def get_bow_cfg(): toreturn = {} cfg = combinator.get_classifier_technique_config(bow=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg return toreturn
def get_bow_rating_sentiment1_cfg(key_prefix): toreturn = {} cfg = combinator.get_classifier_technique_config(bow=True, rating=True, sentiment1=True) key = key_prefix + "__" + combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg return toreturn
def get_bow_rating_tense_sentiment1_cfg(): toreturn = {} cfg = combinator.get_classifier_technique_config(bow=True, rating=True, tense=True, sentiment1=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg return toreturn
def get_combined_cfgs_journal_version(): toreturn = {} cfg = combinator.get_classifier_technique_config(bow=True, lemmatize=True, rating=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(bow=True, rating=True, sentiment1=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(bow=True, rating=True, tense=True, sentiment1=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(bigram=True, rating=True, sentiment1=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(bigram=True, remove_stopwords=True, lemmatize=True, rating=True, tense=True, sentiment2=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(bow=True, bigram=True, tense=True, sentiment1=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(bow=True, lemmatize=True, bigram=True, rating=True, tense=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(bow=True, remove_stopwords=True, bigram=True, rating=True, tense=True, sentiment1=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(bow=True, remove_stopwords=True, lemmatize=True, rating=True, tense=True, sentiment1=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(bow=True, remove_stopwords=True, lemmatize=True, rating=True, tense=True, sentiment2=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg ## add bow cfg = combinator.get_classifier_technique_config(bow=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg ## add bigram cfg = combinator.get_classifier_technique_config(bigram=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg ## add bow+bigram cfg = combinator.get_classifier_technique_config(bow=True, bigram=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg ## add bow+lemmatize cfg = combinator.get_classifier_technique_config(bow=True, lemmatize=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg ## add bow-stopwords cfg = combinator.get_classifier_technique_config(bow=True, remove_stopwords=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg ## add bow-stopwords+lemmatize cfg = combinator.get_classifier_technique_config(bow=True, remove_stopwords=True, lemmatize=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg ## add bow+bigram-stopwords+lemmatize cfg = combinator.get_classifier_technique_config(bow=True, bigram=True, remove_stopwords=True, lemmatize=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg return toreturn
def get_combined_cfgs_journal_version(): toreturn = {} #Document classification (&NLP) cfg = combinator.get_classifier_technique_config(bow=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(bigram=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(bow=True, bigram=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(bow=True, lemmatize=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(bow=True, remove_stopwords=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(bow=True, lemmatize=True, remove_stopwords=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(bow=True, bigram=True, remove_stopwords=True, lemmatize=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg #Metadata cfg = combinator.get_classifier_technique_config(rating=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(rating=True, length=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(rating=True, length=True, tense=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(rating=True, length=True, tense=True, sentiment1=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(rating=True, length=True, tense=True, sentiment2=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg #Combined cfg = combinator.get_classifier_technique_config(bow=True, lemmatize=True, rating=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(bow=True, rating=True, sentiment1=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(bow=True, rating=True, tense=True, sentiment1=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(bigram=True, rating=True, sentiment1=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(bigram=True, remove_stopwords=True, lemmatize=True, rating=True, tense=True, sentiment2=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(bow=True, bigram=True, tense=True, sentiment1=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(bow=True, lemmatize=True, bigram=True, rating=True, tense=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(bow=True, remove_stopwords=True, bigram=True, rating=True, tense=True, sentiment1=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(bow=True, remove_stopwords=True, lemmatize=True, rating=True, tense=True, sentiment1=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg cfg = combinator.get_classifier_technique_config(bow=True, remove_stopwords=True, lemmatize=True, rating=True, tense=True, sentiment2=True) key = combinator.get_key_for_classifier_config(cfg) toreturn[key] = cfg return toreturn