示例#1
0
    def runTest(self):
        print "ManyToMany"

        mg = MatchingGraph(self.groundtruth_skeletons, 
                           self.reconstructed_skeletons,
                           self.distance_threshold,
                           self.voxel_size,
                           verbose=True,
                           distance_cost=True,
                           initialize_all=True)

        nodes_gt, nodes_rec, edges_gt_rec, labels_gt, labels_rec, edge_costs, edge_conflicts, edge_pairs = mg.export_to_comatch()
        try:
            # Quadmatch
            label_matches, node_matches, num_splits, num_merges, num_fps, num_fns = match_components(nodes_gt, nodes_rec, edges_gt_rec, labels_gt, 
                                                                                                     labels_rec, edge_conflicts=edge_conflicts, max_edges=10, edge_costs=edge_costs)
        except TypeError:
            # Comatch
            label_matches, node_matches, num_splits, num_merges, num_fps, num_fns = match_components(nodes_gt, nodes_rec, edges_gt_rec, labels_gt, 
                                                                                                     labels_rec, allow_many_to_many=True, edge_costs=edge_costs, no_match_costs=1000.)
 
        print "label matches:", label_matches
        print "node_matches:", node_matches

        comatch_errors = {"splits": num_splits, "num_merges": num_merges, "num_fps": num_fps, "num_fns": num_fns}
        print comatch_errors

        mg.import_matches(node_matches)
        output_dir = test_data_dir + "/MatchingManytoMany" 
        mg.export_all(output_dir)

        with open(output_dir + "/macro_errors.json", "w+") as f:
            json.dump(comatch_errors, f)
示例#2
0
def test_match():

    nodes_x = list(range(1, 8))
    nodes_y = list(range(101, 111))
    edges_xy = [
        (1, 101),
        (2, 102),
        (2, 103),
        (2, 104),
        (2, 109),
        (3, 103),
        (3, 108),
        (4, 104),
        (4, 109),
        (5, 105),
        (5, 110),
        (6, 106),
        (7, 107),
    ]
    node_labels_x = {n: 1 for n in nodes_x}
    node_labels_y = {n: 2 for n in nodes_y}
    node_labels_y[108] = 3
    node_labels_y[109] = 3
    node_labels_y[110] = 3
    edge_conflicts = [[(3, 103), (3, 108)], [(4, 104), (4, 109)],
                      [(5, 105), (5, 110)], [(2, 109), (2, 104)],
                      [(2, 109), (2, 103)], [(2, 102), (2, 109)]]

    label_matches, node_matches, splits, merges, fps, fns = comatch.match_components(
        nodes_x,
        nodes_y,
        edges_xy,
        node_labels_x,
        node_labels_y,
        edge_conflicts=edge_conflicts)

    print(node_matches)
    print("splits: %d" % splits)
    print("merges: %d" % merges)
    print("fps   : %d" % fps)
    print("fns   : %d" % fns)

    # the other way around
    label_matches, node_matches, splits, merges, fps, fns = comatch.match_components(
        nodes_y,
        nodes_x, [(v, u) for (u, v) in edges_xy],
        node_labels_y,
        node_labels_x,
        edge_conflicts=[[tuple([c[0][1], c[0][0]]),
                         tuple([c[1][1], c[1][0]])] for c in edge_conflicts])

    print(node_matches)
    print("splits: %d" % splits)
    print("merges: %d" % merges)
    print("fps   : %d" % fps)
    print("fns   : %d" % fns)
示例#3
0
    def runTest(self):
        print "Import matches"

        mg = MatchingGraph(self.groundtruth_skeletons, 
                           self.reconstructed_skeletons,
                           self.distance_threshold,
                           self.voxel_size,
                           verbose=True,
                           initialize_all=True)

        nodes_gt, nodes_rec, edges_gt_rec, labels_gt, labels_rec, edge_costs, edge_conflicts, edge_pairs = mg.export_to_comatch()

        label_matches, node_matches, num_splits, num_merges, num_fps, num_fns = match_components(nodes_gt, nodes_rec, edges_gt_rec, labels_gt, labels_rec)
        matches = node_matches

