示例#1
0
def sample_trajectory(load_model_path, max_sample_traj, traj_gen, task_name,
                      sample_stochastic):

    assert load_model_path is not None
    U.load_state(load_model_path)
    sample_trajs = []
    for iters_so_far in range(max_sample_traj):
        logger.log("********** Iteration %i ************" % iters_so_far)
        traj = traj_gen.__next__()
        ob, new, ep_ret, ac, rew, ep_len = traj['ob'], traj['new'], traj[
            'ep_ret'], traj['ac'], traj['rew'], traj['ep_len']
        logger.record_tabular("ep_ret", ep_ret)
        logger.record_tabular("ep_len", ep_len)
        logger.record_tabular("immediate reward", np.mean(rew))
        if MPI.COMM_WORLD.Get_rank() == 0:
            logger.dump_tabular()
        traj_data = {"ob": ob, "ac": ac, "rew": rew, "ep_ret": ep_ret}
        sample_trajs.append(traj_data)

    sample_ep_rets = [traj["ep_ret"] for traj in sample_trajs]
    logger.log("Average total return: %f" %
               (sum(sample_ep_rets) / len(sample_ep_rets)))
    if sample_stochastic:
        task_name = 'stochastic.' + task_name
    else:
        task_name = 'deterministic.' + task_name
    pkl.dump(sample_trajs, open(task_name + ".pkl", "wb"))
示例#2
0
def load_history(agent, env, hist_files):
    logger.info()
    # load data
    if hist_files:
        for fn_tmp in hist_files.split(','):
            fn_base, fn_ext = os.path.splitext(fn_tmp)
            # this relay on the file names following the format base_rank.ext
            # todo: when mpi_size>1, not enough experience, there might be hand shake problems.
            fn_rank = '%s_%d%s' % (fn_base, MPI.COMM_WORLD.Get_rank(), fn_ext)
            rcd = env.read_step_csv(fn_rank)
            if rcd:
                start = max(0, len(rcd[0]) - int(agent.memory.limit))
                rcd = [r[start:] for r in rcd]
                agent.store_multrans(agent.memory, *rcd)
            logger.info('loaded experiences from %s, memory.nb_entries=%d' % (fn_rank, agent.memory.nb_entries))

    if agent.memory.nb_entries > 0:
        # states
        stats = agent.get_stats(agent.memory)
        combined_stats = stats.copy()
        for key in sorted(combined_stats.keys()):
            logger.record_tabular(key, combined_stats[key])
        logger.dump_tabular()

        print('rank%d, loaded experiences from %s, memory.nb_entries=%d' % (
            MPI.COMM_WORLD.Get_rank(), hist_files, agent.memory.nb_entries))
示例#3
0
    def run(self):
        print('Training...')
        try:
            # Produce video only if monitor method is implemented.
            try:
                if self.args.record_video_every != -1:
                    self.env.monitor(
                        is_monitor=True,
                        is_train=True,
                        experiment_dir=self.args.experiment_dir,
                        record_video_every=self.args.record_video_every)
            except:
                pass

            self.global_time_step = self.model.global_time_step_tensor.eval(
                self.sess)

            # Calculate the batch_size
            nbatch = self.args.num_envs * self.num_steps

            for iteration in range(self.num_iterations // nbatch + 1):
                self.cur_iteration = iteration
                obs, states, rewards, masks, actions, values = self.model.forward(
                )
                self.model.backward(obs, states, rewards, masks, actions,
                                    values, self.summary_writer,
                                    self.cur_iteration * nbatch)

                # Update the global step
                self.model.global_step_assign_op.eval(
                    session=self.sess,
                    feed_dict={
                        self.model.global_step_input:
                        self.model.global_step_tensor.eval(self.sess) + 1
                    })

                if not iteration % self.args.print_freq:
                    # mean_100ep_reward = round(np.mean(epoch_rewards[-99:-1]), 1)
                    # num_episodes = len(epoch_rewards)
                    logger.record_tabular("steps", iteration * nbatch)
                    # logger.record_tabular("episodes", num_episodes)
                    # logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
                    logger.record_tabular("Current date and time: ",
                                          datetime.datetime.now())
                    logger.dump_tabular()

                if iteration % self.save_every == 0:
                    self.model.save()
            self.env.close()

        except KeyboardInterrupt:
            print('Error occured..\n')
            self.model.save()
            self.env.close()
示例#4
0
    def train(self):

        o = self.train_env.reset()
        first_tstart = time.perf_counter()
        for _epoch in range(self._epoch, self.total_epoch):
            tstart = time.perf_counter()
            for _t in range(self.nsteps):

                if self._t > self.start_steps:
                    a = self.ac.act(np2tentor(o))
                    a = action4env(a)
                else:
                    a = np.concatenate([
                        self.train_env.action_space.sample().reshape(1, -1)
                        for _ in range(self.nenv)
                    ],
                                       axis=0)
                o2, r, d, infos = self.train_env.step(a)
                self.buffer.store(o, a, r, o2, d)
                o = o2

                for info in infos:
                    maybeepinfo = info.get('episode')
                    if maybeepinfo:
                        logger.logkv_mean('eprewtrain', maybeepinfo['r'])
                        logger.logkv_mean('eplentrain', maybeepinfo['l'])

                self._t += 1
                if self._t >= self.update_after and self._t % self.update_every == 0:
                    self.update()
                if self._t > self.n_timesteps:
                    break

            fps = int((_t + 1) / (time.perf_counter() - tstart))

            if (_epoch % self.log_freq == 0 or _epoch == self.total_epoch - 1):
                self.test_agent()
                logger.logkv('epoch', _epoch)
                logger.logkv('lr', self.optimizer.param_groups[0]['lr'])
                logger.logkv('timesteps', self._t)
                logger.logkv('fps', fps)
                logger.logkv('time_elapsed',
                             time.perf_counter() - first_tstart)
                logger.dump_tabular()
                self._epoch = _epoch
                # self.save_model()
            self.lr_scheduler.step()
示例#5
0
    def train(self):
        first_tstart = time.perf_counter()
        for _epoch in range(self._epoch, self.total_epoch):
            tstart = time.perf_counter()
            frac = 1. - _epoch * 1. / self.total_epoch
            clip_ratio_now = self.clip_ratio(frac)
            if (_epoch % self.log_freq == 0
                    or _epoch == self.total_epoch - 1) and self.is_mpi_root:
                logger.log('Stepping environment...')

            # collect data
            obs, returns, masks, actions, values, neglogpacs, states, epinfos = self.collect(
            )
            # if eval_env is not None:
            #     eval_obs, eval_returns, eval_masks, eval_actions, eval_values, eval_neglogpacs, eval_states, eval_epinfos = eval_runner.run()  # pylint: disable=E0632

            if (_epoch % self.log_freq == 0
                    or _epoch == self.total_epoch - 1) and self.is_mpi_root:
                logger.log('done')

            self.epinfobuf.extend(epinfos)
            # if eval_env is not None:
            #     eval_epinfobuf.extend(eval_epinfos)
            self.update(obs, returns, masks, actions, values, neglogpacs,
                        clip_ratio_now, states)
            self.lr_scheduler.step()
            fps = int(self.nbatch / (time.perf_counter() - tstart))
            if (_epoch % self.log_freq == 0
                    or _epoch == self.total_epoch - 1) and self.is_mpi_root:
                logger.logkv('epoch', _epoch)
                logger.logkv('lr', self.optimizer.param_groups[0]['lr'])
                logger.logkv('timesteps', (_epoch + 1) * self.nbatch)
                logger.logkv('fps', fps)
                logger.logkv(
                    'eprewmean',
                    safemean([epinfo['r'] for epinfo in self.epinfobuf]))
                logger.logkv(
                    'eplenmean',
                    safemean([epinfo['l'] for epinfo in self.epinfobuf]))
                logger.logkv('time_elapsed',
                             time.perf_counter() - first_tstart)
                logger.dump_tabular()
                self._epoch = _epoch
                self.save_model()
示例#6
0
def test(eval_env,
         agent,
         render_eval=True,
         nb_epochs=1,
         start_ckpt=None,
         **kwargs):
    logger.info('Start testing:', start_ckpt, '\n')
    with tf_util.single_threaded_session() as sess:
        agent.initialize(sess, start_ckpt=start_ckpt)
        sess.graph.finalize()

        for _ in range(nb_epochs):
            combined_stats = {}
            eval_episode(eval_env, render_eval, agent, combined_stats)

            for key in sorted(combined_stats.keys()):
                logger.record_tabular(key, combined_stats[key])
            logger.dump_tabular()
            logger.info('')
示例#7
0
def learn(encoder,
          action_decorder,
          state_decorder,
          embedding_shape,
          *,
          dataset,
          logdir,
          batch_size,
          time_steps,
          epsilon=0.001,
          lr_rate=1e-3):
    lstm_encoder = encoder("lstm_encoder")
    ac_decoder = action_decorder("ac_decoder")
    state_decoder = state_decorder("state_decoder")  #换成了mlp
    obs = U.get_placeholder_cached(name="obs")  ##for encoder

    ob = U.get_placeholder_cached(name="ob")
    embedding = U.get_placeholder_cached(name="embedding")

    # obss = U.get_placeholder_cached(name="obss")  ## for action decoder, 这个state decoder是不是也可以用, 是不是应该改成obs
    #   ## for action decoder, 这个state decoder应该也是可以用的
    # embeddingss = U.get_placeholder_cached(name="embeddingss")
    ac = ac_decoder.pdtype.sample_placeholder([None])
    obs_out = state_decoder.pdtype.sample_placeholder([None])

    # p(z) 标准正太分布, state先验分布???是不是应该换成demonstration的标准正态分布???? 可以考虑一下这个问题
    from common.distributions import make_pdtype

    p_z_pdtype = make_pdtype(embedding_shape)
    p_z_params = U.concatenate([
        tf.zeros(shape=[embedding_shape], name="mean"),
        tf.zeros(shape=[embedding_shape], name="logstd")
    ],
                               axis=-1)
    p_z = p_z_pdtype.pdfromflat(p_z_params)

    recon_loss = -tf.reduce_mean(
        tf.reduce_sum(ac_decoder.pd.logp(ac) + state_decoder.pd.logp(obs_out),
                      axis=0))  ##这个地方还要再改
    kl_loss = lstm_encoder.pd.kl(p_z)  ##p(z):标准正太分布, 这个看起来是不是也不太对!!!!
    vae_loss = recon_loss + kl_loss  ###vae_loss 应该是一个batch的

    ep_stats = stats(["recon_loss", "kl_loss", "vae_loss"])
    losses = [recon_loss, kl_loss, vae_loss]

    ## var_list
    var_list = []
    en_var_list = lstm_encoder.get_trainable_variables()
    var_list.extend(en_var_list)
    # ac_de_var_list = ac_decoder.get_trainable_variables()
    # var_list.extend(ac_de_var_list)
    state_de_var_list = state_decoder.get_trainable_variables()
    var_list.extend(state_de_var_list)
    # compute_recon_loss = U.function([ob, obs, embedding, obss, embeddingss, ac, obs_out], recon_loss)
    compute_losses = U.function([obs, ob, embedding, ac, obs_out], losses)
    compute_grad = U.function([obs, ob, embedding, ac, obs_out],
                              U.flatgrad(vae_loss,
                                         var_list))  ###这里没有想好!!!,可能是不对的!!
    adam = MpiAdam(var_list, epsilon=epsilon)

    U.initialize()
    adam.sync()

    writer = U.FileWriter(logdir)
    writer.add_graph(tf.get_default_graph())
    # =========================== TRAINING ===================== #
    iters_so_far = 0
    saver = tf.train.Saver(var_list=tf.trainable_variables(), max_to_keep=100)
    saver_encoder = tf.train.Saver(var_list=en_var_list, max_to_keep=100)
    # saver_pol = tf.train.Saver(var_list=ac_de_var_list, max_to_keep=100) ##保留一下policy的参数,但是这个好像用不到哎

    while True:
        logger.log("********** Iteration %i ************" % iters_so_far)

        recon_loss_buffer = deque(maxlen=100)
        kl_loss_buffer = deque(maxlen=100)
        vae_loss_buffer = deque(maxlen=100)

        for observations in dataset.get_next_batch(batch_size=time_steps):
            observations = observations.transpose((1, 0))
            embedding_now = lstm_encoder.get_laten_vector(observations)
            embeddings = np.array([embedding_now for _ in range(time_steps)])
            embeddings_reshape = embeddings.reshape((time_steps, -1))
            actions = ac_decoder.act(stochastic=True,
                                     ob=observations,
                                     embedding=embeddings_reshape)
            state_outputs = state_decoder.get_outputs(
                observations.reshape(time_steps, -1, 1),
                embeddings)  ##还没有加混合高斯......乱加了一通,已经加完了
            recon_loss, kl_loss, vae_loss = compute_losses(
                observations, observations.reshape(batch_size, time_steps,
                                                   -1), embeddings_reshape,
                observations.reshape(time_steps, -1, 1), embeddings, actions,
                state_outputs)

            g = compute_grad(observations,
                             observations.reshape(batch_size, time_steps,
                                                  -1), embeddings_reshape,
                             observations.reshape(time_steps, -1, 1),
                             embeddings, actions, state_outputs)
            adam.update(g, lr_rate)
            recon_loss_buffer.append(recon_loss)
            kl_loss_buffer.append(kl_loss)
            vae_loss_buffer.append(vae_loss)

        ep_stats.add_all_summary(writer, [
            np.mean(recon_loss_buffer),
            np.mean(kl_loss_buffer),
            np.mean(vae_loss_buffer)
        ], iters_so_far)
        logger.record_tabular("recon_loss", recon_loss)
        logger.record_tabular("kl_loss", kl_loss)
        logger.record_tabular("vae_loss", vae_loss)
        logger.dump_tabular()
        if (iters_so_far % 10 == 0 and iters_so_far != 0):
            save(saver=saver,
                 sess=tf.get_default_session(),
                 logdir=logdir,
                 step=iters_so_far)
            save(saver=saver_encoder,
                 sess=tf.get_default_session(),
                 logdir="./vae_saver",
                 step=iters_so_far)
            # save(saver=saver_pol, sess=tf.get_default_session(), logdir="pol_saver", step=iters_so_far)
        iters_so_far += 1
示例#8
0
    def learn(self):
        episode_rewards = [0.0]
        obs = self.env.reset()
        print(obs.shape)

        done = False
        tstart = time.time()
        episodes_trained = [0, False]  # [episode_number, Done flag]
        t = 0
        for ep in range(self.config.num_episodes):
            episode_length = 0
            update_eps = tf.constant(self.exploration.value(t))

            mb_obs, mb_rewards, mb_actions, mb_obs1, mb_dones, mb_fps = [], [], [], [], [], []
            while True:
                # for n_step in range(self.config.n_steps):
                t += 1
                episode_length += 1
                # print(f't is {t} -- n_steps is {n_step}')
                actions, fps = self.get_actions(tf.constant(obs),
                                                update_eps=update_eps)
                # print(f' fps.shape is {np.array(fps).shape}')
                if self.config.num_agents == 1:
                    obs1, rews, done, _ = self.env.step(actions[0])
                else:
                    obs1, rews, done, _ = self.env.step(actions)
                    fps_ = self.create_fingerprints(fps, t)
                    # print(f' fps_.shape is {np.array(fps_).shape}')
                    mb_fps.append(fps_)

                mb_obs.append(obs.copy())
                mb_actions.append(actions)
                mb_dones.append([float(done) for _ in self.agent_ids])

