def rnn_get_activation(cls, name, alpha, beta): if name not in cls.ONNX_ACTIVATION_MAPPING: exception.OP_UNSUPPORTED_EXCEPT( "Activation function {} for {}".format(name, cls.__name__), "Tensorflow") activation = cls.ONNX_ACTIVATION_MAPPING[name] kwargs = {} if name == "affine": kwargs["scale"] = alpha kwargs["shift"] = beta activation = activation(**kwargs) elif name == "elu": if alpha != 1: exception.OP_UNSUPPORTED_EXCEPT( "Activation function {} with alpha={} for {}".format( name, alpha, cls.__name__), "Tensorflow") elif name == "hard_sigmoid": if alpha != 0.2 or beta != 0.5: exception.OP_UNSUPPORTED_EXCEPT( "Activation function {} with alpha={}, beta={} for {}". format(name, alpha, beta, cls.__name__), "Tensorflow") elif name == "leaky_relu": kwargs["alpha"] = alpha or 0.01 activation = partial(activation, **kwargs) elif name == "thresholded_relu": kwargs["theta"] = alpha activation = activation(**kwargs) return activation
def args_check(cls, node, **kwargs): unsupported_dtype = [ tf.int8, tf.int16, tf.uint8, tf.uint16, tf.uint32, tf.uint64 ] x = kwargs["tensor_dict"][node.inputs[0]] y = kwargs["tensor_dict"][node.inputs[1]] if x.dtype in unsupported_dtype: exception.OP_UNSUPPORTED_EXCEPT("Mod Dividend in " + str(x.dtype), "Tensorflow") if y.dtype in unsupported_dtype: exception.OP_UNSUPPORTED_EXCEPT("Mod Divisor in " + str(y.dtype), "Tensorflow")
def args_check(cls, node, **kwargs): x = kwargs["tensor_dict"][node.inputs[0]] x_shape = x.get_shape().as_list() if len(x_shape) != 4: exception.OP_UNSUPPORTED_EXCEPT("Upsample without 4D input", "Tensorflow") if node.attrs.get("mode", "nearest").lower() not in [ "nearest", "bilinear", "linear" ]: exception.OP_UNSUPPORTED_EXCEPT( "Upsample without nearest or bilinear", "Tensorflow")
def args_check(cls, node, **kwargs): tensor_dict = kwargs["tensor_dict"] indices = tensor_dict[node.inputs[0]] depth = tensor_dict[node.inputs[1]] if indices.dtype not in [tf.uint8, tf.int32, tf.int64]: exception.OP_UNSUPPORTED_EXCEPT( "OneHot indices must be in uint8 or int32 or int64 " + "but it is currently in " + str(indices.dtype) + " which", "Tensorflow") if depth.dtype not in [tf.int32]: exception.OP_UNSUPPORTED_EXCEPT( "OneHot depth must be in int32 but it is currently in " + str(depth.dtype) + " which", "Tensorflow")
def args_check(cls, node, **kwargs): direction = node.attrs.get("direction", "forward") num_directions = 2 if direction == "bidirectional" else 1 if "clip" in node.attrs: exception.OP_UNSUPPORTED_EXCEPT("GRU with clip", "Tensorflow") if node.attrs.get("linear_before_reset", 0): exception.OP_UNSUPPORTED_EXCEPT("GRU with linear_before_reset", "Tensorflow") if "activations" in node.attrs: activations = list(map(lambda x: x.lower(), node.attrs["activations"])) if activations[0] != "sigmoid": exception.OP_UNSUPPORTED_EXCEPT("GRU without sigmoid for `z` and `r`", "Tensorflow") if num_directions == 2: if activations[2] != "sigmoid": exception.OP_UNSUPPORTED_EXCEPT("GRU without sigmoid for `z` and `r`", "Tensorflow")
def args_check(cls, node, **kwargs): direction = node.attrs.get("direction", "forward") num_directions = 2 if direction == "bidirectional" else 1 if node.attrs.get("input_forget", 0): # TODO(fumihwh): warning pass if "activations" in node.attrs: activations = list( map(lambda x: x.lower(), node.attrs["activations"])) if activations[0] != "sigmoid": exception.OP_UNSUPPORTED_EXCEPT("LSTM without sigmoid for `f`", "Tensorflow") if activations[1] != activations[2]: exception.OP_UNSUPPORTED_EXCEPT( "LSTM without same activation for `g` and `h`", "Tensorflow") if num_directions == 2: if activations[3] != "sigmoid": exception.OP_UNSUPPORTED_EXCEPT( "LSTM without sigmoid for `f`", "Tensorflow") if activations[4] != activations[5]: exception.OP_UNSUPPORTED_EXCEPT( "LSTM without same activation for `g` and `h`", "Tensorflow")