        # Everything is matched
        self.assertTrue(len(matches) == mg.get_number_of_vertices()/2)
        mg.import_matches(matches)

        for v in mg.get_vertex_iterator():
            self.assertTrue(mg.is_tp(v))
            self.assertFalse(mg.is_fp(v))
            self.assertFalse(mg.is_fn(v))

        for e in mg.get_edge_iterator():
            self.assertFalse(mg.is_split(e))
            self.assertFalse(mg.is_merge(e))
示例#4
0
def evaluate_matching_graph(matching_graph,
                            max_edges=1,
                            export_to=None,
                            optimality_gap=0.0,
                            time_limit=None,
                            n_gts=-1,
                            n_recs=-1):
    if max_edges > 1 or max_edges == None:
        edge_conflicts = True
    else:
        edge_conflicts = False

    nodes_gt, nodes_rec, edges_gt_rec, labels_gt, labels_rec, edge_costs, edge_conflicts, edge_pairs = matching_graph.export_to_comatch(
        edge_conflicts=edge_conflicts, edge_pairs=False)

    logger.info("Match using hungarian match...")
    label_matches, node_matches, num_splits, num_merges, num_fps, num_fns = match_components(
        nodes_gt,
        nodes_rec,
        edges_gt_rec,
        labels_gt,
        labels_rec,
        edge_conflicts=edge_conflicts,
        max_edges=max_edges,
        optimality_gap=optimality_gap,
        time_limit=time_limit)

    matching_graph.import_matches(node_matches)
    topological_errors = {
        "n_gt": n_gts,
        "n_rec": n_recs,
        "splits": num_splits,
        "merges": num_merges,
        "fps": num_fps,
        "fns": num_fns
    }
    node_errors = matching_graph.evaluate()

    if export_to is not None:
        matching_graph.export_all(export_to)
        with open(export_to + "/object_stats.txt", "w+") as f:
            json.dump(topological_errors, f)

    return matching_graph, topological_errors, node_errors
示例#5
0
def score_graph(
    predicted_tracings: nx.Graph,
    reference_tracings: nx.Graph,
    match_threshold: float,
    location_attr: str,
    metric: Metric,
    **metric_kwargs,
):
    # Match the graphs:
    edges_xy = get_edges_xy(predicted_tracings, reference_tracings,
                            location_attr, match_threshold)

    nodes_x = list(predicted_tracings.nodes)
    nodes_y = list(reference_tracings.nodes)
    node_labels_x = {
        node: cc
        for cc, cc_nodes in enumerate(
            nx.connected_components(predicted_tracings)) for node in cc_nodes
    }
    node_labels_y = {
        node: cc
        for cc, cc_nodes in enumerate(
            nx.connected_components(reference_tracings)) for node in cc_nodes
    }

    label_matches, node_matches, splits, merges, fps, fns = comatch.match_components(
        nodes_x, nodes_y, edges_xy, node_labels_x, node_labels_y)

    # evaluate the matching
    return evaluate_matching(
        metric,
        node_matches,
        node_labels_x,
        node_labels_y,
        predicted_tracings,
        reference_tracings,
        location_attr,
        **metric_kwargs,
    )
示例#6
0
def add_mst_snapshot_with_stats(
    context,
    matching_data,
    mst_snapshot,
    gt,
    threshold_inds=None,
    graph_node_attrs=None,
    graph_edge_attrs=None,
    false_pos_threshold=None,
):
    if false_pos_threshold is None:
        false_pos_threshold = 0
    mst = tree_from_snapshot(
        mst_snapshot,
        "mst",
        graph_node_attrs=graph_node_attrs,
        graph_edge_attrs=graph_edge_attrs,
    )

    label_matchings, node_matchings, node_labels_mst, node_labels_gt, thresholds = (
        matching_data
    )
    edges_to_add = list(mst.edges.items())

    thresholded_graph = nx.Graph()
    for i, threshold in enumerate(thresholds):
        for j, ((u, v), attrs) in reversed(list(enumerate(edges_to_add))):
            if attrs["distance"] < threshold:
                thresholded_graph.add_node(u, **mst.nodes[u])
                thresholded_graph.add_node(v, **mst.nodes[v])
                thresholded_graph.add_edge(u, v, **attrs)
                del edges_to_add[j]

        if i in threshold_inds:

            temp = copy.deepcopy(thresholded_graph)