                # print(f'rewards is {rews}')

                if self.config.same_reward_for_agents:
                    rews = [
                        np.max(rews) for _ in range(len(rews))
                    ]  # for cooperative purpose same reward for every one

                mb_obs1.append(obs1.copy())
                mb_rewards.append(rews)

                obs = obs1
                episode_rewards[-1] += np.max(rews)
                if done or episode_length > self.config.max_episodes_length:
                    episodes_trained[0] = episodes_trained[0] + 1
                    episodes_trained[1] = True
                    episode_rewards.append(0.0)
                    obs = self.env.reset()
                    break  # to break while as episode is finished here

            mb_obs.append(obs.copy())
            mb_dones.append([float(done) for _ in self.agent_ids])

            # print(f' mb_obs.shape is {np.array(mb_obs).shape}')
            for extra_step in range(self.config.n_steps - len(mb_actions) + 1):
                # print('extra_info as 0 s added')
                mb_obs.append(obs * 0.)
                mb_actions.append(actions * 0.)
                mb_rewards.append(np.array(rews) * 0.)
                mb_fps.append(self.fps_zeros)
                mb_dones.append([float(0.) for _ in self.agent_ids])

            # print(f' mb_fps.shape is {np.array(mb_fps).shape}')

            # swap axes to have lists in shape of (num_agents, num_steps, ...)
            # print(f' mb_obs.shape is {np.array(mb_obs).shape}')
            # print(f' mb_dones.shape is {np.array(mb_dones).shape}')
            mb_obs = np.asarray(mb_obs, dtype=obs[0].dtype).swapaxes(0, 1)
            # print(f' mb_obs.shape is {np.array(mb_obs).shape}')
            mb_actions = np.asarray(mb_actions,
                                    dtype=actions[0].dtype).swapaxes(0, 1)
            mb_rewards = np.asarray(mb_rewards,
                                    dtype=np.float32).swapaxes(0, 1)
            mb_dones = np.asarray(mb_dones, dtype=np.bool).swapaxes(0, 1)
            mb_fps = np.asarray(mb_fps, dtype=np.float32).swapaxes(0, 1)
            mb_masks = mb_dones  # [:, :-1]
            mb_dones = mb_dones[:, 1:]

            # print(f' before discount mb_rewards is {mb_rewards}')
            mb_rewards = self.compute_n_step_return(mb_rewards, mb_dones, obs1)
            # print(f' after discount mb_rewards is {mb_rewards}')

            if self.config.replay_buffer is not None:
                self.replay_memory.add_episode(mb_obs, mb_actions, mb_rewards,
                                               mb_masks, mb_fps)

            if ep > self.config.learning_starts:
                if self.config.prioritized_replay:
                    experience = self.replay_memory.sample(
                        self.config.batch_size,
                        beta=self.beta_schedule.value(t))
                    (obses_t, actions, rewards, dones, fps, weights,
                     batch_idxes) = experience
                    # print(f' dones.shape {dones.shape}')
                else:
                    obses_t, actions, rewards, dones, fps = self.replay_memory.sample(
                        self.config.batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None

                # print(f'obses_t.shape {obses_t.shape}')
                #  shape format is (batch_size, agent_num, n_steps, ...)
                obses_t = obses_t.swapaxes(0, 1)
                obses_t = obses_t[:, :, 0:-1]
                obses_tp1 = obses_t[:, :, -1]
                # print(f'obses_t.shape {obses_t.shape}')
                # print(f'obses_tp1.shape {obses_tp1.shape}')
                actions = actions.swapaxes(0, 1)
                # print(f'rewards.shape {rewards.shape}')
                rewards = rewards.swapaxes(0, 1)
                # print(f'rewards.shape {rewards.shape}')
                # obses_tp1 = obses_tp1.swapaxes(0, 1)
                dones = dones.swapaxes(0, 1)
                fps = fps.swapaxes(0, 1)
                # print(f'weights.shape {weights.shape}')
                # weights = np.expand_dims(weights, 2)
                # print(f'weights.shape {weights.shape}')
                _wt = np.tile(weights, (self.config.num_agents, 1))
                # print(f'_wt.shape {_wt.shape}')
                # print(f'weights.shape {weights.shape}')
                # weights = weights.swapaxes(0, 1)  # weights shape is (1, batch_size, n_steps)
                # print(f'weights.shape {weights.shape}')
                #  shape format is (agent_num, batch_size, n_steps, ...)

                # if 'rnn' not in self.config.network:
                #     shape = obses_t.shape
                #     obses_t = np.reshape(obses_t, (shape[0], shape[1] * shape[2], *shape[3:]))
                #     # shape = obses_tp1.shape
                #     # obses_tp1 = np.reshape(obses_tp1, (shape[0], shape[1] * shape[2], *shape[3:]))
                #     shape = actions.shape
                #     actions = np.reshape(actions, (shape[0], shape[1] * shape[2], *shape[3:]))
                #     shape = rewards.shape
                #     rewards = np.reshape(rewards, (shape[0], shape[1] * shape[2], *shape[3:]))
                #     shape = dones.shape
                #     dones = np.reshape(dones, (shape[0], shape[1] * shape[2], *shape[3:]))
                #     shape = _wt.shape
                #     _wt = np.reshape(_wt, (shape[0], shape[1] * shape[2], *shape[3:]))

                # print(f'obses_t.shape {obses_t.shape}')
                #  shape format is (agent_num, batch_size * n_steps, ...)

                # print(f' obses_t.shape {obses_t.shape}')
                # print(f' obses_tp1.shape {obses_tp1.shape}')
                # print(f' actions.shape {actions.shape}')
                # print(f' rewards.shape {rewards.shape}')
                # print(f' dones.shape {dones.shape}')
                # print(f' _wt.shape {_wt.shape}')

                obses_t = tf.constant(obses_t)
                obses_tp1 = tf.constant(obses_tp1)
                actions = tf.constant(actions)
                rewards = tf.constant(rewards)
                dones = tf.constant(dones)
                fps = tf.constant(fps)
                _wt = tf.constant(_wt)

                loss, td_errors = self.train(obses_t, actions, rewards,
                                             obses_tp1, dones, _wt, fps)
                # print(f' td_errors {td_errors}')
                # td_errors = td_errors.reshape((self.config.batch_size, -1))
                # print(f' td_errors.shape {td_errors.shape}')
                # td_errors = np.sum(td_errors, 1)
                # print(f' td_errors.shape {td_errors.shape}')

                # print(f'td_errors.shape = {np.array(td_errors).shape} , batch_idxes.shape = {np.array(batch_idxes).shape}')
                if self.config.prioritized_replay:
                    new_priorities = np.abs(
                        td_errors) + self.config.prioritized_replay_eps
                    self.replay_memory.update_priorities(
                        batch_idxes, new_priorities)

                if ep % (self.config.print_freq) == 0:
                    print(f't = {t} , loss = {loss}')

            if ep > self.config.learning_starts and ep % self.config.target_network_update_freq == 0:
                # Update target network periodically.
                for agent_id in self.agent_ids:
                    self.agents[agent_id].soft_update_target()

            if ep % self.config.playing_test == 0 and ep != 0:
                # self.network.save(self.config.save_path)
                self.play_test_games()

            mean_100ep_reward = np.mean(episode_rewards[-101:-1])
            num_episodes = len(episode_rewards)

            if ep % (self.config.print_freq * 10) == 0:
                time_1000_step = time.time()
                nseconds = time_1000_step - tstart
                tstart = time_1000_step
                print(
                    f'eps {self.exploration.value(t)} -- time {t - self.config.print_freq*10} to {t} steps: {nseconds}'
                )

            # if done and self.config.print_freq is not None and len(episode_rewards) % self.config.print_freq == 0:
            if episodes_trained[
                    1] and episodes_trained[0] % self.config.print_freq == 0:
                episodes_trained[1] = False
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 past episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * self.exploration.value(t)))
                logger.dump_tabular()
示例#9
0
    def run(self):
        # switch to train mode
        self.train()

        # Prepare for rollouts
        seg_generator = self.traj_segment_generator(self.pi, self.env, self.timesteps_per_batch)
        episodes_so_far = 0
        timesteps_so_far = 0
        iters_so_far = 0
        tstart = time.time()
        lenbuffer = deque(maxlen=100) # rolling buffer for episode lengths
        rewbuffer = deque(maxlen=100) # rolling buffer for episode rewards
        self.check_time_constraints()

        while True:
            if self.callback: self.callback(locals(), globals())
            if self.max_timesteps and timesteps_so_far >= self.max_timesteps:
                break
            elif self.max_episodes and episodes_so_far >= self.max_episodes:
                break
            elif self.max_iters and iters_so_far >= self.max_iters:
                break
            elif self.max_seconds and time.time() - tstart >= self.max_seconds:
                break
            cur_lrmult = self.get_lr_multiplier(timesteps_so_far)

            logger.log("********** Iteration %i ************"%iters_so_far)

            segment = seg_generator.__next__()
            self.add_vtarg_and_adv(segment, self.gamma, self.lam)

            ob, ac, atarg, tdlamret = segment["ob"], segment["ac"], segment["adv"], segment["tdlamret"]
            vpredbefore = segment["vpred"] # predicted value function before udpate
            atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate
            d = Dataset(dict(ob=ob, ac=ac, atarg=atarg, vtarg=tdlamret), shuffle=not self.pi.recurrent)
            optim_batchsize = self.optim_batchsize or ob.shape[0]

            # update running mean/std for policy
            # if hasattr(self.pi, "ob_rms"): self.pi.ob_rms.update(ob)

            # set old parameter values to new parameter values
            self.oldpi.load_state_dict(self.pi.state_dict())

            logger.log("Optimizing...")
            logger.log(fmt_row(13, self.loss_names))
            # Here we do a bunch of optimization epochs over the data
            for _ in range(self.optim_epochs):
                losses = [] # list of tuples, each of which gives the loss for a minibatch
                for batch in d.iterate_once(self.optim_batchsize):
                    self.optimizer.zero_grad()
                    batch['ob'] = rearrange_batch_image(batch['ob'])
                    batch = self.convert_batch_tensor(batch)
                    total_loss, *newlosses = self.forward(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult)
                    total_loss.backward()
                    self.optimizer.step(_step_size=self.optim_stepsize * cur_lrmult)
                    losses.append(torch.stack(newlosses[0], dim=0).view(-1))
                mean_losses = torch.mean(torch.stack(losses, dim=0), dim=0).data.cpu().numpy()
                logger.log(fmt_row(13, mean_losses))

            logger.log("Evaluating losses...")
            losses = []
            for batch in d.iterate_once(self.optim_batchsize):
                batch['ob'] = rearrange_batch_image(batch['ob'])
                batch = self.convert_batch_tensor(batch)
                _, *newlosses = self.forward(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult)
                losses.append(torch.stack(newlosses[0], dim=0).view(-1))
            mean_losses = torch.mean(torch.stack(losses, dim=0), dim=0).data.cpu().numpy()
            logger.log(fmt_row(13, mean_losses))

            for (lossval, name) in zipsame(mean_losses, self.loss_names):
                logger.record_tabular("loss_"+name, lossval)
            logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret))
            lrlocal = (segment["ep_lens"], segment["ep_rets"]) # local values
            lens, rews = map(flatten_lists, zip(*[lrlocal]))
            lenbuffer.extend(lens)
            rewbuffer.extend(rews)
            logger.record_tabular("EpLenMean", np.mean(lenbuffer))
            logger.record_tabular("EpRewMean", np.mean(rewbuffer))
            logger.record_tabular("EpThisIter", len(lens))
            episodes_so_far += len(lens)
            timesteps_so_far += sum(lens)
            iters_so_far += 1
            logger.record_tabular("EpisodesSoFar", episodes_so_far)
            logger.record_tabular("TimestepsSoFar", timesteps_so_far)
            logger.record_tabular("TimeElapsed", time.time() - tstart)
            logger.dump_tabular()
示例#10
0
    def learn(self):
        self.network.soft_update_target()
        episode_rewards = [0.0]
        obs = self.env.reset()
        done = False
        tstart = time.time()
        episodes_trained = [0, False]  # [episode_number, Done flag]
        for t in range(self.config.num_timesteps):
            update_eps = tf.constant(self.exploration.value(t))
            if t % (self.config.print_freq) == 0:
                time_1000_step = time.time()
                nseconds = time_1000_step - tstart
                tstart = time_1000_step
                print(
                    f'eps {self.exploration.value(t)} -- time {t - self.config.print_freq} to {t} steps: {nseconds}'
                )

            mb_obs, mb_rewards, mb_actions, mb_fps, mb_dones = [], [], [], [], []
            # mb_states = states
            epinfos = []
            for nstep in range(self.config.n_steps):
                actions, fps_ = self.choose_action(tf.constant(obs),
                                                   update_eps=update_eps)
                fps = []
                if self.config.num_agents > 1:
                    for a in self.agent_ids:
                        fp = fps_[:a]
                        fp.extend(fps_[a + 1:])
                        fp_a = np.concatenate(
                            (fp, [[self.exploration.value(t) * 100, t]]),
                            axis=None)
                        fps.append(fp_a)

                # print(f'fps.shape {np.array(fps).shape}')
                mb_obs.append(obs.copy())
                mb_actions.append(actions)
                mb_fps.append(fps)
                mb_dones.append([float(done) for _ in self.agent_ids])

                obs1, rews, done, info = self.env.step(actions.tolist())

                if self.config.same_reward_for_agents:
                    rews = [
                        np.max(rews) for _ in range(len(rews))
                    ]  # for cooperative purpose same reward for every one

                mb_rewards.append(rews)
                obs = obs1
                maybeepinfo = info.get('episode')
                if maybeepinfo: epinfos.append(maybeepinfo)

                episode_rewards[-1] += np.max(rews)
                if done:
                    episodes_trained[0] = episodes_trained[0] + 1
                    episodes_trained[1] = True
                    episode_rewards.append(0.0)
                    obs = self.env.reset()

            mb_dones.append([float(done) for _ in self.agent_ids])

            # swap axes to have lists in shape of (num_agents, num_steps, ...)
            mb_obs = np.asarray(mb_obs, dtype=obs[0].dtype).swapaxes(0, 1)
            mb_actions = np.asarray(mb_actions,
                                    dtype=actions[0].dtype).swapaxes(0, 1)
            mb_rewards = np.asarray(mb_rewards,
                                    dtype=np.float32).swapaxes(0, 1)
            mb_fps = np.asarray(mb_fps, dtype=np.float32).swapaxes(0, 1)
            mb_dones = np.asarray(mb_dones, dtype=np.bool).swapaxes(0, 1)
            mb_masks = mb_dones[:, :-1]
            mb_dones = mb_dones[:, 1:]

            # print(f'before discount mb_rewards is {mb_rewards}')

            if self.config.gamma > 0.0:
                # Discount/bootstrap off value fn
                last_values = self.network.last_value(tf.constant(obs1))
                # print(f'last_values {last_values}')
                for n, (rewards, dones, value) in enumerate(
                        zip(mb_rewards, mb_dones, last_values)):
                    rewards = rewards.tolist()
                    dones = dones.tolist()
                    if dones[-1] == 0:
                        rewards = discount_with_dones(rewards + [value],
                                                      dones + [0],
                                                      self.config.gamma)[:-1]
                    else:
                        rewards = discount_with_dones(rewards, dones,
                                                      self.config.gamma)

                    mb_rewards[n] = rewards

            # print(f'after discount mb_rewards is {mb_rewards}')

            if self.config.replay_buffer is not None:
                self.replay_memory.add(
                    (mb_obs, mb_actions, mb_rewards, obs1, mb_masks, mb_fps))

            if t > self.config.learning_starts and t % self.config.train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if self.config.prioritized_replay:
                    experience = self.replay_memory.sample(
                        self.config.batch_size,
                        beta=self.beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, fps, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones, fps = self.replay_memory.sample(
                        self.config.batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None

