示例#1
0
class TestFitPredict(unittest.TestCase):
    def setUp(self):
        self.roc_floor = 0.9
        self.accuracy_floor = 0.9

        random_state = 42
        X, y = load_breast_cancer(return_X_y=True)

        self.X_train, self.X_test, self.y_train, self.y_test = \
            train_test_split(X, y, test_size=0.4, random_state=random_state)

        classifiers = [
            DecisionTreeClassifier(random_state=random_state),
            LogisticRegression(random_state=random_state),
            KNeighborsClassifier(),
            RandomForestClassifier(random_state=random_state),
            GradientBoostingClassifier(random_state=random_state)
        ]

        self.clf = SimpleClassifierAggregator(classifiers, method='average')

    def test_fit_predict(self):
        y_train_predicted = self.clf.fit_predict(self.X_train, self.y_train)
        assert_equal(len(y_train_predicted), self.X_train.shape[0])

        # check performance
        assert_greater(accuracy_score(self.y_train, y_train_predicted),
                       self.accuracy_floor)
示例#2
0
class TestFitPredict(unittest.TestCase):
    def setUp(self):
        self.roc_floor = 0.9
        self.accuracy_floor = 0.9

        random_state = 42
        X, y = load_breast_cancer(return_X_y=True)

        self.X_train, self.X_test, self.y_train, self.y_test = \
            train_test_split(X, y, test_size=0.4, random_state=random_state)

        classifiers = [
            DecisionTreeClassifier(random_state=random_state),
            LogisticRegression(random_state=random_state),
            KNeighborsClassifier(),
            RandomForestClassifier(random_state=random_state),
            GradientBoostingClassifier(random_state=random_state)
        ]

        self.clf = SimpleClassifierAggregator(classifiers, method='average')

    def test_fit_predict(self):
        with assert_raises(NotImplementedError):
            y_train_predicted = self.clf.fit_predict(self.X_train,
                                                     self.y_train)