示例#1
0
class SimpleCBOW:
    def __init__(self, vocab_size, hidden_size):
        W_in = 0.01 * np.random.randn(vocab_size, hidden_size).astype('f')
        W_out = 0.01 * np.random.randn(hidden_size, vocab_size).astype('f')

        self.input_layor0 = MatMul(W_in)
        self.input_layer1 = MatMul(W_in)
        self.out_layer = MatMul(W_out)
        self.loss_layer = SoftmaxWithLoss()

        layers = [self.input_layor0, self.input_layer1, self.out_layer]
        self.params, self.grads = [], []

        for layer in layers:
            self.params += layer.params
            self.grads += layer.grads

        self.word_vecs = W_in

    def forward(self, contexts, target):
        h0 = self.input_layer0.forward(contexts[:, 0, :])
        h1 = self.input_layer1.forward(contexts[:, 1, :])
        h = (h0 + h1) / 2

        score = self.out_layer.forward(h)
        loss = self.loss_layer.forward(score, target)
        return loss

    def backword(self, dout=1):
        ds = self.loss_layer.backward(dout)
        da = self.out_layer.backword(ds)
        da /= 2
        self.input_layer0.backward(da)
        self.input_layer1.backword(da)
        return None
示例#2
0
    def __init__(self, D, T, w):
        self.T = T
        self.D = D

        self.agg1 = MaskADD()
        self.agg2 = MatMul(w)
        self.agg3 = Relu()
        self.readout = ADD()
    def test_matmul(self):
        W = np.random.randn(7, 3)
        x = np.random.randn(10, 7)

        matmul = MatMul(W)
        dout = matmul.forward(x)
        dx = matmul.backward(dout)

        np.testing.assert_array_almost_equal(dout.shape, (10, 3))
        np.testing.assert_array_almost_equal(dx.shape, (10, 7))
示例#4
0
    def __init__(self, D, T):
        self.T = T

        # 初期値の設定
        self.params = {}
        self.params['W'] = np.random.normal(0, 0.4, (D, D)).astype(np.float64)
        self.params['A'] = np.random.normal(0, 0.4, (1, D)).astype(np.float64)
        self.params['b'] = np.array([0], dtype=np.float64)

        self.MaskADD = MaskADD()
        self.MatMul = MatMul(self.params['W'])
        self.Relu = Relu()
        self.ADD = ADD()
        self.Affine = Affine(self.params['A'], self.params['b'])
        self.Sigmoid = Sigmoid()
        self.sigmoid_loss = SigmoidWithLoss()
示例#5
0
    def __init__(self, vocab_size, hidden_size):
        W_in = 0.01 * np.random.randn(vocab_size, hidden_size).astype('f')
        W_out = 0.01 * np.random.randn(hidden_size, vocab_size).astype('f')

        self.input_layor0 = MatMul(W_in)
        self.input_layer1 = MatMul(W_in)
        self.out_layer = MatMul(W_out)
        self.loss_layer = SoftmaxWithLoss()

        layers = [self.input_layor0, self.input_layer1, self.out_layer]
        self.params, self.grads = [], []

        for layer in layers:
            self.params += layer.params
            self.grads += layer.grads

        self.word_vecs = W_in
示例#6
0
class SimpleSkipGram:
    def __init__(self, vocab_size, hidden_size):
        V, H = vocab_size, hidden_size

        W_in = 0.01 * np.random.randn(V, H).astype('f')
        W_out = 0.01 * np.random.randn(H, V).astype('f')

        self.in_layer = MatMul(W_in)
        self.out_layer = MatMul(W_out)
        self.loss_layer0 = SoftmaxWithLoss()
        self.loss_layer1 = SoftmaxWithLoss()

        layers = [self.in_layer, self.out_layer]
        self.params, self.grads = [], []
        for layer in layers:
            self.params += layer.params
            self.grads += layer.grads
        
        self.word_vecs = W_in

    def forward(self, contexts, target):
        h = self.in_layer.forward(target)
        s = self.out_layer.forward(h)

        l1 = self.loss_layer0.forward(s, contexts[:, 0])
        l2 = self.loss_layer1.forward(s, contexts[:, 1])
        loss = l1 + l2

        return loss
    
    def backward(self, dout=1):
        dl0 = self.loss_layer1.backward(dout)
        dl1 = self.loss_layer0.backward(dout)
        ds = dl0 + dl1
        dh = self.out_layer.backward(ds)
        self.in_layer.backward(dh)
        return None
        
示例#7
0
def main():
    # サンプルのコンテキストデータ
    c0 = np.array([[1, 0, 0, 0, 0, 0, 0]])
    c1 = np.array([[0, 0, 1, 0, 0, 0, 0]])

    # 重みの初期化
    W_in = np.random.randn(7, 3)
    W_out = np.random.randn(3, 7)

    # レイヤの生成
    in_layer0 = MatMul(W_in)
    in_layer1 = MatMul(W_in)
    out_layer = MatMul(W_out)

    # 順伝搬
    h0 = in_layer0.forward(c0)
    h1 = in_layer1.forward(c1)
    h = 0.5 * (h0 + h1)
    s = out_layer.forward(h)

    print(s)
示例#8
0
class GNN:
    def __init__(self, D, T):
        self.T = T

        # 初期値の設定
        self.params = {}
        self.params['W'] = np.random.normal(0, 0.4, (D, D)).astype(np.float64)
        self.params['A'] = np.random.normal(0, 0.4, (1, D)).astype(np.float64)
        self.params['b'] = np.array([0], dtype=np.float64)