                #  shape format is (batch_size, agent_num, n_steps, ...)
                obses_t = obses_t.swapaxes(0, 1)
                actions = actions.swapaxes(0, 1)
                rewards = rewards.swapaxes(0, 1)
                obses_tp1 = obses_tp1.swapaxes(0, 1)
                dones = dones.swapaxes(0, 1)
                fps = fps.swapaxes(0, 1)
                weights = weights.swapaxes(0, 1)

                if self.config.network == 'cnn':
                    shape = obses_t.shape
                    obses_t = np.reshape(
                        obses_t, (shape[0], shape[1] * shape[2], *shape[3:]))
                    shape = actions.shape
                    actions = np.reshape(
                        actions, (shape[0], shape[1] * shape[2], *shape[3:]))
                    shape = rewards.shape
                    rewards = np.reshape(
                        rewards, (shape[0], shape[1] * shape[2], *shape[3:]))
                    shape = dones.shape
                    dones = np.reshape(
                        dones, (shape[0], shape[1] * shape[2], *shape[3:]))
                    shape = weights.shape
                    weights = np.reshape(
                        weights, (shape[0], shape[1] * shape[2], *shape[3:]))
                    shape = fps.shape
                    fps = np.reshape(
                        fps, (shape[0], shape[1] * shape[2], *shape[3:]))

                #  shape format is (agent_num, batch_size, n_steps, ...)
                obses_t = tf.constant(obses_t)
                actions = tf.constant(actions)
                rewards = tf.constant(rewards)
                dones = tf.constant(dones)
                weights = tf.constant(weights)
                fps = tf.constant(fps)

                # print(f'obses_t.shape {obses_t.shape}')
                # print(f'actions.shape {actions.shape}')
                # print(f'rewards.shape {rewards.shape}')
                # print(f'dones.shape {dones.shape}')
                # print(f'weights.shape {weights.shape}')
                # print(f'fps.shape {fps.shape}')

                loss, td_errors = self.train(obses_t, actions, rewards, dones,
                                             weights, fps)

                if t % (self.config.train_freq * 50) == 0:
                    print(f't = {t} , loss = {loss}')

            if t > self.config.learning_starts and t % self.config.target_network_update_freq == 0:
                # Update target network periodically.
                self.network.soft_update_target()

            if t % self.config.playing_test == 0 and t != 0:
                # self.network.save(self.config.save_path)
                self.play_test_games()

            mean_100ep_reward = np.mean(episode_rewards[-101:-1])
            num_episodes = len(episode_rewards)
            # if done and self.config.print_freq is not None and len(episode_rewards) % self.config.print_freq == 0:
            if episodes_trained[
                    1] and episodes_trained[0] % self.config.print_freq == 0:
                episodes_trained[1] = False
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 past episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * self.exploration.value(t)))
                logger.dump_tabular()
示例#11
0
def learn(env,
          seed=None,
          num_agents = 2,
          lr=0.00008,
          total_timesteps=100000,
          buffer_size=2000,
          exploration_fraction=0.2,
          exploration_final_eps=0.01,
          train_freq=1,
          batch_size=16,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=2000,
          gamma=0.99,
          target_network_update_freq=1000,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          **network_kwargs
          ):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model
    set_global_seeds(seed)
    double_q = True
    grad_norm_clipping = True
    shared_weights = True
    play_test = 1000
    nsteps = 16
    agent_ids = env.agent_ids()

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None

    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    print(f'agent_ids {agent_ids}')
    num_actions = env.action_space.n
    print(f'num_actions {num_actions}')

    dqn_agent = MAgent(env, agent_ids, nsteps, lr, replay_buffer, shared_weights, double_q, num_actions,
                           gamma, grad_norm_clipping, param_noise)


    if load_path is not None:
        load_path = osp.expanduser(load_path)
        ckpt = tf.train.Checkpoint(model=dqn_agent.q_network)
        manager = tf.train.CheckpointManager(ckpt, load_path, max_to_keep=None)
        ckpt.restore(manager.latest_checkpoint)
        print("Restoring from {}".format(manager.latest_checkpoint))

    dqn_agent.update_target()

    episode_rewards = [0.0 for i in range(101)]
    saved_mean_reward = None
    obs_all = env.reset()
    obs_shape = obs_all
    reset = True
    done = False

    # Start total timer
    tstart = time.time()
    for t in range(total_timesteps):
        if callback is not None:
            if callback(locals(), globals()):
                break
        kwargs = {}
        if not param_noise:
            update_eps = tf.constant(exploration.value(t))
            update_param_noise_threshold = 0.
        else:
            update_eps = tf.constant(0.)
            # Compute the threshold such that the KL divergence between perturbed and non-perturbed
            # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
            # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
            # for detailed explanation.
            update_param_noise_threshold = -np.log(
                1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n))
            kwargs['reset'] = reset
            kwargs['update_param_noise_threshold'] = update_param_noise_threshold
            kwargs['update_param_noise_scale'] = True

        if t % print_freq == 0:
            time_1000_step = time.time()
            nseconds = time_1000_step - tstart
            tstart = time_1000_step
            print(f'time spend to perform {t-print_freq} to {t} steps is {nseconds} ')
            print('eps update', exploration.value(t))

        mb_obs, mb_rewards, mb_actions, mb_values, mb_dones = [], [], [], [], []
        # mb_states = states
        epinfos = []
        for _ in range(nsteps):
            # Given observations, take action and value (V(s))
            obs_ = tf.constant(obs_all)
            # print(f'obs_.shape is {obs_.shape}')
            # obs_ = tf.expand_dims(obs_, axis=1)
            # print(f'obs_.shape is {obs_.shape}')
            actions_list, fps_ = dqn_agent.choose_action(obs_, update_eps=update_eps, **kwargs)
            fps = [[] for _ in agent_ids]
            # print(f'fps_.shape is {np.asarray(fps_).shape}')
            for a in agent_ids:
                fps[a] = np.delete(fps_, a, axis=0)

            # print(fps)
            # print(f'actions_list is {actions_list}')
            # print(f'values_list is {values_list}')

            # Append the experiences
            mb_obs.append(obs_all.copy())
            mb_actions.append(actions_list)
            mb_values.append(fps)
            mb_dones.append([float(done) for _ in range(num_agents)])

            # Take actions in env and look the results
            obs1_all, rews, done, info = env.step(actions_list)
            rews = [np.max(rews) for _ in range(len(rews))]  # for cooperative purpose same reward for every one
            # print(rews)
            mb_rewards.append(rews)
            obs_all = obs1_all
            # print(rewards, done, info)
            maybeepinfo = info[0].get('episode')
            if maybeepinfo: epinfos.append(maybeepinfo)

            episode_rewards[-1] += np.max(rews)
            if done:
                episode_rewards.append(0.0)
                obs_all = env.reset()
                reset = True

        mb_dones.append([float(done) for _ in range(num_agents)])

        # print(f'mb_actions is {mb_actions}')
        # print(f'mb_rewards is {mb_rewards}')
        # print(f'mb_values is {mb_values}')
        # print(f'mb_dones is {mb_dones}')

        mb_obs = np.asarray(mb_obs, dtype=obs_all[0].dtype)
        mb_actions = np.asarray(mb_actions, dtype=actions_list[0].dtype)
        mb_rewards = np.asarray(mb_rewards, dtype=np.float32)
        mb_values = np.asarray(mb_values, dtype=np.float32)
        # print(f'mb_values.shape is {mb_values.shape}')
        mb_dones = np.asarray(mb_dones, dtype=np.bool)
        mb_masks = mb_dones[:-1]
        mb_dones = mb_dones[1:]

        # print(f'mb_actions is {mb_actions}')
        # print(f'mb_rewards is {mb_rewards}')
        # print(f'mb_values is {mb_values}')
        # print(f'mb_dones is {mb_dones}')
        # print(f'mb_masks is {mb_masks}')
        # print(f'mb_masks.shape is {mb_masks.shape}')

        if gamma > 0.0:
            # Discount/bootstrap off value fn
            last_values = dqn_agent.value(tf.constant(obs_all))
            # print(f'last_values is {last_values}')
            if mb_dones[-1][0] == 0:
                # print('================ hey ================ mb_dones[-1][0] == 0')
                mb_rewards = discount_with_dones(np.concatenate((mb_rewards, [last_values])),
                                                 np.concatenate((mb_dones, [[float(False) for _ in range(num_agents)]]))
                                                 , gamma)[:-1]
            else:
                mb_rewards = discount_with_dones(mb_rewards, mb_dones, gamma)

        # print(f'after discount mb_rewards is {mb_rewards}')

        if replay_buffer is not None:
            replay_buffer.add(mb_obs, mb_actions, mb_rewards, obs1_all, mb_masks[:,0],
                              mb_values, np.tile([exploration.value(t), t], (nsteps, num_agents, 1)))

        if t > learning_starts and t % train_freq == 0:
            # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
            if prioritized_replay:
                experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
                (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
            else:
                obses_t, actions, rewards, obses_tp1, dones, fps, extra_datas = replay_buffer.sample(batch_size)
                weights, batch_idxes = np.ones_like(rewards), None

            obses_t, obses_tp1 = tf.constant(obses_t), None
            actions, rewards, dones = tf.constant(actions), tf.constant(rewards, dtype=tf.float32), tf.constant(dones)
            weights, fps, extra_datas = tf.constant(weights), tf.constant(fps), tf.constant(extra_datas)

            s = obses_t.shape
            # print(f'obses_t.shape is {s}')
            obses_t = tf.reshape(obses_t, (s[0] * s[1], *s[2:]))
            s = actions.shape
            # print(f'actions.shape is {s}')
            actions = tf.reshape(actions, (s[0] * s[1], *s[2:]))
            s = rewards.shape
            # print(f'rewards.shape is {s}')
            rewards = tf.reshape(rewards, (s[0] * s[1], *s[2:]))
            s = weights.shape
            # print(f'weights.shape is {s}')
            weights = tf.reshape(weights, (s[0] * s[1], *s[2:]))
            s = fps.shape
            # print(f'fps.shape is {s}')
            fps = tf.reshape(fps, (s[0] * s[1], *s[2:]))
            # print(f'fps.shape is {fps.shape}')
            s = extra_datas.shape
            # print(f'extra_datas.shape is {s}')
            extra_datas = tf.reshape(extra_datas, (s[0] * s[1], *s[2:]))
            s = dones.shape
            # print(f'dones.shape is {s}')
            dones = tf.reshape(dones, (s[0], s[1], *s[2:]))
            # print(f'dones.shape is {s}')

            td_errors = dqn_agent.nstep_train(obses_t, actions, rewards, obses_tp1, dones, weights, fps, extra_datas)

        if t > learning_starts and t % target_network_update_freq == 0:
            # Update target network periodically.
            dqn_agent.update_target()

        if t % play_test == 0 and t != 0:
            play_test_games(dqn_agent)

        mean_100ep_reward = np.mean(episode_rewards[-101:-1])
        num_episodes = len(episode_rewards)
        if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
            print(f'last 100 episode mean reward {mean_100ep_reward} in {num_episodes} playing')
            logger.record_tabular("steps", t)
            logger.record_tabular("episodes", num_episodes)
            logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
            logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
            logger.dump_tabular()
示例#12
0
def train_fn(args):
    base_dir = args.base_dir
    dirs = init_dir(base_dir)
    init_log(dirs['log'])
    environment = args.environment
    if environment is 'ford':
        config_dir = 'config/config_ford.ini'
    else:
        config_dir = 'config/config_gym.ini'
    copy_file(config_dir, dirs['data'])
    config = configparser.ConfigParser()
    config.read(config_dir)

    # test during training or test after training
    in_test, post_test = init_test_flag(args.test_mode)

    gamma = config.getfloat('MODEL_CONFIG', 'gamma')
    buffer_size = int(config.getfloat('MODEL_CONFIG', 'buffer_size'))
    batch_size = int(config.getfloat('MODEL_CONFIG', 'batch_size'))
    lr_init = config.getfloat('MODEL_CONFIG', 'lr_init')
    reward_norm = config.getfloat('MODEL_CONFIG', 'reward_norm')
    reward_clip = config.getfloat('MODEL_CONFIG', 'reward_clip')

    # training config
    total_step = int(config.getfloat('TRAIN_CONFIG', 'total_step'))
    rendering = int(config.getfloat('TRAIN_CONFIG', 'rendering'))
    learning_starts = int(config.getfloat('TRAIN_CONFIG', 'learning_starts'))
    train_freq = int(config.getfloat('TRAIN_CONFIG', 'train_freq'))
    test_freq = int(config.getfloat('TRAIN_CONFIG', 'test_freq'))
    log_freq = int(config.getfloat('TRAIN_CONFIG', 'log_freq'))
    print_freq = int(config.getfloat('TRAIN_CONFIG', 'print_freq'))
    target_network_update_freq = int(
        config.getfloat('TRAIN_CONFIG', 'target_network_update_freq'))
    number_update = int(config.getfloat('TRAIN_CONFIG', 'num_update'))
    num_history = int(config.getfloat('TRAIN_CONFIG', 'num_history'))
    seed = config.getint('TRAIN_CONFIG', 'seed')

    eps_init = config.getfloat('MODEL_CONFIG', 'epsilon_init')
    eps_decay = config.get('MODEL_CONFIG', 'epsilon_decay')
    eps_ratio = config.getfloat('MODEL_CONFIG', 'epsilon_ratio')
    eps_min = config.getfloat('MODEL_CONFIG', 'epsilon_min')
    env_seed = config.getint('ENV_CONFIG', 'env_seed')

    if eps_decay == 'constant':
        eps_scheduler = Scheduler(eps_init, decay=eps_decay)
    else:
        eps_scheduler = Scheduler(eps_init,
                                  eps_min,
                                  total_step * eps_ratio,
                                  decay=eps_decay)

    # Initialize environment
    print("Initializing environment")
    if environment is 'ford':
        env = FordEnv(config['ENV_CONFIG'], rendering=rendering, seed=env_seed)
    else:
        env = gym.make("CartPole-v0")

    config = tf.ConfigProto(allow_soft_placement=True)
    # config.gpu_options.allow_growth = True
    sess = tf.get_default_session()
    tf.set_random_seed(seed)
    if sess is None:
        sess = make_session(config=config, make_default=True)

    try:
        policy = Q_Policy(env.action_space.n, env.observation_space.shape[0],
                          num_history)
        # Create all the functions necessary to train the model
        train, update_target, debug = policy.build_graph(
            optimizer=tf.train.AdamOptimizer(learning_rate=lr_init),
            gamma=gamma,
            grad_norm_clipping=10)

        replay_buffer = ReplayBuffer(buffer_size)
        obs_buffer = np.zeros(shape=(num_history,
                                     env.observation_space.shape[0]))
        obs_buffer_eval = np.zeros(shape=(num_history,
                                          env.observation_space.shape[0]))
        # Initialize the parameters and copy them to the target network.
        sess.run(tf.global_variables_initializer())
        # if restore:
        #     policy.load(sess, dirs['model'], checkpoint=None)
        update_target()

        epoch_rewards = [0.0]
        eval_rewards = []
        ob_ls = []
        steps = 0  # counting the steps in one epoch
        obs = env.reset()
        obs_buffer[-1] = obs
        for t in range(total_step):
            # Take action and update exploration to the newest value
            steps += 1
            action = policy.forward(sess,
                                    obs_buffer[None],
                                    eps_scheduler.get(1),
                                    mode='explore')
            new_obs, rew, done, _, = env.step(action)
            obs_buffer_new = obs_buffer
            np.roll(
                obs_buffer_new, -1, axis=0
            )  # shift the numpy array up, to make the most old experience last
            obs_buffer_new[-1] = new_obs
            if rendering:
                # this function is not supported well on some environment as the plot function issues.
                env.render()
            if reward_norm:
                rew = rew / reward_norm
            if reward_clip:
                rew = np.clip(rew, -reward_clip, reward_clip)
            replay_buffer.add(obs_buffer, action, rew, obs_buffer_new,
                              float(done))
            ob_ls.append([new_obs])
            obs_buffer = obs_buffer_new

            epoch_rewards[-1] += rew  # r_sum = -3499.51

            if t > learning_starts and t % train_freq == 0:
                for _ in range(number_update):
                    # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                    train(obses_t, actions, rewards, obses_tp1, dones, weights)

