def build(config, batch_size, is_train=False): optimizer = train_utils.build_optimizer(config) ema_vars = [] downsample = config.get('downsample', False) downsample_res = config.get('downsample_res', 64) h, w = config.resolution if config.model.name == 'coltran_core': if downsample: h, w = downsample_res, downsample_res zero = tf.zeros((batch_size, h, w, 3), dtype=tf.int32) model = colorizer.ColTranCore(config.model) model(zero, training=is_train) c = 1 if is_train else 3 if config.model.name == 'color_upsampler': if downsample: h, w = downsample_res, downsample_res zero_slice = tf.zeros((batch_size, h, w, c), dtype=tf.int32) zero = tf.zeros((batch_size, h, w, 3), dtype=tf.int32) model = upsampler.ColorUpsampler(config.model) model(zero, inputs_slice=zero_slice, training=is_train) elif config.model.name == 'spatial_upsampler': zero_slice = tf.zeros((batch_size, h, w, c), dtype=tf.int32) zero = tf.zeros((batch_size, h, w, 3), dtype=tf.int32) model = upsampler.SpatialUpsampler(config.model) model(zero, inputs_slice=zero_slice, training=is_train) ema_vars = model.trainable_variables ema = train_utils.build_ema(config, ema_vars) return model, optimizer, ema
def build_model(config): """Builds model.""" name = config.model.name optimizer = train_utils.build_optimizer(config) zero_64 = tf.zeros((1, 64, 64, 3), dtype=tf.int32) zero_64_slice = tf.zeros((1, 64, 64, 1), dtype=tf.int32) zero = tf.zeros((1, 256, 256, 3), dtype=tf.int32) zero_slice = tf.zeros((1, 256, 256, 1), dtype=tf.int32) if name == 'coltran_core': model = colorizer.ColTranCore(config.model) model(zero_64, training=False) elif name == 'color_upsampler': model = upsampler.ColorUpsampler(config.model) model(inputs=zero_64, inputs_slice=zero_64_slice, training=False) elif name == 'spatial_upsampler': model = upsampler.SpatialUpsampler(config.model) model(inputs=zero, inputs_slice=zero_slice, training=False) ema_vars = model.trainable_variables ema = train_utils.build_ema(config, ema_vars) return model, optimizer, ema