
    bool
        Definition success.

    Examples
    --------
    >>> CIE_1960_UCS_chromaticity_diagram_colours_plot()  # doctest: +SKIP
    True
    """

    if is_scipy_installed(raise_exception=True):
        from scipy.spatial import Delaunay

        settings = {'figure_size': (64, 64)}
        settings.update(kwargs)

        canvas(**settings)

        cmfs = get_cmfs(cmfs)

        illuminant = DEFAULT_PLOTTING_ILLUMINANT

        triangulation = Delaunay(UCS_to_uv(XYZ_to_UCS(cmfs.values)),
                                 qhull_options='QJ')
        xx, yy = np.meshgrid(np.linspace(0, 1, samples),
                             np.linspace(0, 1, samples))
        xy = tstack((xx, yy))
        xy = xy[triangulation.find_simplex(xy) > 0]

        XYZ = xy_to_XYZ(UCS_uv_to_xy(xy))

        RGB = normalise(XYZ_to_sRGB(XYZ, illuminant), axis=-1)

        x_dot, y_dot = tsplit(xy)

        pylab.scatter(x_dot, y_dot, color=RGB, s=surface)

        settings.update({
            'x_ticker': False,
            'y_ticker': False,
            'bounding_box': (0, 1, 0, 1),
            'bbox_inches': 'tight',
            'pad_inches': 0
        })
        settings.update(kwargs)

        ax = matplotlib.pyplot.gca()
        matplotlib.pyplot.setp(ax, frame_on=False)

        boundaries(**settings)
        decorate(**settings)

        return display(**settings)
示例#21
0
文件: cqs.py 项目: ajun73/Work_Code
def colour_quality_scale(sd_test, additional_data=False):
    """
    Returns the *Colour Quality Scale* (CQS) of given spectral
    distribution.

    Parameters
    ----------
    sd_test : SpectralDistribution
        Test spectral distribution.
    additional_data : bool, optional
        Whether to output additional data.

    Returns
    -------
    numeric or CQS_Specification
        Color quality scale.

    References
    ----------
    :cite:`Davis2010a`, :cite:`Ohno2008a`

    Examples
    --------
    >>> from colour import ILLUMINANTS_SDS
    >>> sd = ILLUMINANTS_SDS['F2']
    >>> colour_quality_scale(sd)  # doctest: +ELLIPSIS
    64.6863391...
    """

    cmfs = STANDARD_OBSERVERS_CMFS['CIE 1931 2 Degree Standard Observer'].copy(
    ).trim(ASTME30815_PRACTISE_SHAPE)

    shape = cmfs.shape
    sd_test = sd_test.copy().align(shape)
    vs_sds = {sd.name: sd.copy().align(shape) for sd in VS_SDS.values()}

    with domain_range_scale('1'):
        XYZ = sd_to_XYZ(sd_test, cmfs)

    uv = UCS_to_uv(XYZ_to_UCS(XYZ))
    CCT, _D_uv = uv_to_CCT_Ohno2013(uv)

    if CCT < 5000:
        sd_reference = sd_blackbody(CCT, shape)
    else:
        xy = CCT_to_xy_CIE_D(CCT)
        sd_reference = sd_CIE_illuminant_D_series(xy)
        sd_reference.align(shape)

    test_vs_colorimetry_data = vs_colorimetry_data(sd_test,
                                                   sd_reference,
                                                   vs_sds,
                                                   cmfs,
                                                   chromatic_adaptation=True)

    reference_vs_colorimetry_data = vs_colorimetry_data(
        sd_reference, sd_reference, vs_sds, cmfs)

    XYZ_r = sd_to_XYZ(sd_reference, cmfs)
    XYZ_r /= XYZ_r[1]
    CCT_f = CCT_factor(reference_vs_colorimetry_data, XYZ_r)

    Q_as = colour_quality_scales(test_vs_colorimetry_data,
                                 reference_vs_colorimetry_data, CCT_f)

    D_E_RMS = delta_E_RMS(Q_as, 'D_E_ab')
    D_Ep_RMS = delta_E_RMS(Q_as, 'D_Ep_ab')

    Q_a = scale_conversion(D_Ep_RMS, CCT_f)
    Q_f = scale_conversion(D_E_RMS, CCT_f, 2.928)

    p_delta_C = np.average(
        [sample_data.D_C_ab if sample_data.D_C_ab > 0 else 0
         for sample_data in Q_as.values()])  # yapf: disable
    Q_p = 100 - 3.6 * (D_Ep_RMS - p_delta_C)

    G_t = gamut_area(
        [vs_CQS_data.Lab for vs_CQS_data in test_vs_colorimetry_data])
    G_r = gamut_area(
        [vs_CQS_data.Lab for vs_CQS_data in reference_vs_colorimetry_data])

    Q_g = G_t / D65_GAMUT_AREA * 100
    Q_d = G_t / G_r * CCT_f * 100

    if additional_data:
        return CQS_Specification(
            sd_test.name, Q_a, Q_f, Q_p, Q_g, Q_d, Q_as,
            (test_vs_colorimetry_data, reference_vs_colorimetry_data))
    else:
        return Q_a