            # Update target network periodically.
            if t > learning_starts and t % target_network_update_freq == 0:
                update_target()

            if done:
                if print_freq is not None and len(
                        epoch_rewards) % print_freq == 0:
                    mean_100ep_reward = round(np.mean(epoch_rewards[-11:-1]),
                                              1)
                    num_episodes = len(epoch_rewards)
                    logger.record_tabular("steps", t)
                    logger.record_tabular("episodes", num_episodes)
                    logger.record_tabular("mean 100 episode reward",
                                          mean_100ep_reward)
                    logger.record_tabular("% time spent exploring",
                                          int(100 * eps_scheduler.get(1)))
                    logger.record_tabular("Current date and time: ",
                                          datetime.datetime.now())
                    logger.dump_tabular()

                # evaluation
                if in_test and len(epoch_rewards) % test_freq == 0:
                    episode_reward_eval = 0
                    obs_eval = env.reset()
                    done_eval = False
                    # print("Staring evaluating")
                    while not done_eval:
                        obs_buffer_eval[-1] = obs_eval
                        # Take action and update exploration to the newest value
                        action_eval = policy.forward(sess,
                                                     obs_buffer_eval[None],
                                                     1,
                                                     mode='eval')
                        new_obs_eval, rew_eval, done_eval, _ = env.step(
                            action_eval)
                        obs_eval = new_obs_eval
                        np.roll(obs_buffer_eval, -1,
                                axis=0)  # shift the numpy array up

                        if reward_norm:
                            rew_eval = rew_eval / reward_norm
                        episode_reward_eval += rew_eval

                    print("evaluating reward = ", episode_reward_eval)
                    eval_rewards.append(episode_reward_eval)

                    print("Saving model...")
                    policy.save(sess, dirs['model'], len(epoch_rewards))

                if len(epoch_rewards) % log_freq == 0:
                    np.save(dirs['results'] + '{}'.format('eval_rewards'),
                            eval_rewards)
                    np.save(dirs['results'] + '{}'.format('epoch_rewards'),
                            epoch_rewards)
                    np.save(dirs['results'] + '{}'.format('ob_ls'), ob_ls)

                obs_buffer = np.zeros(shape=(num_history,
                                             env.observation_space.shape[0]))
                obs_buffer_eval = np.zeros(
                    shape=(num_history, env.observation_space.shape[0]))
                obs = env.reset()
                obs_buffer[-1] = obs
                epoch_rewards.append(0.0)

        env.close()
        plot(dirs['results'])

        if post_test:
            evaluate(args)

    except Exception as e:
        print("Done...")
        env.close()
        raise e
示例#13
0
    def interact(self,
                 max_step=50000,
                 max_ep_cycle=2000,
                 render=False,
                 verbose=1,
                 record_ep_inter=None):
        '''
        :param max_step:
        :param max_ep_time:
        :param max_ep_cycle:  max step in per circle
        .........................show parameter..................................
        :param verbose
        if verbose == 1   show every ep
        if verbose == 2   show every step
        :param record_ep_inter
        record_ep_interact data
        :return: None
        '''
        # if IL_time is not None:

        # .....................initially——recode...........................#
        ep_reward = []
        ep_Q_value = []
        ep_loss = []

        while self.step < max_step:
            s = self.env.reset()
            'reset the ep record'
            ep_r, ep_q, ep_l = 0, 0, 0
            'reset the RL flag'
            ep_cycle, done = 0, 0
            self.episode += 1
            while done == 0 and ep_cycle < max_ep_cycle:
                self.step += 1
                ep_cycle += 1
                'the interaction part'
                a, info_forward = self.forward(s)
                s_, r, done, info = self.env.step(a)
                sample = {"s": s, "a": a, "s_": s_, "r": r, "tr": done}
                s = s_
                loss = self.backward(sample)
                if render:
                    self.env.render()
                'the record part'
                ep_r += r
                ep_q += info_forward[a]
                ep_l += loss
                if verbose == 1 and self.step > self.learning_starts:
                    logger.record_tabular("steps", self.step)
                    logger.record_tabular("episodes", self.episode)
                    logger.record_tabular("loss", loss)
                    logger.record_tabular("reward", r)
                    logger.record_tabular("Q_value", round(q[a].date.numpy()))
                    logger.dump_tabular()
                if record_ep_inter is not None:
                    if self.episode % record_ep_inter == 0:
                        kvs = {
                            "s": s,
                            "a": a,
                            "s_": s_,
                            "r": r,
                            "tr": done,
                            "ep": self.episode,
                            "step": self.step,
                            "ep_step": ep_cycle
                        }
                        self.csvwritter.writekvs(kvs)
                if done:
                    ep_reward.append(ep_r)
                    ep_Q_value.append(ep_q)
                    ep_loss.append(ep_l)
                    mean_100ep_reward = round(np.mean(ep_reward[-101:-1]), 1)
                    if verbose == 2 and self.step > self.learning_starts:
                        logger.record_tabular("steps", self.step)
                        logger.record_tabular("episodes", self.episode)
                        logger.record_tabular("mean 100 episode reward",
                                              mean_100ep_reward)
                        logger.record_tabular("episode_reward", ep_reward[-1])
                        logger.record_tabular("episode_loss", ep_l)
                        logger.record_tabular("episode_Q_value", ep_q)
                        logger.record_tabular("step_used", ep_cycle)
                        logger.dump_tabular()
示例#14
0
def learn(
        env,
        policy_func,
        discriminator,
        expert_dataset,
        timesteps_per_batch,
        *,
        g_step,
        d_step,  # timesteps per actor per update
        clip_param,
        entcoeff,  # clipping parameter epsilon, entropy coeff
        optim_epochs,
        optim_stepsize,
        optim_batchsize,  # optimization hypers
        gamma,
        lam,  # advantage estimation
        max_timesteps=0,
        max_episodes=0,
        max_iters=0,
        max_seconds=0,  # time constraint
        callback=None,  # you can do anything in the callback, since it takes locals(), globals()
        adam_epsilon=1e-5,
        d_stepsize=3e-4,
        schedule='constant',  # annealing for stepsize parameters (epsilon and adam)
        save_per_iter=100,
        ckpt_dir=None,
        task="train",
        sample_stochastic=True,
        load_model_path=None,
        task_name=None,
        max_sample_traj=1500):
    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi", ob_space,
                     ac_space)  # Construct network for new policy
    oldpi = policy_func("oldpi", ob_space, ac_space)  # Network for old policy
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    lrmult = tf.placeholder(
        name='lrmult', dtype=tf.float32,
        shape=[])  # learning rate multiplier, updated with schedule
    clip_param = clip_param * lrmult  # Annealed cliping parameter epislon

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = U.mean(kloldnew)
    meanent = U.mean(ent)
    pol_entpen = (-entcoeff) * meanent

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac))  # pnew / pold
    surr1 = ratio * atarg  # surrogate from conservative policy iteration
    surr2 = U.clip(ratio, 1.0 - clip_param, 1.0 + clip_param) * atarg  #
    pol_surr = -U.mean(tf.minimum(
        surr1, surr2))  # PPO's pessimistic surrogate (L^CLIP)
    vf_loss = U.mean(tf.square(pi.vpred - ret))
    total_loss = pol_surr + pol_entpen + vf_loss
    losses = [pol_surr, pol_entpen, vf_loss, meankl, meanent]
    loss_names = ["pol_surr", "pol_entpen", "vf_loss", "kl", "ent"]

    var_list = pi.get_trainable_variables()
    lossandgrad = U.function([ob, ac, atarg, ret, lrmult],
                             losses + [U.flatgrad(total_loss, var_list)])
    d_adam = MpiAdam(discriminator.get_trainable_variables())
    adam = MpiAdam(var_list, epsilon=adam_epsilon)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function([ob, ac, atarg, ret, lrmult], losses)

    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    d_adam.sync()
    adam.sync()

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     env,
                                     discriminator,
                                     timesteps_per_batch,
                                     stochastic=True)
    traj_gen = traj_episode_generator(pi,
                                      env,
                                      timesteps_per_batch,
                                      stochastic=sample_stochastic)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=100)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=100)  # rolling buffer for episode rewards
    true_rewbuffer = deque(maxlen=100)

    assert sum(
        [max_iters > 0, max_timesteps > 0, max_episodes > 0,
         max_seconds > 0]) == 1, "Only one time constraint permitted"

    if task == 'sample_trajectory':
        # not elegant, i know :(
        sample_trajectory(load_model_path, max_sample_traj, traj_gen,
                          task_name, sample_stochastic)
        sys.exit()

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        elif max_seconds and time.time() - tstart >= max_seconds:
            break

        if schedule == 'constant':
            cur_lrmult = 1.0
        elif schedule == 'linear':
            cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0)
        else:
            raise NotImplementedError

        # Save model
        if iters_so_far % save_per_iter == 0 and ckpt_dir is not None:
            U.save_state(os.path.join(ckpt_dir, task_name),
                         counter=iters_so_far)

        logger.log("********** Iteration %i ************" % iters_so_far)
        for _ in range(g_step):
            seg = seg_gen.__next__()
            add_vtarg_and_adv(seg, gamma, lam)

            # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
            ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
                "tdlamret"]
            vpredbefore = seg[
                "vpred"]  # predicted value function before udpate
            atarg = (atarg - atarg.mean()) / atarg.std(
            )  # standardized advantage function estimate
            d = Dataset(dict(ob=ob, ac=ac, atarg=atarg, vtarg=tdlamret),
                        shuffle=not pi.recurrent)
            optim_batchsize = optim_batchsize or ob.shape[0]

            if hasattr(pi, "ob_rms"):
                pi.ob_rms.update(ob)  # update running mean/std for policy

            assign_old_eq_new(
            )  # set old parameter values to new parameter values
            logger.log("Optimizing...")
            logger.log(fmt_row(13, loss_names))
            # Here we do a bunch of optimization epochs over the data
            for _ in range(optim_epochs):
                losses = [
                ]  # list of tuples, each of which gives the loss for a minibatch
                for batch in d.iterate_once(optim_batchsize):
                    *newlosses, g = lossandgrad(batch["ob"], batch["ac"],
                                                batch["atarg"], batch["vtarg"],
                                                cur_lrmult)
                    adam.update(g, optim_stepsize * cur_lrmult)
                    losses.append(newlosses)
                logger.log(fmt_row(13, np.mean(losses, axis=0)))

            logger.log("Evaluating losses...")
            losses = []
            for batch in d.iterate_once(optim_batchsize):
                newlosses = compute_losses(batch["ob"], batch["ac"],
                                           batch["atarg"], batch["vtarg"],
                                           cur_lrmult)
                losses.append(newlosses)
            meanlosses, _, _ = mpi_moments(losses, axis=0)

        # ------------------ Update D ------------------
        logger.log("Optimizing Discriminator...")
        logger.log(fmt_row(13, discriminator.loss_name))
        ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob))
        batch_size = len(ob) // d_step
        d_losses = [
        ]  # list of tuples, each of which gives the loss for a minibatch
        ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob))
        batch_size = len(ob) // d_step
        d_losses = [
        ]  # list of tuples, each of which gives the loss for a minibatch
        for ob_batch, ac_batch in dataset.iterbatches(
            (ob, ac), include_final_partial_batch=False,
                batch_size=batch_size):
            ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob_batch))
            # update running mean/std for discriminator
            if hasattr(discriminator, "obs_rms"):
                discriminator.obs_rms.update(
                    np.concatenate((ob_batch, ob_expert), 0))
            *newlosses, g = discriminator.lossandgrad(ob_batch, ac_batch,
                                                      ob_expert, ac_expert)
            d_adam.update(allmean(g), d_stepsize)
            d_losses.append(newlosses)
        logger.log(fmt_row(13, np.mean(d_losses, axis=0)))

        # ----------------- logger --------------------
        logger.log(fmt_row(13, meanlosses))
        for (lossval, name) in zipsame(meanlosses, loss_names):
            logger.record_tabular("loss_" + name, lossval)
        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))
        lrlocal = (seg["ep_lens"], seg["ep_rets"], seg["ep_true_rets"]
                   )  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews, true_rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)
        true_rewbuffer.extend(true_rews)
        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpTrueRewMean", np.mean(true_rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1
        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        if MPI.COMM_WORLD.Get_rank() == 0:
            logger.dump_tabular()
示例#15
0
    def learn(self):
        episode_rewards = [0.0]
        obs = self.env.reset()
        print(obs.shape)

        done = False
        tstart = time.time()
        episodes_trained = [0, False]  # [episode_number, Done flag]
        for t in range(self.config.num_timesteps):
            # if t == 102:
            #     break
            update_eps = tf.constant(self.exploration.value(t))

            mb_obs, mb_rewards, mb_actions, mb_obs1, mb_dones = [], [], [], [], []
            for n_step in range(self.config.n_steps):
                # print(f't is {t} -- n_steps is {n_step}')
                actions, _ = self.get_actions(tf.constant(obs), update_eps=update_eps)
                if self.config.num_agents == 1:
                    obs1, rews, done, _ = self.env.step(actions[0])
                else:
                    obs1, rews, done, _ = self.env.step(actions)
                    # TODO fingerprint computation

                mb_obs.append(obs.copy())
                mb_actions.append(actions)
                mb_dones.append([float(done) for _ in self.agent_ids])

                # print(f'rewards is {rews}')

                if self.config.same_reward_for_agents:
                    rews = [np.max(rews) for _ in range(len(rews))]  # for cooperative purpose same reward for every one

                mb_obs1.append(obs1.copy())
                mb_rewards.append(rews)

                obs = obs1
                episode_rewards[-1] += np.max(rews)
                if done:
                    episodes_trained[0] = episodes_trained[0] + 1
                    episodes_trained[1] = True
                    episode_rewards.append(0.0)
                    obs = self.env.reset()

            mb_dones.append([float(done) for _ in self.agent_ids])
            # swap axes to have lists in shape of (num_agents, num_steps, ...)
            # print(f' mb_obs.shape is {np.array(mb_obs).shape}')
            mb_obs = np.asarray(mb_obs, dtype=obs[0].dtype).swapaxes(0, 1)
            # print(f' mb_obs.shape is {np.array(mb_obs).shape}')
            mb_actions = np.asarray(mb_actions, dtype=actions[0].dtype).swapaxes(0, 1)
            mb_rewards = np.asarray(mb_rewards, dtype=np.float32).swapaxes(0, 1)
            mb_dones = np.asarray(mb_dones, dtype=np.bool).swapaxes(0, 1)
            mb_masks = mb_dones[:, :-1]
            mb_dones = mb_dones[:, 1:]


