def __init__(self, hp, logname=''): super(MyGRUModelQC, self).__init__() input_size = 300 reservoir_size = hp['reservoir_size'] self.mlp_epochs = hp['epochs'] self.lr = hp['lr'] self.batch_size = hp['n_batch'] self.weight_decay = hp['weight_decay'] self.reservoir_size = reservoir_size num_directions = 2 self.training_time = -1 self.gru = CustomGRU(input_size, reservoir_size, bidirectional=(num_directions == 2)).to(device) self.readout = torch.nn.Linear(num_directions * reservoir_size, 6).to(device)
def __init__(self, hp, logname=''): super(MyGRUModelQC, self).__init__() input_size = 300 reservoir_size = hp['reservoir_size'] self.mlp_epochs = hp['epochs'] self.lr = hp['lr'] self.batch_size = hp['n_batch'] self.weight_decay = hp['weight_decay'] self.reservoir_size = reservoir_size num_directions = 2 self.training_time = -1 self.gru = CustomGRU(input_size, reservoir_size, bidirectional=(num_directions == 2)).to(device) self.readout = torch.nn.Linear(num_directions * reservoir_size, 6).to(device) self.log_writer = SummaryWriter(log_dir=get_log_dir(comment=logname)) self.log_writer.add_text("hp", str(hp))
class MyGRUModelQC(torch.nn.Module): def __init__(self, hp, logname=''): super(MyGRUModelQC, self).__init__() input_size = 300 reservoir_size = hp['reservoir_size'] self.mlp_epochs = hp['epochs'] self.lr = hp['lr'] self.batch_size = hp['n_batch'] self.weight_decay = hp['weight_decay'] self.reservoir_size = reservoir_size num_directions = 2 self.training_time = -1 self.gru = CustomGRU(input_size, reservoir_size, bidirectional=(num_directions == 2)).to(device) self.readout = torch.nn.Linear(num_directions * reservoir_size, 6).to(device) def forward(self, input, seq_lengths=None): """ input: (seq_len, batch_size, input_size) output: (batch_size, N_Y) """ x, _ = self.gru(input.to(device)) # Extract last time step from each sequence x = self.gru.extract_last_time_step(x, seq_lengths=seq_lengths) y_tilde = self.readout(x) return y_tilde def fit(self, train_fold, val_fold): """ Fits the model with self.alpha as regularization parameter. :param train_fold: training fold. :param val_fold: validation fold. :return: """ t_train_start = time.time() epochs = self.mlp_epochs #weights = 1.0 / torch.Tensor([67, 945, 1004, 949, 670, 727]) #sampler = torch.utils.data.WeightedRandomSampler(weights, len(train_fold)) #dataloader = DataLoader(train_fold, batch_size=self.batch_size, collate_fn=collate_fn, # pin_memory=True, sampler=sampler) dataloader = DataLoader(train_fold, shuffle=True, batch_size=self.batch_size, collate_fn=collate_fn, pin_memory=True) optimizer = torch.optim.Adam(self.parameters(), lr=self.lr, weight_decay=self.weight_decay) criterion = torch.nn.CrossEntropyLoss() best_loss = float('inf') epochs_without_improvement = 0 best_val_accuracy = 0 epochs_without_val_acc_improvement = 0 for epoch in tqdm(range(1, epochs + 1), desc="epochs", dynamic_ncols=True): running_loss = 0.0 num_minibatches = 0 for i, data in enumerate(dataloader): # Move data to devices data_x = data['x'].to(device, non_blocking=True) data_y = data['y'].to(device, non_blocking=True) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize self.train() train_out = self.forward(data_x, seq_lengths=data['lengths']) train_expected = data_y.squeeze(dim=1) loss = criterion(train_out, train_expected) loss.backward() optimizer.step() running_loss += loss.item() num_minibatches += 1 curr_avg_loss = running_loss / num_minibatches if curr_avg_loss < best_loss: epochs_without_improvement = 0 best_loss = curr_avg_loss else: epochs_without_improvement += 1 skip = 10 if epoch % skip == 0 and val_fold is not None: _, val_accuracy, _ = self.performance(None, val_fold, None) if val_accuracy > best_val_accuracy: epochs_without_val_acc_improvement = 0 best_val_accuracy = val_accuracy else: epochs_without_val_acc_improvement += skip # Early stopping if epochs_without_val_acc_improvement >= 10: print( f"Epoch {epoch}: no accuracy improvement after 10 epochs. Early stop." ) break ## Early stopping #if