def args_check(cls, node, **kwargs): x = kwargs["tensor_dict"][node.inputs[0]] x_shape = x.get_shape().as_list() if len(x_shape) != 4: exception.OP_UNSUPPORTED_EXCEPT("Resize required 4D input", "Tensorflow")
def conv(cls, node, input_dict, transpose=False): """ Convolution method for both conv and transposed conv For transposed conv, Attr pads is not used for input, but declares how much output is padded. Here, output means output from transposed conv which already pad output_padding if set. So the pseudo explanation for output should be: output = conv_transpose_output + output_padding - pads And conv_transpose_output shape should be: conv_transpose_output_shape[i] = strides[i] * (input_shape[i] - 1) + kernel_shape[i] """ x = input_dict[node.inputs[0]] x_rank = len(x.get_shape()) x_shape = x.get_shape().as_list() spatial_size = x_rank - 2 support_cuda = supports_device("CUDA") storage_format, compute_format = get_data_format(x_rank) compute_c_idx = compute_format.find("C") spatial_format = "".join( [d for d in compute_format if d not in ["N", "C"]]) in_weights = input_dict[node.inputs[1]] weights_rank = len(in_weights.get_shape()) if transpose: # Translate weights from (C x M x KH x KW) to (KH x KW X M X C) perm = list(range(2, weights_rank)) + [1, 0] else: # Translate weights from (M x C x KH x KW) to (KH x KW X C X M) perm = list(range(2, weights_rank)) + [1, 0] if "kernel_shape" in node.attrs.keys(): kernel_shape = node.attrs["kernel_shape"] assert in_weights.get_shape().as_list()[2:] == kernel_shape, ( "kernel_shape " "attr of convolution does not match the actual weight " "passed to this operation, attr {}, actual {}").format( kernel_shape, in_weights.get_shape().as_list()) weights = tf.transpose(in_weights, perm) dilations = node.attrs.get("dilations", [1] * spatial_size) strides = node.attrs.get("strides", [1] * spatial_size) pads = node.attrs.get("pads", [0, 0] * spatial_size) # Check auto_pad nonexistent or NOTSET first if "auto_pad" not in node.attrs or node.attrs["auto_pad"] == "NOTSET": if not transpose: if pads != [0, 0] * spatial_size: x = PadMixin.get_padding_as_op(x, pads) pad_mode = "VALID" else: pad_mode = "NOTSET" # Then we use auto_pad to setup pad_mode elif node.attrs["auto_pad"] == "SAME_UPPER": pad_mode = "SAME" elif node.attrs["auto_pad"] == "VALID": pad_mode = "VALID" elif node.attrs["auto_pad"] == "SAME_LOWER": pad_mode = PAD_TF_INCOMPATIBLE else: raise ValueError("Invalid auto_pad attribute: {}".format( node.attrs["auto_pad"])) # Currently auto_pad = SAME_LOWER is not supported if pad_mode is PAD_TF_INCOMPATIBLE: if transpose: exception.OP_UNSUPPORTED_EXCEPT( "ConvTranspose with auto_pad `SAME_LOWER`", "Tensorflow") else: exception.OP_UNSUPPORTED_EXCEPT( "Conv with auto_pad `SAME_LOWER`", "Tensorflow") group = node.attrs.get("group", 1) weight_groups = tf.split(weights, num_or_size_splits=group, axis=-1) if support_cuda: xs = tf.split(x, num_or_size_splits=group, axis=1) else: x = tf.transpose(x, perm=get_perm_from_formats( storage_format, compute_format)) xs = tf.split(x, num_or_size_splits=group, axis=-1) if transpose: if dilations != [1] * spatial_size: raise RuntimeError( "Cannot set non-1 dilation for conv transpose.") convolved = [] for (x, weight) in zip(xs, weight_groups): x_spatial_shape = [ x_shape[storage_format.find(d)] for d in spatial_format ] weights_shape = weights.get_shape().as_list() output_shape = node.attrs.get("output_shape", None) conv_output_shape = [x_shape[storage_format.find("N")]] # calculate output shape if pad_mode == "NOTSET": if output_shape is