            # print(f' before discount mb_rewards is {mb_rewards}')

            if self.config.gamma > 0.0:
                # print(f' last_values {last_values}')
                for agent_id, (rewards, dones) in enumerate(zip(mb_rewards, mb_dones)):
                    value = self.agents[agent_id].max_value(tf.constant(obs1[agent_id]))
                    rewards = rewards.tolist()
                    dones = dones.tolist()
                    if dones[-1] == 0:
                        rewards = discount_with_dones(rewards + [value], dones + [0], self.config.gamma)[:-1]
                    else:
                        rewards = discount_with_dones(rewards, dones, self.config.gamma)

                    mb_rewards[agent_id] = rewards

            # print(f' after discount mb_rewards is {mb_rewards}')

            if self.config.replay_buffer is not None:
                self.replay_memory.add(mb_obs, mb_actions, mb_rewards, mb_obs1, mb_masks)

            if t > self.config.learning_starts and t % self.config.train_freq == 0:
                if self.config.prioritized_replay:
                    experience = self.replay_memory.sample(self.config.batch_size, beta=self.beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = self.replay_memory.sample(self.config.batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None

                # print(f'obses_t.shape {obses_t.shape}')
                #  shape format is (batch_size, agent_num, n_steps, ...)
                obses_t = obses_t.swapaxes(0, 1)
                actions = actions.swapaxes(0, 1)
                rewards = rewards.swapaxes(0, 1)
                # print(f'rewards.shape {rewards.shape}')
                obses_tp1 = obses_tp1.swapaxes(0, 1)
                dones = dones.swapaxes(0, 1)
                print(f'weights.shape {weights.shape}')
                weights = weights.swapaxes(0, 1)  # weights shape is (1, batch_size, n_steps)
                print(f'weights.shape {weights.shape}')
                #  shape format is (agent_num, batch_size, n_steps, ...)

                if 'rnn' not in self.config.network:
                    shape = obses_t.shape
                    obses_t = np.reshape(obses_t, (shape[0], shape[1] * shape[2], *shape[3:]))
                    shape = actions.shape
                    actions = np.reshape(actions, (shape[0], shape[1] * shape[2], *shape[3:]))
                    shape = rewards.shape
                    rewards = np.reshape(rewards, (shape[0], shape[1] * shape[2], *shape[3:]))
                    shape = dones.shape
                    dones = np.reshape(dones, (shape[0], shape[1] * shape[2], *shape[3:]))
                    shape = weights.shape
                    weights = np.reshape(weights, (shape[0], shape[1]))

                    # print(f'obses_t.shape {obses_t.shape}')
                    #  shape format is (agent_num, batch_size * n_steps, ...)

                obses_t = tf.constant(obses_t)
                actions = tf.constant(actions)
                rewards = tf.constant(rewards)
                dones = tf.constant(dones)
                weights = tf.constant(weights)

                # print(f' obses_t.shape {obses_t.shape}')
                # print(f' actions.shape {actions.shape}')
                # print(f' rewards.shape {rewards.shape}')
                # print(f' dones.shape {dones.shape}')
                # print(f' weights.shape {weights.shape}')

                loss, td_errors = self.train(obses_t, actions, rewards, dones, weights)

                # print(f'td_errors.shape = {np.array(td_errors).shape} , batch_idxes.shape = {np.array(batch_idxes).shape}')
                if self.config.prioritized_replay:
                    new_priorities = np.abs(td_errors) + self.config.prioritized_replay_eps
                    self.replay_memory.update_priorities(batch_idxes, new_priorities)

                if t % (self.config.train_freq * 50) == 0:
                    print(f't = {t} , loss = {loss}')

            if t > self.config.learning_starts and t % self.config.target_network_update_freq == 0:
                # Update target network periodically.
                for agent_id in self.agent_ids:
                    self.agents[agent_id].soft_update_target()

            if t % self.config.playing_test == 0 and t != 0:
                # self.network.save(self.config.save_path)
                self.play_test_games()

            mean_100ep_reward = np.mean(episode_rewards[-101:-1])
            num_episodes = len(episode_rewards)

            if t % (self.config.print_freq*100) == 0:
                time_1000_step = time.time()
                nseconds = time_1000_step - tstart
                tstart = time_1000_step
                print(f'eps {self.exploration.value(t)} -- time {t - self.config.print_freq*1000} to {t} steps: {nseconds}')

            # if done and self.config.print_freq is not None and len(episode_rewards) % self.config.print_freq == 0:
            if episodes_trained[1] and episodes_trained[0] % self.config.print_freq == 0:
                episodes_trained[1] = False
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 past episode reward", mean_100ep_reward)
                logger.record_tabular("% time spent exploring", int(100 * self.exploration.value(t)))
                logger.dump_tabular()
示例#16
0
def learn(
        env,
        policy_func,
        discriminator,
        expert_dataset,
        embedding_z,
        pretrained,
        pretrained_weight,
        *,
        g_step,
        d_step,
        timesteps_per_batch,  # what to train on
        max_kl,
        cg_iters,
        gamma,
        lam,  # advantage estimation
        entcoeff=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        d_stepsize=3e-4,
        vf_iters=3,
        max_timesteps=0,
        max_episodes=0,
        max_iters=0,  # time constraint
        callback=None,
        save_per_iter=100,
        ckpt_dir=None,
        log_dir=None,
        load_model_path=None,
        task_name=None):
    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi",
                     ob_space,
                     ac_space,
                     reuse=(pretrained_weight != None))
    oldpi = policy_func("oldpi", ob_space, ac_space)
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = U.mean(kloldnew)
    meanent = U.mean(ent)
    entbonus = entcoeff * meanent

    vferr = U.mean(tf.square(pi.vpred - ret))

    ratio = tf.exp(pi.pd.logp(ac) -
                   oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = U.mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = pi.get_trainable_variables()
    var_list = [
        v for v in all_var_list if v.name.split("/")[1].startswith("pol")
    ]
    vf_var_list = [
        v for v in all_var_list if v.name.split("/")[1].startswith("vf")
    ]
    d_adam = MpiAdam(discriminator.get_trainable_variables())
    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    gvp = tf.add_n(
        [U.sum(g * tangent) for (g, tangent) in zipsame(klgrads, tangents)])  # pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses +
                                     [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret],
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    writer = U.FileWriter(log_dir)
    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    d_adam.sync()
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     env,
                                     discriminator,
                                     embedding=embedding_z,
                                     timesteps_per_batch=timesteps_per_batch,
                                     stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards
    true_rewbuffer = deque(maxlen=40)

    assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1

    g_loss_stats = stats(loss_names)
    d_loss_stats = stats(discriminator.loss_name)
    ep_stats = stats(["True_rewards", "Rewards", "Episode_length"])
    # if provide pretrained weight
    if pretrained_weight is not None:
        U.load_state(pretrained_weight, var_list=pi.get_variables())
    # if provieded model path
    if load_model_path is not None:
        U.load_state(load_model_path)

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break

        # Save model
        if iters_so_far % save_per_iter == 0 and ckpt_dir is not None:
            U.save_state(os.path.join(ckpt_dir, task_name),
                         counter=iters_so_far)

        logger.log("********** Iteration %i ************" % iters_so_far)

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        # ------------------ Update G ------------------
        logger.log("Optimizing Policy...")
        for _ in range(g_step):
            with timed("sampling"):
                seg = seg_gen.__next__()
            add_vtarg_and_adv(seg, gamma, lam)
            # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
            ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
                "tdlamret"]
            vpredbefore = seg[
                "vpred"]  # predicted value function before udpate
            atarg = (atarg - atarg.mean()) / atarg.std(
            )  # standardized advantage function estimate

            if hasattr(pi, "ob_rms"):
                pi.ob_rms.update(ob)  # update running mean/std for policy

            args = seg["ob"], seg["ac"], atarg
            fvpargs = [arr[::5] for arr in args]

            assign_old_eq_new(
            )  # set old parameter values to new parameter values
            with timed("computegrad"):
                *lossbefore, g = compute_lossandgrad(*args)
            lossbefore = allmean(np.array(lossbefore))
            g = allmean(g)
            if np.allclose(g, 0):
                logger.log("Got zero gradient. not updating")
            else:
                with timed("cg"):
                    stepdir = cg(fisher_vector_product,
                                 g,
                                 cg_iters=cg_iters,
                                 verbose=rank == 0)
                assert np.isfinite(stepdir).all()
                shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
                lm = np.sqrt(shs / max_kl)
                # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                fullstep = stepdir / lm
                expectedimprove = g.dot(fullstep)
                surrbefore = lossbefore[0]
                stepsize = 1.0
                thbefore = get_flat()
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    set_from_flat(thnew)
                    meanlosses = surr, kl, *_ = allmean(
                        np.array(compute_losses(*args)))
                    improve = surr - surrbefore
                    logger.log("Expected: %.3f Actual: %.3f" %
                               (expectedimprove, improve))
                    if not np.isfinite(meanlosses).all():
                        logger.log("Got non-finite value of losses -- bad!")
                    elif kl > max_kl * 1.5:
                        logger.log("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        logger.log("surrogate didn't improve. shrinking step.")
                    else:
                        logger.log("Stepsize OK!")
                        break
                    stepsize *= .5
                else:
                    logger.log("couldn't compute a good step")
                    set_from_flat(thbefore)
                if nworkers > 1 and iters_so_far % 20 == 0:
                    paramsums = MPI.COMM_WORLD.allgather(
                        (thnew.sum(),
                         vfadam.getflat().sum()))  # list of tuples
                    assert all(
                        np.allclose(ps, paramsums[0]) for ps in paramsums[1:])
            with timed("vf"):
                for _ in range(vf_iters):
                    for (mbob, mbret) in dataset.iterbatches(
                        (seg["ob"], seg["tdlamret"]),
                            include_final_partial_batch=False,
                            batch_size=128):
                        if hasattr(pi, "ob_rms"):
                            pi.ob_rms.update(
                                mbob)  # update running mean/std for policy
                        g = allmean(compute_vflossandgrad(mbob, mbret))
                        vfadam.update(g, vf_stepsize)

        g_losses = meanlosses
        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)
        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))
        # ------------------ Update D ------------------
        logger.log("Optimizing Discriminator...")
        logger.log(fmt_row(13, discriminator.loss_name))
        ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob))
        batch_size = len(ob) // d_step
        d_losses = [
        ]  # list of tuples, each of which gives the loss for a minibatch
        for ob_batch, ac_batch in dataset.iterbatches(
            (ob, ac), include_final_partial_batch=False,
                batch_size=batch_size):
            ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob_batch))
            # update running mean/std for discriminator
            if hasattr(discriminator, "obs_rms"):
                discriminator.obs_rms.update(
                    np.concatenate((ob_batch, ob_expert), 0))
            *newlosses, g = discriminator.lossandgrad(ob_batch, ac_batch,
                                                      ob_expert, ac_expert)
            d_adam.update(allmean(g), d_stepsize)
            d_losses.append(newlosses)
        logger.log(fmt_row(13, np.mean(d_losses, axis=0)))

        lrlocal = (seg["ep_lens"], seg["ep_rets"], seg["ep_true_rets"]
                   )  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews, true_rets = map(flatten_lists, zip(*listoflrpairs))
        true_rewbuffer.extend(true_rets)
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpTrueRewMean", np.mean(true_rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank == 0:
            logger.dump_tabular()
            g_loss_stats.add_all_summary(writer, g_losses, iters_so_far)
            d_loss_stats.add_all_summary(writer, np.mean(d_losses, axis=0),
                                         iters_so_far)
            ep_stats.add_all_summary(writer, [
                np.mean(true_rewbuffer),
                np.mean(rewbuffer),
                np.mean(lenbuffer)
            ], iters_so_far)
示例#17
0
    def run(self):
        policy = Q_Policy(num_actions=self.env.action_space.n,
                          num_obs=self.env.observation_space.shape[0])
        # Create all the functions necessary to train the model
        policy.build_graph(
            optimizer=tf.train.AdamOptimizer(learning_rate=self.lr_init),
            gamma=self.gamma,
            grad_norm_clipping=10)

        replay_buffer = ReplayBuffer(self.buffer_size)
        # Initialize the parameters and copy them to the target network.
        self.sess.run(tf.global_variables_initializer())
        # if restore:
        #     policy.load(sess, dirs['model'], checkpoint=None)
        policy.update_target(self.sess)

        epoch_rewards = [0.0]
        eval_rewards = []
        ob_ls = []
        steps = 0  # counting the steps in one epoch
        obs = self.env.reset()

        for t in range(self.total_step):
            # Take action and update exploration to the newest value
            steps += 1
            action = policy.forward(self.sess,
                                    obs[None],
                                    self.eps_scheduler.get(1),
                                    mode='explore')
            new_obs, rew, done, _, = self.env.step(action)
            if self.rendering:
                self.env.render()
            if self.reward_norm:
                rew = rew / self.reward_norm
            if self.reward_clip:
                rew = np.clip(rew, -self.reward_clip, self.reward_clip)
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            ob_ls.append([new_obs])
            obs = new_obs
            epoch_rewards[-1] += rew  # r_sum = -3499.51

            if t > self.learning_starts and t % self.train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                    self.batch_size)
                weights, batch_idxes = np.ones_like(rewards), None
                policy.backward(self.sess,
                                obses_t,
                                actions,
                                obses_tp1,
                                dones,
                                rewards,
                                weights,
                                global_step=t,
                                summary_writer=self.summary_writer)

            # Update target network periodically.
            if t > self.learning_starts and t % self.target_network_update_freq == 0:
                policy.update_target(self.sess)

            if done:
                if self.print_freq is not None and len(
                        epoch_rewards) % self.print_freq == 0:
                    mean_100ep_reward = round(np.mean(epoch_rewards[-99:-1]),
                                              1)
                    num_episodes = len(epoch_rewards)
                    logger.record_tabular("steps", t)
                    logger.record_tabular("episodes", num_episodes)
                    logger.record_tabular("mean 100 episode reward",
                                          mean_100ep_reward)
                    logger.record_tabular("% time spent exploring",
                                          int(100 * self.eps_scheduler.get(1)))
                    logger.record_tabular("Current date and time: ",
                                          datetime.datetime.now())
                    logger.dump_tabular()

                # evaluation
                if self.in_test and len(epoch_rewards) % self.test_freq == 0:
                    episode_reward_eval = 0
                    obs_eval = self.env.reset()
                    done_eval = False
                    # print("Staring evaluating")
                    while not done_eval:
                        # Take action and update exploration to the newest value
                        action_eval = policy.forward(self.sess,
                                                     obs_eval[None],
                                                     1,
                                                     mode='eval')
                        new_obs_eval, rew_eval, done_eval, _ = self.env.step(
                            action_eval)
                        obs_eval = new_obs_eval