epochs_without_improvement >= 10: # print(f"Epoch {epoch}: no loss improvement after 10 epochs. Early stop.") # break t_train_end = time.time() self.training_time = t_train_end - t_train_start def performance(self, train_fold, val_fold, test_fold=None, batch_size=None): if batch_size is None: batch_size = self.batch_size if train_fold: train_accuracy, train_out, train_expected = self.performance_from_fold( train_fold, batch_size) else: train_accuracy, train_out, train_expected = (0, None, None) if val_fold: val_accuracy, val_out, val_expected = self.performance_from_fold( val_fold, batch_size) else: val_accuracy, val_out, val_expected = (0, None, None) if test_fold: test_accuracy, test_out, test_expected = self.performance_from_fold( test_fold, batch_size) else: test_accuracy, test_out, test_expected = (0, None, None) save_raw_predictions = False if save_raw_predictions: raw_preds_filename = '/home/disarli/tmp/predictions.pt' try: saved = torch.load(raw_preds_filename) except FileNotFoundError: saved = [] saved.append({ 'train_out': train_out.cpu(), 'train_expected': train_expected.cpu(), 'val_out': val_out.cpu(), 'val_expected': val_expected.cpu(), 'test_out': test_out.cpu() if test_fold else None, 'test_expected': test_expected.cpu() if test_fold else None, }) torch.save(saved, raw_preds_filename) return train_accuracy, val_accuracy, test_accuracy def forward_in_batches(self, dataset, batch_size): dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, collate_fn=collate_fn, pin_memory=True) _Xs = [] for _, minibatch in enumerate(dataloader): data_x = minibatch['x'].to(device, non_blocking=True) _Xs += [self.forward(data_x, seq_lengths=minibatch['lengths'])] return torch.cat(_Xs, dim=0) def performance_from_out(self, output, expected): """ Given a tensor of network outputs and a tensor of expected outputs, returns the performance :param output: :param expected: :return: """ output = output.argmax(dim=1).cpu() return common.accuracy(output, expected) def performance_from_fold(self, fold, batch_size): with torch.no_grad(): self.eval() out = self.forward_in_batches(fold, batch_size) expected = torch.Tensor([d['y'] for d in fold]) perf = self.performance_from_out(out, expected) return perf, out, expected
class MyGRUModelSNLI(torch.nn.Module): def __init__(self, hp, logname=''): super(MyGRUModelSNLI, self).__init__() input_size = 300 reservoir_size = hp['reservoir_size'] self.epochs = hp['epochs'] self.lr = hp['lr'] self.batch_size = hp['n_batch'] self.weight_decay = hp['weight_decay'] self.reservoir_size = reservoir_size num_directions = 2 self.early_stop = self.epochs < 0 self.epochs = abs(self.epochs) self.training_time = -1 self.actual_epochs = self.epochs self.gru = CustomGRU(input_size, reservoir_size, bidirectional=(num_directions == 2)).to(device) self.readout = torch.nn.Linear(num_directions * reservoir_size * 3, 3).to(device) def forward(self, x1: torch.Tensor, x2: torch.Tensor, seq_lengths_1=None, seq_lengths_2=None): """ input: (seq_len, batch_size, input_size) output: (batch_size, N_Y) """ s1, _ = self.gru(x1.to(device)) # Extract last time step from each sequence s1 = self.gru.extract_last_time_step(s1, seq_lengths=seq_lengths_1) s2, _ = self.gru(x2.to(device)) # Extract last time step from each sequence s2 = self.gru.extract_last_time_step(s2, seq_lengths=seq_lengths_2) concat_states = torch.cat([s1, s2, (s1 - s2).abs()], dim=1) y_tilde = self.readout(concat_states) return y_tilde def fit(self, train_fold, val_fold): """ Fits the model with self.alpha as regularization parameter. :param train_fold: training fold. :param val_fold: validation fold. :return: """ t_train_start = time.time() epochs = self.epochs #weights = 1.0 / torch.Tensor([67, 945, 1004, 949, 670, 727]) #sampler = torch.utils.data.WeightedRandomSampler(weights, len(train_fold)) #dataloader = DataLoader(train_fold, batch_size=self.batch_size, collate_fn=collate_fn, # pin_memory=True, sampler=sampler) dataloader = DataLoader(train_fold, shuffle=True, batch_size=self.batch_size, collate_fn=collate_fn, pin_memory=True, num_workers=6) optimizer = torch.optim.Adam(self.parameters(), lr=self.lr, weight_decay=self.weight_decay) criterion = torch.nn.CrossEntropyLoss() checkpoint = self.state_dict() best_val_accuracy = 0 epochs_without_val_acc_improvement = 0 patience = 10 epoch = 0 #for epoch in tqdm(range(1, epochs + 1), desc="epochs", dynamic_ncols=True): for epoch in range(1, self.epochs + 1): running_loss = 0.0 num_minibatches = 0 for i, data in enumerate(dataloader): # Move data to devices data_x1 = data['x1'].to(device, non_blocking=True) data_x2 = data['x2'].to(device, non_blocking=True) data_y = data['y'].to(device, non_blocking=True) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize self.train() train_out = self.forward(data_x1, data_x2, seq_lengths_1=data['lengths1'], seq_lengths_2=data['lengths2']) loss = criterion(train_out, data_y) loss.backward() optimizer.step() running_loss += loss.item() num_minibatches += 1 curr_avg_loss = running_loss / num_minibatches if math.isnan(curr_avg_loss): print("Loss is NaN. Stopping.") break if val_fold is not None: _, val_accuracy, _ = self.performance(None, val_fold, None) if val_accuracy > best_val_accuracy: epochs_without_val_acc_improvement = 0 best_val_accuracy = val_accuracy checkpoint = self.state_dict() else: epochs_without_val_acc_improvement += 1 # Early stopping if self.early_stop and epochs_without_val_acc_improvement >= patience: print( f"Epoch {epoch}: no accuracy improvement after {patience} epochs. Early stop." ) self.load_state_dict(checkpoint) break self.actual_epochs = epoch - patience if self.early_stop else epoch t_train_end = time.time() self.training_time = t_train_end - t_train_start # Compute accuracy on validation set _, val_accuracy, _ = self.performance(None, val_fold, None) return val_accuracy def performance(self, train_fold, val_fold, test_fold=None, batch_size=None): if batch_size is None: batch_size = self.batch_size if train_fold: train_accuracy, train_out, train_expected = self.performance_from_fold( train_fold, batch_size) else: train_accuracy, train_out, train_expected = (0, None, None) if val_fold: val_accuracy, val_out, val_expected = self.performance_from_fold( val_fold, batch_size) else: val_accuracy, val_out, val_expected = (0, None, None) if test_fold: test_accuracy, test_out, test_expected = self.performance_from_fold( test_fold, batch_size) else: test_accuracy, test_out, test_expected = (0, None, None) save_raw_predictions = False if save_raw_predictions: raw_preds_filename = '/home/disarli/tmp/predictions.pt' try: saved = torch.load(raw_preds_filename) except FileNotFoundError: saved = [] saved.append({ 'train_out': train_out.cpu(), 'train_expected': train_expected.cpu(), 'val_out': val_out.cpu(), 'val_expected': val_expected.cpu(), 'test_out': test_out.cpu() if test_fold else None, 'test_expected': test_expected.cpu() if test_fold else None, }) torch.save(saved, raw_preds_filename) return train_accuracy, val_accuracy, test_accuracy def forward_in_batches(self, dataset, batch_size): dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, collate_fn=collate_fn, pin_memory=True, num_workers=6) _Xs = [] for _, minibatch in enumerate(dataloader): data_x1 = minibatch['x1'].to(device, non_blocking=True) data_x2 = minibatch['x2'].to(device, non_blocking=True) _Xs += [ self.forward(data_x1, data_x2, seq_lengths_1=minibatch['lengths1'], seq_lengths_2=minibatch['lengths2']) ] return torch.cat(_Xs, dim=0) def performance_from_out(self, output, expected): """ Given a tensor of network outputs and a tensor of expected outputs, returns the performance :param output: :param expected: :return: """ output = output.argmax(dim=1).cpu() return common.accuracy(output, expected) def performance_from_fold(self, fold, batch_size): with torch.no_grad(): self.eval() out = self.forward_in_batches(fold, batch_size) expected = torch.Tensor([d['y'] for d in fold]) perf = self.performance_from_out(out, expected) return perf, out, expected