        self.MaskADD = MaskADD()
        self.MatMul = MatMul(self.params['W'])
        self.Relu = Relu()
        self.ADD = ADD()
        self.Affine = Affine(self.params['A'], self.params['b'])
        self.Sigmoid = Sigmoid()
        self.sigmoid_loss = SigmoidWithLoss()

    def forward(self, x, H):
        for _ in range(self.T):
            a = self.MaskADD.forward(x, H)
            r = self.MatMul.forward(a)
            x = self.Relu.forward(r)
        
        h = self.ADD.forward(x)
        s = self.Affine.forward(h)
        return s
    
    def predict(self, x, H):
        s = self.forward(x, H)
        p = self.Sigmoid.forward(s)
        return p.flatten()
    
    def loss(self, x, H, y):
        s = self.forward(x, H)
        L = self.sigmoid_loss.forward(s, y)
        return L
    
    def get_gradient(self, x, H, y):
        f = lambda w: self.loss(x, H, y)

        grads = {}
        grads['W'] = gradient(f, self.params['W'])
        grads['A'] = gradient(f, self.params['A'])
        grads['b'] = gradient(f, self.params['b'])

        return grads
示例#9
0
class GNN:
    def __init__(self, D, T, w):
        self.T = T
        self.D = D

        self.agg1 = MaskADD()
        self.agg2 = MatMul(w)
        self.agg3 = Relu()
        self.readout = ADD()

    def forward(self, x, H):
        for _ in range(self.T):
            a = self.agg1.forward(x, H)
            r = self.agg2.forward(a)
            x = self.agg3.forward(r)

        h = self.readout.forward(x)

        return h
示例#10
0
class SimpleCBOW:
    def __init__(self, vocab_size, hidden_size):
        V, H = vocab_size, hidden_size

        W_in = 0.01 * np.random.randn(V, H).astype('f')
        W_out = 0.01 * np.random.randn(H, V).astype('f')

        self.in_layer0 = MatMul(W_in)
        self.in_layer1 = MatMul(W_in)
        self.out_layer = MatMul(W_out)
        self.loss_layer = SoftmaxWithLoss()

        layers = [self.in_layer0, self.in_layer1, self.out_layer]
        self.params, self.grads = [], []
        for layer in layers:
            self.params += layer.params
            self.grads += layer.grads

        self.word_vecs = W_in

    def forward(self, contexts, target):
        h0 = self.in_layer0.forward(contexts[:, 0])
        h1 = self.in_layer1.forward(contexts[:, 1])
        h = (h0 + h1) * 0.5

        score = self.out_layer.forward(h)
        loss = self.loss_layer.forward(score, target)

        return loss

    def backward(self, dout=1):
        ds = self.loss_layer.backward(dout)
        da = self.out_layer.backward(ds)

        # distribute diff to h0/h1 equally
        da *= 0.5
        self.in_layer1.backward(da)
        self.in_layer0.backward(da)

        return None
示例#11
0
class SimpleCBOW:
    def __init__(self, vocab_size, hidden_size):
        V, H = vocab_size, hidden_size

        # 重みの初期化
        W_in = 0.01 * np.random.randn(V, H).astype('f')
        W_out = 0.01 * np.random.randn(H, V).astype('f')

        # レイヤの生成
        self.in_layer0 = MatMul(W_in)
        self.in_layer1 = MatMul(W_in)
        self.out_layer = MatMul(W_out)
        self.loss_layer = SoftmaxWithLoss()

        # すべての重みと勾配をリストにまとめる
        layers = [self.in_layer0, self.in_layer1, self.out_layer]
        self.params, self.grads = [], []
        for layer in layers:
            self.params += layer.params
            self.grads += layer.grads

        # メンバ変数に単語の分散表現を設定
        self.word_vecs = W_in

    def forward(self, contexts, target):
        h0 = self.in_layer0.forward(contexts[:, 0])
        h1 = self.in_layer1.forward(contexts[:, 1])
        h = (h0 + h1) * 0.5
        score = self.out_layer.forward(h)
        loss = self.loss_layer.forward(score, target)
        return loss

    def backward(self, dout=1):
        ds = self.loss_layer.backward(dout)
        da = self.out_layer.backward(ds)
        da *= 0.5
        self.in_layer1.backward(da)
        self.in_layer0.backward(da)
        return None
示例#12
0
    def __init__(self, vocab_size, hidden_size):
        V, H = vocab_size, hidden_size

        # 重みの初期化
        W_in = 0.01 * np.random.randn(V, H).astype('f')
        W_out = 0.01 * np.random.randn(H, V).astype('f')

        # レイヤの生成
        self.in_layer0 = MatMul(W_in)
        self.in_layer1 = MatMul(W_in)
        self.out_layer = MatMul(W_out)
        self.loss_layer = SoftmaxWithLoss()

        # すべての重みと勾配をリストにまとめる
        layers = [self.in_layer0, self.in_layer1, self.out_layer]
        self.params, self.grads = [], []
        for layer in layers:
            self.params += layer.params
            self.grads += layer.grads

        # メンバ変数に単語の分散表現を設定
        self.word_vecs = W_in
示例#13
0
import sys, os

sys.path.append(os.pardir)
from common.layer import MatMul

import numpy as np

c0 = np.zeros(7)
c1 = np.zeros(7)
c0[0] = 1
c1[2] = 1

W_in = np.random.randn(7, 3)
W_out = np.random.randn(3, 7)

in_layer0 = MatMul(W_in)
in_layer1 = MatMul(W_in)
out_layer = MatMul(W_out)

h0 = in_layer0.forward(c0)
h1 = in_layer1.forward(c1)
h = (h0 + h1) / 2.0
s = out_layer.forward(h)

print(s)