                        if self.reward_norm:
                            rew_eval = rew_eval / self.reward_norm
                        episode_reward_eval += rew_eval
                    self._add_summary(episode_reward_eval, t, is_train=False)
                    print("evaluating reward = ", episode_reward_eval)
                    eval_rewards.append(episode_reward_eval)

                    print("Saving model...")
                    policy.save(self.sess, self.dirs['model'],
                                len(epoch_rewards))

                if len(epoch_rewards) % self.log_freq == 0:
                    np.save(self.dirs['results'] + '{}'.format('eval_rewards'),
                            eval_rewards)
                    np.save(
                        self.dirs['results'] + '{}'.format('epoch_rewards'),
                        epoch_rewards)
                    np.save(self.dirs['results'] + '{}'.format('ob_ls'), ob_ls)

                obs = self.env.reset()
                self._add_summary(epoch_rewards[-1], global_step=t)
                self.summary_writer.flush()
                epoch_rewards.append(0.0)
        print("Training Done...")
        self.env.close()
        plot(self.dirs['results'])
示例#18
0
    def learn(self):
        self.soft_update_target()
        episode_rewards = [0.0]
        # Start total timer
        tstart = time.time()
        for t in range(self.config.num_episodes):
            obs = self.env.reset()
            done = False
            update_eps = tf.constant(self.exploration.value(t))
            if t % (self.config.print_freq) == 0:
                time_1000_step = time.time()
                nseconds = time_1000_step - tstart
                tstart = time_1000_step
                print(
                    f'time spend to perform {t - self.config.print_freq} to {t} steps is {nseconds} '
                )
                print('eps update', self.exploration.value(t))

            mb_obs, mb_rewards, mb_actions, mb_fps, mb_dones = [], [], [], [], []
            # mb_states = states
            epinfos = []
            while not done:
                actions, fps_ = self.choose_action(tf.constant(obs),
                                                   update_eps=update_eps)
                # print(f'actions is {actions}')
                # print(f'fps_ is {fps_}')
                fps = []
                if self.config.num_agents > 1:
                    for a in self.agent_ids:
                        fp = fps_[:a]
                        fp.extend(fps_[a + 1:])
                        fp_a = np.concatenate(
                            (fp, [[self.exploration.value(t) * 100, t]]),
                            axis=None)
                        fps.append(fp_a)
                    # print(f'fps is {fps}')

                mb_obs.append(obs.copy())
                mb_actions.append(actions)
                mb_fps.append(fps)
                mb_dones.append([float(done) for _ in self.agent_ids])

                obs1, rews, done, info = self.env.step(actions)

                if self.config.same_reward_for_agents:
                    rews = [
                        np.max(rews) for _ in range(len(rews))
                    ]  # for cooperative purpose same reward for every one

                mb_rewards.append(rews)
                obs = obs1
                maybeepinfo = info.get('episode')
                if maybeepinfo: epinfos.append(maybeepinfo)

                episode_rewards[-1] += np.max(rews)

            episode_rewards.append(0.0)
            mb_dones.append([float(done) for _ in self.agent_ids])

            # swap axes to have lists in shape of (num_agents, num_steps, ...)
            for extra_step in range(self.config.n_steps - len(mb_actions)):
                print('extra_info as 0 s added added ')
                mb_obs.insert(0, obs * 0.)
                mb_actions.insert(0, mb_actions[-1] * 0.)
                mb_rewards.insert(0, mb_rewards[-1] * 0.)
                mb_fps.insert(0, mb_fps[-1] * 0.)
                mb_dones.insert(0, mb_dones[-1] * 0.)

            mb_obs = np.asarray(mb_obs, dtype=obs[0].dtype).swapaxes(0, 1)
            mb_actions = np.asarray(mb_actions,
                                    dtype=actions[0].dtype).swapaxes(0, 1)
            mb_rewards = np.asarray(mb_rewards,
                                    dtype=np.float32).swapaxes(0, 1)
            mb_fps = np.asarray(mb_fps, dtype=np.float32).swapaxes(0, 1)
            mb_dones = np.asarray(mb_dones, dtype=np.bool).swapaxes(0, 1)
            mb_masks = mb_dones[:, :-1]
            mb_dones = mb_dones[:, 1:]

            # print(f'mb_actions.shape is {mb_actions.shape}')
            # print(f'mb_rewards is {mb_rewards}')

            if self.config.gamma > 0.0:
                # Discount/bootstrap off value fn
                last_values = self.value(tf.constant(obs1))
                # print(f'last_values {last_values}')

                for n, (rewards, dones, value) in enumerate(
                        zip(mb_rewards, mb_dones, last_values)):
                    rewards = rewards.tolist()
                    dones = dones.tolist()
                    if dones[-1] == 0:
                        rewards = discount_with_dones(rewards + [value],
                                                      dones + [0],
                                                      self.config.gamma)[:-1]
                    else:
                        rewards = discount_with_dones(rewards, dones,
                                                      self.config.gamma)

                    mb_rewards[n] = rewards

            # print(f'after discount mb_rewards is {mb_rewards}')

            if self.config.replay_buffer is not None:
                self.replay_memory.add_episode(
                    (mb_obs, mb_actions, mb_rewards, mb_masks, mb_fps))

            if t > self.config.learning_starts and t % self.config.train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if self.config.prioritized_replay:
                    experience = self.replay_memory.sample(
                        self.config.batch_size,
                        beta=self.beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, fps, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, dones, fps = self.replay_memory.sample(
                        self.config.batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None

                obses_t = tf.constant(obses_t)
                actions = tf.constant(actions)
                rewards = tf.constant(rewards)
                dones = tf.constant(dones)
                weights = tf.constant(weights)
                fps = tf.constant(fps)
                # print(f'shapes {obses_t.shape} -- {actions.shape} -- {rewards.shape} -- {dones.shape} -- {fps.shape}')

                loss, td_errors = self.train(obses_t, actions, rewards, dones,
                                             weights, fps)

                if t % (self.config.train_freq * 50) == 0:
                    print(f't = {t} , loss = {loss}')

            if t > self.config.learning_starts and t % self.config.target_network_update_freq == 0:
                # Update target network periodically.
                self.soft_update_target()

            if t % self.config.playing_test == 0 and t != 0:
                # self.save(self.config.save_path)
                self.play_test_games()

            mean_100ep_reward = np.mean(episode_rewards[-101:-1])
            num_episodes = len(episode_rewards)
            if done and self.config.print_freq is not None and len(
                    episode_rewards) % self.config.print_freq == 0:
                print(
                    f'last 100 episode mean reward {mean_100ep_reward} in {num_episodes} playing'
                )
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * self.exploration.value(t)))
                logger.dump_tabular()
示例#19
0
            action = act(obs[None], update_eps=exploration.value(t))[0]
            new_obs, rew, done, _ = env.step(action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0)

            is_solved = t > 100 and np.mean(episode_rewards[-101:-1]) >= 200
            if is_solved:
                # Show off the result
                env.render()
            else:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if t > 1000:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(32)
                    train(obses_t, actions, rewards, obses_tp1, dones, np.ones_like(rewards))
                # Update target network periodically.
                if t % 1000 == 0:
                    update_target()

            if done and len(episode_rewards) % 200 == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", len(episode_rewards))
                logger.record_tabular("mean episode reward", round(np.mean(episode_rewards[-101:-1]), 1))
                logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
                logger.dump_tabular()
示例#20
0
def learn(env, encoder, action_decorder, state_decorder, embedding_shape,*, dataset, optimizer, logdir, batch_size, time_steps, adam_epsilon = 0.001, lr_rate = 1e-4, vae_beta = 8):
    lstm_encoder = encoder("lstm_encoder")
    ac_decoder = action_decorder("ac_decoder")
    state_decoder = state_decorder("state_decoder") #这个地方有问题
    ac_de_ob = U.get_placeholder_cached(name="ac_de_ob")
    en_ob = U.get_placeholder_cached(name="en_ob")  ##for encoder
    state_de_ob = U.get_placeholder_cached(name="state_de_ob")  ## for action decoder, 这个state decoder是不是也可以用, 是不是应该改成obs
    ac_de_embedding = U.get_placeholder_cached(name="ac_de_embedding")  ## for action decoder, 这个state decoder应该也是可以用的
    state_de_embedding = U.get_placeholder_cached(name="state_de_embedding")
    # ac = ac_decoder.pdtype.sample_placeholder([None])
    ob_next = tf.placeholder(name="ob_next", shape=[None, ob_shape], dtype=tf.float32)
    # ob_next_ac = tf.placeholder(name="ob_next_ac", shape=[ob_shape], dtype=tf.float32)
    # obs_out = state_decoder.pdtype.sample_placeholder([None])

    # p(z) 标准正太分布
    from common.distributions import make_pdtype

    p_z_pdtype = make_pdtype(embedding_shape)
    p_z_params = U.concatenate([tf.zeros(shape=[embedding_shape], name="mean"), tf.zeros(shape=[embedding_shape], name="logstd")], axis=-1)
    p_z = p_z_pdtype.pdfromflat(p_z_params)

    # recon_loss 里再加一个,对于action的

    recon_loss =  -tf.reduce_sum(state_decoder.pd.logp(ob_next))
    # kl_loss = lstm_encoder.pd.kl(p_z)[0] ##p(z):标准正太分布, 这个看起来是不是也不太对!!!!
    # kl_loss = tf.maximum(lstm_encoder.pd.kl(p_z)[0], tf.constant(5.00)) ##p(z):标准正太分布, 这个看起来是不是也不太对!!!!
    kl_loss = lstm_encoder.pd.kl(p_z)[0]
    vae_loss = tf.reduce_mean(recon_loss + vae_beta * kl_loss) ###vae_loss 应该是一个batch的

    ep_stats = stats(["recon_loss", "kl_loss", "vae_loss"])
    losses = [recon_loss, kl_loss, vae_loss]
    # 均方误差去训练 action,把得到的action step 一下,得到x(t+1),然后用均方误差loss,或者可以试试交叉熵


    ## var_list
    var_list = []
    en_var_list = lstm_encoder.get_trainable_variables()
    var_list.extend(en_var_list)
    # ac_de_var_list = ac_decoder.get_trainable_variables()
    # var_list.extend(ac_de_var_list)
    state_de_var_list = state_decoder.get_trainable_variables()
    var_list.extend(state_de_var_list)
    # compute_recon_loss = U.function([ob, obs, embedding, obss, embeddingss, ac, obs_out], recon_loss)
    compute_losses = U.function([en_ob, ac_de_ob, state_de_ob, ac_de_embedding, state_de_embedding, ob_next], losses)
    compute_grad = U.function([en_ob, ac_de_ob, state_de_ob, ac_de_embedding, state_de_embedding, ob_next], U.flatgrad(vae_loss, var_list)) ###这里没有想好!!!,可能是不对的!!
    adam = MpiAdam(var_list, epsilon=adam_epsilon)


    U.initialize()
    adam.sync()

    writer = U.FileWriter(logdir)
    writer.add_graph(tf.get_default_graph())
    # =========================== TRAINING ===================== #
    iters_so_far = 0
    saver = tf.train.Saver(var_list=var_list, max_to_keep=100)
    saver_encoder = tf.train.Saver(var_list = en_var_list, max_to_keep=100)
    # saver_pol = tf.train.Saver(var_list=ac_de_var_list, max_to_keep=100) ##保留一下policy的参数,但是这个好像用不到哎

    while iters_so_far < 50:
        ## 加多轮
        logger.log("********** Iteration %i ************" % iters_so_far)
        ## 要不要每一轮调整一下batch_size
        recon_loss_buffer = deque(maxlen=100)
        # recon_loss2_buffer = deque(maxlen=100)
        kl_loss_buffer = deque(maxlen=100)
        vae_loss_buffer = deque(maxlen=100)
        # i = 0
        for obs_and_next in dataset.get_next_batch(batch_size=time_steps):
            # print(i)
            # i += 1
            observations = obs_and_next[0].transpose((1, 0))[:-1]
            ob_next = obs_and_next[0].transpose(1, 0)[state_decoder.receptive_field:, :]
            embedding_now = lstm_encoder.get_laten_vector(obs_and_next[0].transpose((1, 0)))
            embeddings = np.array([embedding_now for _ in range(time_steps - 1)])
            embeddings_reshape = embeddings.reshape((time_steps-1, -1))
            actions = ac_decoder.act(stochastic=True, ob=observations, embedding=embeddings_reshape)
            ob_next_ac = get_ob_next_ac(env, observations[-1], actions[0]) ##这个还需要再修改 #########################################3
            # state_outputs = state_decoder.get_outputs(observations.reshape(1, time_steps, -1), embedding_now.reshape((1, 1, -1))) ##还没有加混合高斯......乱加了一通,已经加完了
            # recon_loss = state_decoder.recon_loss(observations.reshape(1, time_steps, -1), embedding_now.reshape((1, 1, -1)))
            recon_loss,  kl_loss, vae_loss = compute_losses(obs_and_next[0].transpose((1, 0)).reshape(1, time_steps, -1), observations.reshape(time_steps-1,-1),
                              observations.reshape(1, time_steps-1, -1), embeddings_reshape, embedding_now.reshape((1,1, -1)), ob_next)

            g = compute_grad(obs_and_next[0].transpose((1, 0)).reshape(1, time_steps, -1), observations.reshape(time_steps-1,-1),
                              observations.reshape(1, time_steps-1, -1), embeddings_reshape, embedding_now.reshape((1,1, -1)), ob_next)
            # logger.record_tabular("recon_loss", recon_loss)
            # logger.record_tabular("recon_loss2", recon_loss2)
            # logger.record_tabular("kl_loss", kl_loss)
            # logger.record_tabular("vae_loss", vae_loss)
            # logger.dump_tabular()
            adam.update(g, lr_rate)
            recon_loss_buffer.append(recon_loss)
            # recon_loss2_buffer.append(recon_loss2)
            kl_loss_buffer.append(kl_loss)
            vae_loss_buffer.append(vae_loss)
        ep_stats.add_all_summary(writer, [np.mean(recon_loss_buffer),  np.mean(kl_loss_buffer),
                                          np.mean(vae_loss_buffer)], iters_so_far)
        logger.record_tabular("recon_loss", recon_loss)
        # logger.record_tabular("recon_loss2", recon_loss2)
        logger.record_tabular("kl_loss", kl_loss)
        logger.record_tabular("vae_loss", vae_loss)
        logger.dump_tabular()
        if(iters_so_far % 10 == 0 and iters_so_far != 0):
            save(saver=saver, sess=tf.get_default_session(), logdir=logdir, step=iters_so_far)
            save(saver=saver_encoder, sess=tf.get_default_session(),logdir="./vae_saver", step=iters_so_far)
            # save(saver=saver_pol, sess=tf.get_default_session(), logdir="pol_saver", step=iters_so_far)
        iters_so_far += 1
        if iters_so_far < 6:
            lr_rate /= 2
示例#21
0
def learn(env,
          network,
          seed=None,
          lr=5e-5,
          total_timesteps=100000,
          buffer_size=500000,
          exploration_fraction=0.1,
          exploration_final_eps=0.01,
          train_freq=1,
          batch_size=32,
          print_freq=10,
          checkpoint_freq=100000,
          checkpoint_path=None,
          learning_starts=0,
          gamma=0.99,
          target_network_update_freq=10000,
          prioritized_replay=True,
          prioritized_replay_alpha=0.4,
          prioritized_replay_beta0=0.6,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-3,
          param_noise=False,
          callback=None,
          load_path=None,
          load_idx=None,
          demo_path=None,
          n_step=10,
          demo_prioritized_replay_eps=1.0,
          pre_train_timesteps=750000,
          epsilon_schedule="constant",
          **network_kwargs):
    # Create all the functions necessary to train the model
    set_global_seeds(seed)
    q_func = build_q_func(network, **network_kwargs)

    with tf.device('/GPU:0'):
        model = DQfD(q_func=q_func,
                     observation_shape=env.observation_space.shape,
                     num_actions=env.action_space.n,
                     lr=lr,
                     grad_norm_clipping=10,
                     gamma=gamma,
                     param_noise=param_noise)