            false_pos_nodes = []
            for cc in nx.connected_components(temp):
                cc_graph = temp.subgraph(cc)
                min_loc = None
                max_loc = None
                for node, attrs in cc_graph.nodes.items():
                    node_loc = attrs["location"]
                    if min_loc is None:
                        min_loc = node_loc
                    else:
                        min_loc = np.min(np.array([node_loc, min_loc]), axis=0)
                    if max_loc is None:
                        max_loc = node_loc
                    else:
                        max_loc = np.max(np.array([node_loc, max_loc]), axis=0)
                if np.linalg.norm(min_loc - max_loc) < false_pos_threshold:
                    false_pos_nodes += list(cc)
            for node in false_pos_nodes:
                temp.remove_node(node)

            nodes_x = list(temp.nodes)
            nodes_y = list(gt.nodes)

            node_labels_x = {
                node: component
                for component, nodes in enumerate(nx.connected_components(temp))
                for node in nodes
            }

            node_labels_y = {
                node: component
                for component, nodes in enumerate(nx.connected_components(gt))
                for node in nodes
            }

            edges_yx = get_edges_xy(
                gt, temp, location_attr="location", node_match_threshold=4000
            )
            edges_xy = [(v, u) for u, v in edges_yx]

            (label_matches, node_matches, splits, merges, fps, fns) = match_components(
                nodes_x, nodes_y, edges_xy, node_labels_x, node_labels_y
            )

            erl, details = psudo_graph_edit_distance(
                node_matches,
                node_labels_x,
                node_labels_y,
                temp,
                gt,
                "location",
                node_spacing=5000,
                details=True,
            )

            add_match_layers(
                context,
                temp,
                gt,
                label_matchings[i],
                node_matchings[i],
                node_labels_mst[i],
                node_labels_gt[i],
                name=f"Matched-{threshold:.3f}",
            )
示例#7
0
        (3, 108),
        (4, 104),
        (4, 109),
        (5, 105),
        (5, 110),
        (6, 106),
        (7, 107),
    ]
    node_labels_x = { n: 1 for n in nodes_x }
    node_labels_y = { n: 2 for n in nodes_y }
    node_labels_y[108] = 3
    node_labels_y[109] = 3
    node_labels_y[110] = 3

    label_matches, node_matches, splits, merges, fps, fns = comatch.match_components(
        nodes_x, nodes_y,
        edges_xy,
        node_labels_x, node_labels_y)

    print(node_matches)
    print("splits: %d"%splits)
    print("merges: %d"%merges)
    print("fps   : %d"%fps)
    print("fns   : %d"%fns)

    # the other way around
    label_matches, node_matches, splits, merges, fps, fns = comatch.match_components(
        nodes_y, nodes_x,
        [ (v, u) for (u, v) in edges_xy ],
        node_labels_y, node_labels_x)

    print(node_matches)
示例#8
0
    def process(self, batch, request):
        num_thresholds = self.num_thresholds
        threshold_range = self.threshold_range

        outputs = gp.Batch()

        gt_graph = batch[self.gt].to_nx_graph().to_undirected()
        mst_graph = batch[self.mst].to_nx_graph().to_undirected()
        if self.connectivity is not None:
            connectivity_graph = batch[
                self.connectivity].to_nx_graph().to_undirected()

        # assert mst_graph.number_of_nodes() > 0, f"mst_graph is empty!"

        if self.details is not None:
            matching_details_graph = nx.Graph()
            if mst_graph.number_of_nodes() == 0:
                node_offset = max([node
                                   for node in mst_graph.nodes] + [-1]) + 1
                label_offset = len(list(
                    nx.connected_components(mst_graph))) + 1

                for node, attrs in mst_graph.nodes.items():
                    matching_details_graph.add_node(node,
                                                    **copy.deepcopy(attrs))
                for edge, attrs in mst_graph.edges.items():
                    matching_details_graph.add_edge(edge[0], edge[1],
                                                    **copy.deepcopy(attrs))
                for node, attrs in gt_graph.nodes.items():
                    matching_details_graph.add_node(node + node_offset,
                                                    **copy.deepcopy(attrs))
                    matching_details_graph.nodes[node + node_offset]["id"] = (
                        node + node_offset)
                for edge, attrs in gt_graph.edges.items():
                    matching_details_graph.add_edge(edge[0] + node_offset,
                                                    edge[1] + node_offset,
                                                    **copy.deepcopy(attrs))

