else: plt.xlabel('Training-testing split factor') plt.ylabel('Total cost') for values in param_values: if values <= 10 and values >=.1: print(values) if sensitivity is 'r': configs.r = float(values) else: if values==2 or values==3: configs.th = int(values) else: configs.th = float(values) ret = base.projective(configs.system) if ret is not None: size_result,success,p_value,cost_result,opt_size_result_ff = ret sens_data_ff[values] = cost_result,success,opt_size_result_ff configs.tway = 2 ret = twaysample.sample(configs.system) if ret is not None: size_result,success,p_value,cost_result,opt_size_result_2w = ret sens_data_2w[values] = cost_result,success,opt_size_result_2w configs.tway = 3 ret = twaysample.sample(configs.system) if ret is not None: size_result,success,p_value,cost_result,opt_size_result_3w = twaysample.sample(configs.system) sens_data_3w[values] = cost_result,success,opt_size_result_3w
def run(): configs.print_detail = False configs.plot = False configs.fix_test_set = True configs.fix_test_ratio = 3 configs.smooth = True configs.transform_lambda = False configs.add_origin_to_lambda = True configs.extend_lambda = False configs.projective_feature_threshold = 5 configs.repeat = configs.repeat configs.min_corr = 0 configs.curve_selection = 'static' if configs.show_box_pl is False: out_file = open(configs.base_dir_out+"_result_transf_"+str(configs.transform_lambda)+'_smooth_'+str(configs.smooth)+'_'+str(configs.repeat)+'_rest','w') out_file.truncate() configs.chi_sq_with_random = True for system_key in configs.all_systems: boxpl.setup(system_key) for i in range(3,7): configs.projective_feature_threshold = i print(str(system_key)+"-feature-frequencies-"+str(i)+": ") if configs.show_box_pl is False: out_file.write(str(system_key)+"-feature-frequencies-"+str(i)+": ") configs.system = system_key size_result,success,p_value,cost_result,opt_size_result = base.projective(system_key) if p_value is not None: if configs.show_box_pl is False: print(str(p_value)) out_file.write(str(p_value)) else: if configs.show_box_pl is False: print('None') out_file.write('None') if configs.show_box_pl is False: print() out_file.write('\n') out_file.write('Cost Result : ') out_file.write(str(cost_result)) out_file.write('\n') out_file.write('Size : ') out_file.write(str(size_result)) out_file.write('\n') out_file.write('Opt Size : ') out_file.write(str(opt_size_result)) print() print('Cost Result : ',str(cost_result)) print() print() out_file.write('\n') out_file.write('Success rate : ') out_file.write(str(success)) print() print('Success rate : ',str(success)) print() out_file.write('\n') else: i_ind = 'ff-'+str(i) boxpl.data[i_ind] = cost_result boxpl.lambda_size[i_ind] = size_result[2] configs.tway = 2 print(str(system_key)+"-2way: ") if configs.show_box_pl is False: out_file.write('\n') out_file.write(str(system_key)+"-2way: ") size_result,success,p_value,cost_result,opt_size_result = twaysample.sample(system_key) if p_value is not None: if configs.show_box_pl is False: print(str(p_value)) out_file.write(str(p_value)) else: if configs.show_box_pl is False: print('None') out_file.write('None') if configs.show_box_pl is False: print() out_file.write('\n') out_file.write('Cost Result : ') out_file.write(str(cost_result)) print() print('Cost Result : ',str(cost_result)) print() print() out_file.write('\n') out_file.write('Size : ') out_file.write(str(size_result)) out_file.write('\n') out_file.write('Opt Size : ') out_file.write(str(opt_size_result)) out_file.write('\n') out_file.write('Success rate : ') out_file.write(str(success)) print() print('Success rate : ',str(success)) print() out_file.write('\n') out_file.write('\n') else: boxpl.data['2-way'] = cost_result boxpl.lambda_size['2-way'] = size_result[2] configs.tway = 3 print(str(system_key)+"-3way: ") if configs.show_box_pl is False: out_file.write(str(system_key)+"-3way: ") size_result,success,p_value,cost_result,opt_size_result = twaysample.sample(system_key) if p_value is not None: if configs.show_box_pl is False: print(str(p_value)) out_file.write(str(p_value)) else: if configs.show_box_pl is False: print('None') out_file.write('None') if configs.show_box_pl is False: print() out_file.write('\n') out_file.write('Cost Result : ') out_file.write(str(cost_result)) out_file.write('\n') out_file.write('Size : ') out_file.write(str(size_result)) out_file.write('\n') out_file.write('Opt Size : ') out_file.write(str(opt_size_result)) print() print('Cost Result : ',str(cost_result)) print() out_file.write('\n') print() out_file.write('Success rate : ') out_file.write(str(success)) print() print('Success rate : ',str(success)) print() out_file.write('\n') else: boxpl.data['3-way'] = cost_result boxpl.lambda_size['3-way'] = size_result[2] data_list,opt_cost,real_cost = base.progressive(system_key) boxpl.global_min_cost = real_cost boxpl.progressive_cost = opt_cost if configs.show_box_pl is False: out_file.write('\n') print() out_file.write('Actual min cost : ') out_file.write(str(real_cost)) print() print('Actual min cost : ',str(real_cost)) print() out_file.write('\n') print() out_file.write('Progressive min cost : ') out_file.write(str(opt_cost)) print() print('Progressive min cost: ',str(opt_cost)) print() print("---------------------------------------------") out_file.write('\n') out_file.write("---------------------------------------------") out_file.write('\n') else: boxpl.show()