    # Load model from checkpoint
    if load_path is not None:
        load_path = osp.expanduser(load_path)
        ckpt = tf.train.Checkpoint(model=model)
        manager = tf.train.CheckpointManager(ckpt, load_path, max_to_keep=None)
        if load_idx is None:
            ckpt.restore(manager.latest_checkpoint)
            print("Restoring from {}".format(manager.latest_checkpoint))
        else:
            ckpt.restore(manager.checkpoints[load_idx])
            print("Restoring from {}".format(manager.checkpoints[load_idx]))

    # Setup demo trajectory
    assert demo_path is not None
    with open(demo_path, "rb") as f:
        trajectories = pickle.load(f)

    # Create the replay buffer
    replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                            prioritized_replay_alpha)
    if prioritized_replay_beta_iters is None:
        prioritized_replay_beta_iters = total_timesteps
    beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                   initial_p=prioritized_replay_beta0,
                                   final_p=1.0)
    temp_buffer = deque(maxlen=n_step)
    is_demo = True
    for epi in trajectories:
        for obs, action, rew, new_obs, done in epi:
            obs, new_obs = np.expand_dims(
                np.array(obs), axis=0), np.expand_dims(np.array(new_obs),
                                                       axis=0)
            if n_step:
                temp_buffer.append((obs, action, rew, new_obs, done, is_demo))
                if len(temp_buffer) == n_step:
                    n_step_sample = get_n_step_sample(temp_buffer, gamma)
                    replay_buffer.demo_len += 1
                    replay_buffer.add(*n_step_sample)
            else:
                replay_buffer.demo_len += 1
                replay_buffer.add(obs[0], action, rew, new_obs[0], float(done),
                                  float(is_demo))
    logger.log("trajectory length:", replay_buffer.demo_len)
    # Create the schedule for exploration
    if epsilon_schedule == "constant":
        exploration = ConstantSchedule(exploration_final_eps)
    else:  # not used
        exploration = LinearSchedule(schedule_timesteps=int(
            exploration_fraction * total_timesteps),
                                     initial_p=1.0,
                                     final_p=exploration_final_eps)

    model.update_target()

    # ============================================== pre-training ======================================================
    start = time()
    num_episodes = 0
    temp_buffer = deque(maxlen=n_step)
    for t in tqdm(range(pre_train_timesteps)):
        # sample and train
        experience = replay_buffer.sample(batch_size,
                                          beta=prioritized_replay_beta0)
        batch_idxes = experience[-1]
        if experience[6] is None:  # for n_step = 0
            obses_t, actions, rewards, obses_tp1, dones, is_demos = tuple(
                map(tf.constant, experience[:6]))
            obses_tpn, rewards_n, dones_n = None, None, None
            weights = tf.constant(experience[-2])
        else:
            obses_t, actions, rewards, obses_tp1, dones, is_demos, obses_tpn, rewards_n, dones_n, weights = tuple(
                map(tf.constant, experience[:-1]))
        td_errors, n_td_errors, loss_dq, loss_n, loss_E, loss_l2, weighted_error = model.train(
            obses_t, actions, rewards, obses_tp1, dones, is_demos, weights,
            obses_tpn, rewards_n, dones_n)

        # Update priorities
        new_priorities = np.abs(td_errors) + np.abs(
            n_td_errors) + demo_prioritized_replay_eps
        replay_buffer.update_priorities(batch_idxes, new_priorities)

        # Update target network periodically
        if t > 0 and t % target_network_update_freq == 0:
            model.update_target()

        # Logging
        elapsed_time = timedelta(time() - start)
        if print_freq is not None and t % 10000 == 0:
            logger.record_tabular("steps", t)
            logger.record_tabular("episodes", num_episodes)
            logger.record_tabular("mean 100 episode reward", 0)
            logger.record_tabular("max 100 episode reward", 0)
            logger.record_tabular("min 100 episode reward", 0)
            logger.record_tabular("demo sample rate", 1)
            logger.record_tabular("epsilon", 0)
            logger.record_tabular("loss_td", np.mean(loss_dq.numpy()))
            logger.record_tabular("loss_n_td", np.mean(loss_n.numpy()))
            logger.record_tabular("loss_margin", np.mean(loss_E.numpy()))
            logger.record_tabular("loss_l2", np.mean(loss_l2.numpy()))
            logger.record_tabular("losses_all", weighted_error.numpy())
            logger.record_tabular("% time spent exploring",
                                  int(100 * exploration.value(t)))
            logger.record_tabular("pre_train", True)
            logger.record_tabular("elapsed time", elapsed_time)
            logger.dump_tabular()

    # ============================================== exploring =========================================================
    sample_counts = 0
    demo_used_counts = 0
    episode_rewards = deque(maxlen=100)
    this_episode_reward = 0.
    best_score = 0.
    saved_mean_reward = None
    is_demo = False
    obs = env.reset()
    # Always mimic the vectorized env
    obs = np.expand_dims(np.array(obs), axis=0)
    reset = True
    for t in tqdm(range(total_timesteps)):
        if callback is not None:
            if callback(locals(), globals()):
                break
        kwargs = {}
        if not param_noise:
            update_eps = tf.constant(exploration.value(t))
            update_param_noise_threshold = 0.
        else:  # not used
            update_eps = tf.constant(0.)
            update_param_noise_threshold = -np.log(1. - exploration.value(t) +
                                                   exploration.value(t) /
                                                   float(env.action_space.n))
            kwargs['reset'] = reset
            kwargs[
                'update_param_noise_threshold'] = update_param_noise_threshold
            kwargs['update_param_noise_scale'] = True
        action, epsilon, _, _ = model.step(tf.constant(obs),
                                           update_eps=update_eps,
                                           **kwargs)
        action = action[0].numpy()
        reset = False
        new_obs, rew, done, _ = env.step(action)

        # Store transition in the replay buffer.
        new_obs = np.expand_dims(np.array(new_obs), axis=0)
        if n_step:
            temp_buffer.append((obs, action, rew, new_obs, done, is_demo))
            if len(temp_buffer) == n_step:
                n_step_sample = get_n_step_sample(temp_buffer, gamma)
                replay_buffer.add(*n_step_sample)
        else:
            replay_buffer.add(obs[0], action, rew, new_obs[0], float(done), 0.)
        obs = new_obs

        # invert log scaled score for logging
        this_episode_reward += np.sign(rew) * (np.exp(np.sign(rew) * rew) - 1.)
        if done:
            num_episodes += 1
            obs = env.reset()
            obs = np.expand_dims(np.array(obs), axis=0)
            episode_rewards.append(this_episode_reward)
            reset = True
            if this_episode_reward > best_score:
                best_score = this_episode_reward
                ckpt = tf.train.Checkpoint(model=model)
                manager = tf.train.CheckpointManager(ckpt,
                                                     './best_model',
                                                     max_to_keep=1)
                manager.save(t)
                logger.log("saved best model")
            this_episode_reward = 0.0

        if t % train_freq == 0:
            experience = replay_buffer.sample(batch_size,
                                              beta=beta_schedule.value(t))
            batch_idxes = experience[-1]
            if experience[6] is None:  # for n_step = 0
                obses_t, actions, rewards, obses_tp1, dones, is_demos = tuple(
                    map(tf.constant, experience[:6]))
                obses_tpn, rewards_n, dones_n = None, None, None
                weights = tf.constant(experience[-2])
            else:
                obses_t, actions, rewards, obses_tp1, dones, is_demos, obses_tpn, rewards_n, dones_n, weights = tuple(
                    map(tf.constant, experience[:-1]))
            td_errors, n_td_errors, loss_dq, loss_n, loss_E, loss_l2, weighted_error = model.train(
                obses_t, actions, rewards, obses_tp1, dones, is_demos, weights,
                obses_tpn, rewards_n, dones_n)
            new_priorities = np.abs(td_errors) + np.abs(
                n_td_errors
            ) + demo_prioritized_replay_eps * is_demos + prioritized_replay_eps * (
                1. - is_demos)
            replay_buffer.update_priorities(batch_idxes, new_priorities)

            # for logging
            sample_counts += batch_size
            demo_used_counts += np.sum(is_demos)

        if t % target_network_update_freq == 0:
            # Update target network periodically.
            model.update_target()

        if t % checkpoint_freq == 0:
            save_path = checkpoint_path
            ckpt = tf.train.Checkpoint(model=model)
            manager = tf.train.CheckpointManager(ckpt,
                                                 save_path,
                                                 max_to_keep=10)
            manager.save(t)
            logger.log("saved checkpoint")

        elapsed_time = timedelta(time() - start)
        if done and num_episodes > 0 and num_episodes % print_freq == 0:
            logger.record_tabular("steps", t)
            logger.record_tabular("episodes", num_episodes)
            logger.record_tabular("mean 100 episode reward",
                                  np.mean(episode_rewards))
            logger.record_tabular("max 100 episode reward",
                                  np.max(episode_rewards))
            logger.record_tabular("min 100 episode reward",
                                  np.min(episode_rewards))
            logger.record_tabular("demo sample rate",
                                  demo_used_counts / sample_counts)
            logger.record_tabular("epsilon", epsilon.numpy())
            logger.record_tabular("loss_td", np.mean(loss_dq.numpy()))
            logger.record_tabular("loss_n_td", np.mean(loss_n.numpy()))
            logger.record_tabular("loss_margin", np.mean(loss_E.numpy()))
            logger.record_tabular("loss_l2", np.mean(loss_l2.numpy()))
            logger.record_tabular("losses_all", weighted_error.numpy())
            logger.record_tabular("% time spent exploring",
                                  int(100 * exploration.value(t)))
            logger.record_tabular("pre_train", False)
            logger.record_tabular("elapsed time", elapsed_time)
            logger.dump_tabular()

    return model
示例#22
0
def train(env,
          eval_env,
          agent,
          render=False,
          render_eval=False,
          sanity_run=False,
          nb_epochs=500,
          nb_epoch_cycles=20,
          nb_rollout_steps=100,
          nb_train_steps=50,
          param_noise_adaption_interval=50,
          hist_files=None,
          start_ckpt=None,
          demo_files=None):

    rank = MPI.COMM_WORLD.Get_rank()
    mpi_size = MPI.COMM_WORLD.Get_size()
    if rank == 0:
        logdir = logger.get_dir()
    else:
        logdir = None

    memory = agent.memory
    batch_size = agent.batch_size

    with tf_util.single_threaded_session() as sess:
        # Prepare everything.
        agent.initialize(sess, start_ckpt=start_ckpt)
        sess.graph.finalize()
        agent.reset()
        dbg_tf_init(sess, agent.dbg_vars)

        total_nb_train = 0
        total_nb_rollout = 0
        total_nb_eval = 0

        # pre-train demo and critic_step
        # train_params: (nb_steps, lr_scale)
        total_nb_train = pretrain_demo(agent,
                                       env,
                                       demo_files,
                                       total_nb_train,
                                       train_params=[(100, 1.0)],
                                       start_ckpt=start_ckpt)
        load_history(agent, env, hist_files)

        # main training
        obs = env.reset()
        reset = False
        episode_step = 0
        last_episode_step = 0

        for i_epoch in range(nb_epochs):
            t_epoch_start = time.time()
            logger.info('\n%s epoch %d starts:' %
                        (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
                         i_epoch))
            for i_cycle in range(nb_epoch_cycles):
                logger.info(
                    '\n%s cycles_%d of epoch_%d' %
                    (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f'),
                     i_cycle, i_epoch))

                # rollout
                rcd_obs, rcd_action, rcd_r, rcd_new_obs, rcd_done = [], [], [], [], []
                if not sanity_run and mpi_size == 1 and last_episode_step != 0:
                    # todo: use mpi_max(last_episode_step)
                    # dynamically set nb_rollout_steps
                    nb_rollout_steps = max(last_episode_step * 4, batch_size)
                logger.info(
                    '[%d, %d] rollout for %d steps.' %
                    (total_nb_rollout, memory.nb_entries, nb_rollout_steps))
                t_rollout_start = time.time()

                for i_rollout in range(nb_rollout_steps):
                    rollout_log = i_cycle == 0
                    # 50% param_noise, 40% action_noise
                    action, q = agent.pi(obs,
                                         total_nb_rollout,
                                         compute_Q=True,
                                         rollout_log=rollout_log,
                                         apply_param_noise=i_rollout % 10 < 5,
                                         apply_action_noise=i_rollout % 10 > 5)
                    assert action.shape == env.action_space.shape
                    new_obs, r, done, reset, info = env.step(action)

                    if rank == 0 and render:
                        env.render()

                    episode_step += 1
                    total_nb_rollout += 1

                    if rollout_log:
                        summary_list = [('rollout/%s' % tp, info[tp])
                                        for tp in ['rwd_walk', 'rwd_total']]
                        tp = 'rwd_agent'
                        summary_list += [
                            ('rollout/%s_x%d' % (tp, info['rf_agent']),
                             info[tp] * info['rf_agent'])
                        ]
                        summary_list += [('rollout/q', q)]
                        if r != 0:
                            summary_list += [('rollout/q_div_r', q / r)]
                        agent.add_list_summary(summary_list, total_nb_rollout)

                    # store at the end of cycle to speed up MPI rollout
                    # agent.store_transition(obs, action, r, new_obs, done)
                    rcd_obs.append(obs)
                    rcd_action.append(action)
                    rcd_r.append(r)
                    rcd_new_obs.append(new_obs)
                    rcd_done.append(done)

                    obs = new_obs
                    if reset:
                        # Episode done.
                        last_episode_step = episode_step
                        episode_step = 0

                        agent.reset()
                        obs = env.reset()

                agent.store_multrans(memory, rcd_obs, rcd_action, rcd_r,
                                     rcd_new_obs, rcd_done)

                t_train_start = time.time()
                steps_per_second = float(nb_rollout_steps) / (t_train_start -
                                                              t_rollout_start)
                agent.add_list_summary(
                    [('rollout/steps_per_second', steps_per_second)],
                    total_nb_rollout)

                # Train.
                if not sanity_run:
                    # dynamically set nb_train_steps
                    if memory.nb_entries > batch_size * 20:
                        # using 1% of data for training every step?
                        nb_train_steps = max(
                            int(memory.nb_entries * 0.01 / batch_size), 1)
                    else:
                        nb_train_steps = 0
                logger.info('[%d] training for %d steps.' %
                            (total_nb_train, nb_train_steps))
                for _ in range(nb_train_steps):
                    # Adapt param noise, if necessary.
                    if memory.nb_entries >= batch_size and total_nb_train % param_noise_adaption_interval == 0:
                        agent.adapt_param_noise(total_nb_train)

                    agent.train_main(total_nb_train)
                    agent.update_target_net()
                    total_nb_train += 1

                if i_epoch == 0 and i_cycle < 5:
                    rollout_duration = t_train_start - t_rollout_start
                    train_duration = time.time() - t_train_start
                    logger.info(
                        'rollout_time(%d) = %.3fs, train_time(%d) = %.3fs' %
                        (nb_rollout_steps, rollout_duration, nb_train_steps,
                         train_duration))
                    logger.info(
                        'rollout_speed=%.3fs/step, train_speed = %.3fs/step' %
                        (np.divide(rollout_duration, nb_rollout_steps),
                         np.divide(train_duration, nb_train_steps)))

            logger.info('')
            mpi_size = MPI.COMM_WORLD.Get_size()
            # Log stats.
            stats = agent.get_stats(memory)
            combined_stats = stats.copy()

            def as_scalar(x):
                if isinstance(x, np.ndarray):
                    assert x.size == 1
                    return x[0]
                elif np.isscalar(x):
                    return x
                else:
                    raise ValueError('expected scalar, got %s' % x)

            combined_stats_sums = MPI.COMM_WORLD.allreduce(
                np.array([as_scalar(x) for x in combined_stats.values()]))
            combined_stats = {
                k: v / mpi_size
                for (k, v) in zip(combined_stats.keys(), combined_stats_sums)
            }

