import random as rd import pylab as pl import mpl_toolkits.basemap as bm from numpy import sqrt #import community as cm #New Modules sys.path.append('/Users/Eyota/projects/thesis/code/python/modules') from rowtodict import * from drawnetworks import netplot from importnetworks import importnetwork import com2 as cm os.chdir("/Users/Eyota/projects/thesis") year = '0910' width = 4700000 height = 3100000 metros, mg, nodedata = importnetwork(year) #formal communities based on redoing com detection on 100-runs comsform = pd.io.parsers.read_csv('output/comsformal.csv') comsform.set_index('id',inplace = True) comsform = comsform[['pop','lat','lon','MSAName','formalcom']] comsformdict = comsform['formalcom'].to_dict() print cm.modularity(comsformdict, mg)
nx.draw(mgdraw, pos,with_labels = False,alpha = 1, linewidths = 0.5, width = 0, nodelist = list(comsdraw.sort(['pop']).index),node_size = 40, node_color = comsdraw.sort(['pop'])['com']) ''' comnet = nx.Graph() comnet.add_nodes_from(nodedata) comsdraw = coms[(metros['lon'] < -60) & (metros['lon'] >-125)] comlist = [] modularities = [] for i in range(100): partition = cm.best_partition(mg) modularities.append(cm.modularity(partition, mg)) #I think it's ok to use the full network including AKHI comsdraw = dict2column(comsdraw, partition,'com%s'%i) #'part%s' %i) netplot('output/commaps/maps_com_%s_%s.jpeg'%(i,year),width, height, mgdraw,pos,with_labels = False,alpha = 1, linewidths = 0.5, width = 0, nodelist = list(comsdraw.sort(['pop']).index), node_size = sqrt(comsdraw.sort(['pop'])['pop']), node_color = comsdraw.sort(['pop'])['com%s'%i]) for n in mg.nodes(): for m in mg.nodes(): #[find(mg.nodes() == n):len(mg.nodes())]: if m == n: continue else: if partition[m] == partition[n]: #comnet.add_edge(m,n)