        edges = [(edge, attrs[self.edge_threshold_attr])
                 for edge, attrs in mst_graph.edges.items()]
        edges = list(sorted(edges, key=lambda x: x[1]))
        edge_lens = [e[1] for e in edges]
        # min_threshold = edges[0][1]
        if len(edge_lens) > 0:
            min_threshold = edge_lens[int(len(edge_lens) * threshold_range[0])]
            max_threshold = edge_lens[int(len(edge_lens) * threshold_range[1])
                                      - 1]
        else:
            min_threshold = 0
            max_threshold = 1
        thresholds = np.linspace(min_threshold,
                                 max_threshold,
                                 num=num_thresholds)

        current_threshold_mst = nx.Graph()

        edge_deque = deque(edges)
        edit_distances = []
        split_costs = []
        merge_costs = []
        false_pos_costs = []
        false_neg_costs = []
        num_nodes = []
        num_edges = []

        best_score = None
        best_graph = None

        for threshold_index, threshold in enumerate(thresholds):
            logger.warning(f"Using threshold: {threshold}")
            while len(edge_deque) > 0 and edge_deque[0][1] <= threshold:
                (u, v), _ = edge_deque.popleft()
                attrs = mst_graph.edges[(u, v)]
                current_threshold_mst.add_edge(u, v)
                current_threshold_mst.add_node(u, **mst_graph.nodes[u])
                current_threshold_mst.add_node(v, **mst_graph.nodes[v])

            if self.connectivity is not None:
                temp = nx.Graph()
                next_node = max([node
                                 for node in connectivity_graph.nodes]) + 1
                for i, cc in enumerate(
                        nx.connected_components(current_threshold_mst)):
                    component_subgraph = current_threshold_mst.subgraph(cc)
                    for node in component_subgraph.nodes:
                        temp.add_node(node,
                                      **dict(connectivity_graph.nodes[node]))
                        temp.nodes[node]["component"] = i
                    for edge in connectivity_graph.edges:
                        if (edge[0] in temp.nodes and edge[1] in temp.nodes
                                and temp.nodes[edge[0]]["component"]
                                == temp.nodes[edge[1]]["component"]):
                            temp.add_edge(
                                edge[0], edge[1],
                                **dict(connectivity_graph.edges[edge]))
                        elif False:
                            path = nx.shortest_path(connectivity_graph,
                                                    edge[0], edge[1])
                            cloned_path = []
                            for node in path:
                                if node in temp.nodes:
                                    cloned_path.append(node)
                                else:
                                    cloned_path.append(next_node)
                                    next_node += 1
                            path_len = len(cloned_path) - 1
                            for i, j in zip(range(path_len),
                                            range(1, path_len + 1)):
                                u = cloned_path[i]
                                if u not in temp.nodes:
                                    temp.add_node(
                                        u,
                                        **dict(
                                            connectivity_graph.nodes[path[i]]))
                                v = cloned_path[j]
                                if v not in temp.nodes:
                                    temp.add_node(
                                        v,
                                        **dict(
                                            connectivity_graph.nodes[path[j]]))

                                temp.add_edge(
                                    u,
                                    v,
                                    **dict(connectivity_graph.edges[path[i],
                                                                    path[j]]),
                                )

            else:
                temp = copy.deepcopy(current_threshold_mst)
                for i, cc in enumerate(nx.connected_components(temp)):
                    for node in cc:
                        attrs = temp.nodes[node]
                        attrs["component"] = i

            # remove small connected_components
            false_pos_nodes = []
            for cc in nx.connected_components(temp):
                cc_graph = temp.subgraph(cc)
                min_loc = None
                max_loc = None
                for node, attrs in cc_graph.nodes.items():
                    node_loc = attrs[self.location_attr]
                    if min_loc is None:
                        min_loc = node_loc
                    else:
                        min_loc = np.min(np.array([node_loc, min_loc]), axis=0)
                    if max_loc is None:
                        max_loc = node_loc
                    else:
                        max_loc = np.max(np.array([node_loc, max_loc]), axis=0)
                if np.linalg.norm(min_loc -
                                  max_loc) < self.small_component_threshold:
                    false_pos_nodes += list(cc)
            for node in false_pos_nodes:
                temp.remove_node(node)

            nodes_x = list(temp.nodes)
            nodes_y = list(gt_graph.nodes)

            node_labels_x = {
                node: attrs["component"]
                for node, attrs in temp.nodes.items()
            }