None: conv_output_shape += [ strides[i] * x_spatial_shape[i] + max(weights_shape[i] - strides[i], 0) for i in list(range(spatial_size)) ] else: conv_output_shape += [ s + pads[i] + pads[spatial_size + i] for i, s in enumerate(output_shape[-2:]) ] conv_output_shape.insert(compute_c_idx, weights_shape[-2]) # make strides to match input rank strides_full = [1] + strides strides_full.insert(compute_c_idx, 1) # get corresponding function in tf if spatial_size == 1: conv_func = tf.nn.conv1d_transpose strides_full = strides[0] elif spatial_size == 2: conv_func = tf.nn.conv2d_transpose elif spatial_size == 3: conv_func = tf.nn.conv3d_transpose else: raise NotImplementedError( "Transposed convolution for {}d is not implemented in Tensorflow" .format(spatial_size)) # use raw input x to do transposed conv conv_rs = conv_func(x, weight, conv_output_shape, strides_full, padding="VALID", data_format=compute_format) # pad output first by output_padding attr if "output_padding" in node.attrs and output_shape is None: output_padding = [[ 0, 0 ]] + [[0, p] for p in node.attrs["output_padding"]] output_padding.insert(compute_c_idx, [0, 0]) conv_rs = tf.pad(conv_rs, output_padding) # remove pads set in pads attr conv_rs_shape = conv_rs.get_shape().as_list() begin = [0] + pads[:spatial_size] begin.insert(compute_c_idx, 0) size = [ s if d in ["N", "C"] else s - pads[spatial_format.find(d)] - pads[spatial_format.find(d) + spatial_size] for d, s in zip(compute_format, conv_rs_shape) ] conv_rs = tf.slice(conv_rs, begin=begin, size=size) convolved.append(conv_rs) else: # No need to check pads if auto_pad is specifically provided. # The assumption is that once auto_pad is provided as either VALID # or SAME_UPPER (SAME_LOWER is currently not supported in TF) the # output_shape will always be inferred. That is, the output_shape # and output_padding will not be used in this case. if pad_mode == "VALID": conv_output_shape += [ strides[i] * (x_spatial_shape[i] - 1) + weights_shape[i] for i in list(range(spatial_size)) ] else: conv_output_shape += [ strides[i] * x_spatial_shape[i] for i in list(range(spatial_size)) ] conv_output_shape.insert(compute_c_idx, weights_shape[-2]) # make strides to match input rank strides_full = [1] + strides strides_full.insert(compute_c_idx, 1) # get corresponding function in tf if spatial_size == 1: conv_func = tf.contrib.nn.conv1d_transpose strides_full = strides[0] elif spatial_size == 2: conv_func = tf.nn.conv2d_transpose elif spatial_size == 3: conv_func = tf.nn.conv3d_transpose else: raise NotImplementedError( "Transposed convolution for {}d is not implemented in Tensorflow" .format(spatial_size)) # use raw input x to do transposed conv conv_rs = conv_func(x, weight, conv_output_shape, strides_full, padding=pad_mode, data_format=compute_format) convolved.append(conv_rs) else: convolved = [ tf.nn.convolution(x, weight, padding=pad_mode, strides=strides, dilations=dilations, data_format=compute_format) for (x, weight) in zip(xs, weight_groups) ] if len(node.inputs) == 2: if support_cuda: output = tf.concat(convolved, axis=1) else: output = tf.concat(convolved, axis=-1) output = tf.transpose(output, perm=get_perm_from_formats( compute_format, storage_format)) else: bias = input_dict[node.inputs[2]] bias = cls.explicit_broadcast([x, bias], compute_c_idx) if support_cuda: output = tf.concat(convolved, axis=1) output = tf.add(output, bias) else: output = tf.concat(convolved, axis=-1) output = tf.add(output, bias) output = tf.transpose(output, perm=get_perm_from_formats( compute_format, storage_format)) return [output]
def args_check(cls, node, **kwargs): if "clip" in node.attrs: exception.OP_UNSUPPORTED_EXCEPT("RNN with clip", "Tensorflow")