            node_labels_y = {
                node: component
                for component, nodes in enumerate(
                    nx.connected_components(gt_graph)) for node in nodes
            }

            edges_yx = get_edges_xy(
                gt_graph,
                temp,
                location_attr=self.location_attr,
                node_match_threshold=self.comatch_threshold,
            )
            edges_xy = [(v, u) for u, v in edges_yx]

            result = match_components(
                nodes_x,
                nodes_y,
                edges_xy,
                copy.deepcopy(node_labels_x),
                copy.deepcopy(node_labels_y),
            )

            if self.details is not None:
                # add a match details graph to the batch
                # details is a graph containing nodes from both mst and gt
                # to access details of a node, use `details.nodes[node]["details"]`
                # where the details returned are a numpy array of shape (num_thresholds, _).
                # the _ values stored per threshold are success, fp, fn, merge, split, selected, mst, gt

                # NODES
                # success, mst: n matches to only nodes of 1 label, which matches its own label
                # success, gt: n matches to only nodes of 1 label, which matches its own label
                # fp: n in mst matches to nothing
                # fn: n in gt matches to nothing
                # merge: n in mst matches to a node with label not matching its own
                # split: n in gt matches to a node with label not matching its own
                # selected: n in mst in thresholded graph

                # EDGES
                # success, mst: both endpoints successful
                # success, gt: both endpoints successful
                # fp: both endpoints fp
                # fn: both endpoints fn
                # merge: e in mst: only one endpoint successful
                # split: e in gt: only one endpoint successful
                # selected: e in mst in thresholded graph
                (label_matches, node_matches, splits, merges, fps,
                 fns) = result
                # create lookup tables:
                x_label_match_lut = {}
                y_label_match_lut = {}
                for a, b in label_matches:
                    x_matches = x_label_match_lut.setdefault(a, set())
                    x_matches.add(b)
                    y_matches = y_label_match_lut.setdefault(b, set())
                    y_matches.add(a)
                x_node_match_lut = {}
                y_node_match_lut = {}
                for a, b in node_matches:
                    x_matches = x_node_match_lut.setdefault(a, set())
                    x_matches.add(b)
                    y_matches = y_node_match_lut.setdefault(b, set())
                    y_matches.add(a)

                for node, attrs in matching_details_graph.nodes.items():
                    gt = int(node >= node_offset)
                    mst = 1 - gt

                    if gt == 1:
                        node = node - node_offset

                    selected = gt or (node in temp.nodes())

                    if selected:
                        success, fp, fn, merge, split, label_pair = self.node_matching_result(
                            node,
                            gt,
                            x_label_match_lut,
                            y_label_match_lut,
                            x_node_match_lut,
                            y_node_match_lut,
                            node_labels_x,
                            node_labels_y,
                        )
                    else:
                        success, fp, fn, merge, split, label_pair = (
                            0,
                            0,
                            0,
                            0,
                            0,
                            (-1, -1),
                        )

                    data = attrs.setdefault(
                        "details", np.zeros((len(thresholds), 7), dtype=bool))
                    data[threshold_index] = [
                        selected,
                        success,
                        fp,
                        fn,
                        merge,
                        split,
                        gt,
                    ]
                    label_pairs = attrs.setdefault("label_pair", [])
                    label_pairs.append(label_pair)
                    assert len(label_pairs) == threshold_index + 1
                for (u, v), attrs in matching_details_graph.edges.items():
                    (
                        u_selected,
                        u_success,
                        u_fp,
                        u_fn,
                        u_merge,
                        u_split,
                        u_gt,
                    ) = matching_details_graph.nodes[u]["details"][
                        threshold_index]

                    (
                        v_selected,
                        v_success,
                        v_fp,
                        v_fn,
                        v_merge,
                        v_split,
                        v_gt,
                    ) = matching_details_graph.nodes[v]["details"][
                        threshold_index]

                    assert u_gt == v_gt
                    e_gt = u_gt

                    u_label_pair = matching_details_graph.nodes[u][
                        "label_pair"][threshold_index]
                    v_label_pair = matching_details_graph.nodes[v][
                        "label_pair"][threshold_index]

                    e_selected = u_selected and v_selected
                    e_success = (e_selected and u_success and v_success
                                 and (u_label_pair == v_label_pair))
                    e_fp = u_fp and v_fp
                    e_fn = u_fn and v_fn
                    e_merge = e_selected and (not e_success) and (
                        not e_fp) and not e_gt
                    e_split = e_selected and (not e_success) and (
                        not e_fn) and e_gt
                    assert not (e_success and e_merge)
                    assert not (e_success and e_split)

                    data = attrs.setdefault(
                        "details", np.zeros((len(thresholds), 7), dtype=bool))
                    if e_success:
                        label_pairs = attrs.setdefault("label_pair", [])
                        label_pairs.append(u_label_pair)
                        assert len(label_pairs) == threshold_index + 1
                    else:
                        label_pairs = attrs.setdefault("label_pair", [])
                        label_pairs.append((-1, -1))
                        assert len(label_pairs) == threshold_index + 1
                    data[threshold_index] = [
                        e_selected,
                        e_success,
                        e_fp,
                        e_fn,
                        e_merge,
                        e_split,
                        e_gt,
                    ]

            edit_distance, (
                split_cost,
                merge_cost,
                false_pos_cost,
                false_neg_cost,
            ) = psudo_graph_edit_distance(
                result[1],
                node_labels_x,
                node_labels_y,
                temp,
                gt_graph,
                self.location_attr,
                node_spacing=self.edit_distance_node_spacing,
                details=True,
            )

            edit_distances.append(edit_distance)
            split_costs.append(split_cost)
            merge_costs.append(merge_cost)
            false_pos_costs.append(false_pos_cost)
            false_neg_costs.append(false_neg_cost)
            num_nodes.append(len(temp.nodes))
            num_edges.append(len(temp.edges))

            # save the best version:
            if best_score is None:
                best_score = edit_distance
                best_graph = copy.deepcopy(temp)
            elif edit_distance < best_score:
                best_score = edit_distance
                best_graph = copy.deepcopy(temp)

        outputs[self.output] = gp.Array(
            np.array([
                edit_distances,
                thresholds,
                num_nodes,
                num_edges,
                split_costs,
                merge_costs,
                false_pos_costs,
                false_neg_costs,
            ]),
            gp.ArraySpec(nonspatial=True),
        )
        if self.output_graph is not None:
            outputs[self.output_graph] = gp.Graph.from_nx_graph(
                best_graph,
                gp.GraphSpec(roi=batch[self.gt].spec.roi, directed=False))
        if self.details is not None:
            outputs[self.details] = gp.Graph.from_nx_graph(
                matching_details_graph,
                gp.GraphSpec(roi=batch[self.gt].spec.roi, directed=False),
            )
        return outputs
示例#9
0
def evaluate(matching_graph,
             max_edges=1,
             optimality_gap=0.0,
             time_limit=None,
             n_gts=-1,
             n_recs=-1):

    nodes_gt, nodes_rec, labels_gt, labels_rec, edges_gt_rec, edge_conflicts = matching_graph.export(
    )

    if nodes_gt and nodes_rec:
        label_matches, node_matches, num_splits, num_merges, num_fps, num_fns = match_components(
            nodes_gt,
            nodes_rec,
            edges_gt_rec,
            labels_gt,
            labels_rec,
            edge_conflicts=edge_conflicts,
            max_edges=max_edges,
            optimality_gap=optimality_gap,
            time_limit=time_limit)

        topological_errors = {
            "n_gt": len(set(v for v in labels_gt.values())),
            "n_rec": len(set([v for v in labels_rec.values()])),
            "splits": num_splits,
            "merges": num_merges,
            "fps": num_fps,
            "fns": num_fns
        }
        matching_graph.import_node_matches(node_matches)
        node_errors = matching_graph.get_stats()

    else:
        if not nodes_gt:
            fps = matching_graph.rec_ccs
            fns = 0
            nodes_fps = len(nodes_rec)
            nodes_fns = 0
        if not nodes_rec:
            fps = 0
            fns = matching_graph.gt_ccs
            nodes_fps = 0
            nodes_fns = len(nodes_gt)

        topological_errors = {
            "n_gt": matching_graph.gt_ccs,
            "n_rec": matching_graph.rec_ccs,
            "splits": 0,
            "merges": 0,
            "fps": fps,
            "fns": fns
        }
        node_errors = {
            "vertices": 0,
            "edges": 0,
            "tps_rec": 0,
            "tps_gt": 0,
            "fps": nodes_fps,
            "fns": nodes_fns,
            "merges": 0,
            "splits": 0
        }

    return node_errors, topological_errors