            # exclude logging zobs_dbg_%d, zobs_dbg_%d_normalized
            summary_list = [(key, combined_stats[key])
                            for key, v in combined_stats.items()
                            if 'dbg' not in key]
            agent.add_list_summary(summary_list, i_epoch)

            # only print out train stats for epoch_0 for sanity check
            if i_epoch > 0:
                combined_stats = {}

            # Evaluation and statistics.
            if eval_env is not None:
                logger.info('[%d, %d] run evaluation' %
                            (i_epoch, total_nb_eval))
                total_nb_eval = eval_episode(eval_env, render_eval, agent,
                                             combined_stats, total_nb_eval)

            logger.info('epoch %d duration: %.2f mins' %
                        (i_epoch, (time.time() - t_epoch_start) / 60))
            for key in sorted(combined_stats.keys()):
                logger.record_tabular(key, combined_stats[key])
            logger.dump_tabular()
            logger.info('')

            if rank == 0:
                agent.store_ckpt(os.path.join(logdir, '%s.ckpt' % 'ddpg'),
                                 i_epoch)
示例#23
0
def learn(env,
          num_actions=3,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16):
    torch.set_num_threads(num_cpu)
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(
            buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(
            prioritized_replay_beta_iters,
            initial_p=prioritized_replay_beta0,
            final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    exploration = LinearSchedule(
        schedule_timesteps=int(exploration_fraction * max_timesteps),
        initial_p=1.0,
        final_p=exploration_final_eps)
    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]

    screen = player_relative

    obs, xy_per_marine = common.init(env, obs)

    group_id = 0
    reset = True
    dqn = DQN(num_actions, lr, cuda)

    print('\nCollecting experience...')
    checkpoint_path = 'models/deepq/checkpoint.pth.tar'
    if os.path.exists(checkpoint_path):
        dqn, saved_mean_reward = load_checkpoint(dqn, cuda, filename=checkpoint_path)
    for t in range(max_timesteps):
        # Take action and update exploration to the newest value
        # custom process for DefeatZerglingsAndBanelings
        obs, screen, player = common.select_marine(env, obs)
        # action = act(
        #     np.array(screen)[None], update_eps=update_eps, **kwargs)[0]
        action = dqn.choose_action(np.array(screen)[None])
        reset = False
        rew = 0
        new_action = None
        obs, new_action = common.marine_action(env, obs, player, action)
        army_count = env._obs[0].observation.player_common.army_count
        try:
            if army_count > 0 and _ATTACK_SCREEN in obs[0].observation["available_actions"]:
                obs = env.step(actions=new_action)
            else:
                new_action = [sc2_actions.FunctionCall(_NO_OP, [])]
                obs = env.step(actions=new_action)
        except Exception as e:
            # print(e)
            1  # Do nothing
        player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]
        new_screen = player_relative
        rew += obs[0].reward
        done = obs[0].step_type == environment.StepType.LAST
        selected = obs[0].observation["screen"][_SELECTED]
        player_y, player_x = (selected == _PLAYER_FRIENDLY).nonzero()
        if len(player_y) > 0:
            player = [int(player_x.mean()), int(player_y.mean())]
        if len(player) == 2:
            if player[0] > 32:
                new_screen = common.shift(LEFT, player[0] - 32, new_screen)
            elif player[0] < 32:
                new_screen = common.shift(RIGHT, 32 - player[0],
                                          new_screen)
            if player[1] > 32:
                new_screen = common.shift(UP, player[1] - 32, new_screen)
            elif player[1] < 32:
                new_screen = common.shift(DOWN, 32 - player[1], new_screen)
        # Store transition in the replay buffer.
        replay_buffer.add(screen, action, rew, new_screen, float(done))
        screen = new_screen
        episode_rewards[-1] += rew
        reward = episode_rewards[-1]
        if done:
            print("Episode Reward : %s" % episode_rewards[-1])
            obs = env.reset()
            player_relative = obs[0].observation["screen"][
                _PLAYER_RELATIVE]
            screen = player_relative
            group_list = common.init(env, obs)
            # Select all marines first
            # env.step(actions=[sc2_actions.FunctionCall(_SELECT_UNIT, [_SELECT_ALL])])
            episode_rewards.append(0.0)
            reset = True

        if t > learning_starts and t % train_freq == 0:
            # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
            if prioritized_replay:
                experience = replay_buffer.sample(
                    batch_size, beta=beta_schedule.value(t))
                (obses_t, actions, rewards, obses_tp1, dones, weights,
                 batch_idxes) = experience
            else:
                obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                    batch_size)
                weights, batch_idxes = np.ones_like(rewards), None

            td_errors = dqn.learn(obses_t, actions, rewards, obses_tp1, gamma, batch_size)

            if prioritized_replay:
                new_priorities = np.abs(td_errors) + prioritized_replay_eps
                replay_buffer.update_priorities(batch_idxes,
                                                new_priorities)

        if t > learning_starts and t % target_network_update_freq == 0:
            # Update target network periodically.
            dqn.update_target()

        mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
        num_episodes = len(episode_rewards)
        if done and print_freq is not None and len(
                episode_rewards) % print_freq == 0:
            logger.record_tabular("steps", t)
            logger.record_tabular("episodes", num_episodes)
            logger.record_tabular("reward", reward)
            logger.record_tabular("mean 100 episode reward",
                                  mean_100ep_reward)
            logger.record_tabular("% time spent exploring",
                                  int(100 * exploration.value(t)))
            logger.dump_tabular()

        if (checkpoint_freq is not None and t > learning_starts
                and num_episodes > 100 and t % checkpoint_freq == 0):
            if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                if print_freq is not None:
                    logger.log(
                        "Saving model due to mean reward increase: {} -> {}".format(
                            saved_mean_reward,
                            mean_100ep_reward))
                save_checkpoint({
                    'epoch': t + 1,
                    'state_dict': dqn.save_state_dict(),
                    'best_accuracy': mean_100ep_reward
                }, checkpoint_path)
                saved_mean_reward = mean_100ep_reward
示例#24
0
def learn(
        env,
        policy_func,
        *,
        timesteps=4,
        timesteps_per_batch,  # timesteps per actor per update
        clip_param,
        entcoeff,  # clipping parameter epsilon, entropy coeff
        optim_epochs,
        optim_stepsize,
        optim_batchsize,  # optimization hypers
        gamma,
        lam,  # advantage estimation
        max_timesteps=0,
        max_episodes=0,
        max_iters=0,
        max_seconds=0,  # time constraint
        callback=None,  # you can do anything in the callback, since it takes locals(), globals()
        adam_epsilon=1e-5,
        schedule='constant',  # annealing for stepsize parameters (epsilon and adam)
        save_per_iter=100,
        ckpt_dir=None,
        task="train",
        sample_stochastic=True,
        load_model_path=None,
        task_name=None,
        max_sample_traj=1500):
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi", timesteps, ob_space,
                     ac_space)  # Construct network for new policy
    oldpi = policy_func("oldpi", timesteps, ob_space,
                        ac_space)  # Network for old policy
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return
    pi_vpred = tf.placeholder(dtype=tf.float32, shape=[None])
    lrmult = tf.placeholder(
        name='lrmult', dtype=tf.float32,
        shape=[])  # learning rate multiplier, updated with schedule
    clip_param = clip_param * lrmult  # Annealed cliping parameter epislon

    ob = U.get_placeholder_cached(name="ob")
    #    ob_now = tf.placeholder(dtype=tf.float32, shape=[optim_batchsize, list(ob_space.shape)[0]])
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = U.mean(kloldnew)
    meanent = U.mean(ent)
    pol_entpen = (-entcoeff) * meanent

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac))  # pnew / pold
    surr1 = ratio * atarg  # surrogate from conservative policy iteration
    surr2 = U.clip(ratio, 1.0 - clip_param, 1.0 + clip_param) * atarg  #
    pol_surr = -U.mean(tf.minimum(
        surr1, surr2))  # PPO's pessimistic surrogate (L^CLIP)
    vf_loss = U.mean(tf.square(pi.vpred - ret))
    # total_loss = pol_surr + pol_entpen + vf_loss
    total_loss = pol_surr + pol_entpen
    losses = [pol_surr, pol_entpen, meankl, meanent]
    loss_names = ["pol_surr", "pol_entpen", "kl", "ent"]

    var_list = pi.get_trainable_variables()
    vf_var_list = [
        v for v in var_list if v.name.split("/")[1].startswith("vf")
    ]
    pol_var_list = [
        v for v in var_list if not v.name.split("/")[1].startswith("vf")
    ]
    #  lossandgrad = U.function([ob, ac, atarg ,ret, lrmult], losses + [U.flatgrad(total_loss, var_list)])
    lossandgrad = U.function([ob, ac, atarg, ret, lrmult],
                             losses + [U.flatgrad(total_loss, pol_var_list)])
    vf_grad = U.function([ob, ac, atarg, ret, lrmult],
                         U.flatgrad(vf_loss, vf_var_list))

    # adam = MpiAdam(var_list, epsilon=adam_epsilon)
    pol_adam = MpiAdam(pol_var_list, epsilon=adam_epsilon)
    vf_adam = MpiAdam(vf_var_list, epsilon=adam_epsilon)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function([ob, ac, atarg, ret, lrmult], losses)

    U.initialize()
    #adam.sync()
    pol_adam.sync()
    vf_adam.sync()

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     timesteps,
                                     env,
                                     timesteps_per_batch,
                                     stochastic=True)
    traj_gen = traj_episode_generator(pi,
                                      env,
                                      timesteps_per_batch,
                                      stochastic=sample_stochastic)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=100)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=100)  # rolling buffer for episode rewards
    EpRewMean_MAX = 2.5e3
    assert sum(
        [max_iters > 0, max_timesteps > 0, max_episodes > 0,
         max_seconds > 0]) == 1, "Only one time constraint permitted"

    if task == 'sample_trajectory':
        # not elegant, i know :(
        sample_trajectory(load_model_path, max_sample_traj, traj_gen,
                          task_name, sample_stochastic)
        sys.exit()

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        elif max_seconds and time.time() - tstart >= max_seconds:
            break

        if schedule == 'constant':
            cur_lrmult = 1.0
        elif schedule == 'linear':
            cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0)
        else:
            raise NotImplementedError

        # Save model
        if iters_so_far % save_per_iter == 0 and ckpt_dir is not None:
            U.save_state(os.path.join(ckpt_dir, task_name),
                         counter=iters_so_far)

        logger.log("********** Iteration %i ************" % iters_so_far)
        # if(iters_so_far == 1):
        #     a = 1
        seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, vpred, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
            "vpred"], seg["tdlamret"]
        vpredbefore = seg["vpred"]  # predicted value function before udpate
        atarg = (atarg - atarg.mean()
                 ) / atarg.std()  # standardized advantage function estimate
        d = Dataset(
            dict(ob=ob, ac=ac, atarg=atarg, vpred=vpred, vtarg=tdlamret),
            shuffle=False
        )  #d = Dataset(dict(ob=ob, ac=ac, atarg=atarg, vpred = vpred, vtarg=tdlamret), shuffle=not pi.recurrent)
        optim_batchsize = optim_batchsize or ob.shape[0]

        if hasattr(pi, "ob_rms"):
            pi.ob_rms.update(ob)  # update running mean/std for policy

        assign_old_eq_new()  # set old parameter values to new parameter values
        logger.log("Optimizing...")
        logger.log(fmt_row(13, loss_names))
        # Here we do a bunch of optimization epochs over the data
        for _ in range(optim_epochs):
            losses = [
            ]  # list of tuples, each of which gives the loss for a minibatch
            pre_obs = [seg["ob_reset"] for jmj in range(timesteps - 1)]
            for batch in d.iterate_once(optim_batchsize):
                ##feed ob, 重新处理一下ob,在batch["ob"]的最前面插入timesteps-1个env.reset的ob,然后滑动串口划分一下batch['ob]
                ob_now = np.append(pre_obs, batch['ob']).reshape(
                    optim_batchsize + timesteps - 1,
                    list(ob_space.shape)[0])
                pre_obs = ob_now[-(timesteps - 1):]
                ob_fin = []
                for jmj in range(optim_batchsize):
                    ob_fin.append(ob_now[jmj:jmj + timesteps])
                *newlosses, g = lossandgrad(ob_fin, batch["ac"],
                                            batch["atarg"], batch["vtarg"],
                                            cur_lrmult)  ###这里的g好像都是0
                #adam.update(g, optim_stepsize * cur_lrmult)
                pol_adam.update(g, optim_stepsize * cur_lrmult)
                vf_g = vf_grad(ob_fin, batch["ac"], batch["atarg"],
                               batch["vtarg"], cur_lrmult)
                vf_adam.update(vf_g, optim_stepsize * cur_lrmult)
                losses.append(newlosses)
            logger.log(fmt_row(13, np.mean(losses, axis=0)))

            pre_obs = [seg["ob_reset"] for jmj in range(timesteps - 1)]
            for batch in d.iterate_once(optim_batchsize):
                ##feed ob, 重新处理一下ob,在batch["ob"]的最前面插入timesteps-1个env.reset的ob,然后滑动串口划分一下batch['ob]
                ob_now = np.append(pre_obs, batch['ob']).reshape(
                    optim_batchsize + timesteps - 1,
                    list(ob_space.shape)[0])
                pre_obs = ob_now[-(timesteps - 1):]
                ob_fin = []
                for jmj in range(optim_batchsize):
                    ob_fin.append(ob_now[jmj:jmj + timesteps])
                *newlosses, g = lossandgrad(ob_fin, batch["ac"],
                                            batch["atarg"], batch["vtarg"],
                                            cur_lrmult)  ###这里的g好像都是0
                #adam.update(g, optim_stepsize * cur_lrmult)
                pol_adam.update(g, optim_stepsize * cur_lrmult)
                vf_g = vf_grad(ob_fin, batch["ac"], batch["atarg"],
                               batch["vtarg"], cur_lrmult)
                vf_adam.update(vf_g, optim_stepsize * cur_lrmult)

        logger.log("Evaluating losses...")
        losses = []
        loss_pre_obs = [seg["ob_reset"] for jmj in range(timesteps - 1)]
        for batch in d.iterate_once(optim_batchsize):
            ### feed ob
            ob_now = np.append(loss_pre_obs, batch['ob']).reshape(
                optim_batchsize + timesteps - 1,
                list(ob_space.shape)[0])
            loss_pre_obs = ob_now[-(timesteps - 1):]
            ob_fin = []
            for jmj in range(optim_batchsize):
                ob_fin.append(ob_now[jmj:jmj + timesteps])
            newlosses = compute_losses(ob_fin, batch["ac"], batch["atarg"],
                                       batch["vtarg"], cur_lrmult)
            losses.append(newlosses)
        meanlosses, _, _ = mpi_moments(losses, axis=0)
        logger.log(fmt_row(13, meanlosses))
        for (lossval, name) in zipsame(meanlosses, loss_names):
            logger.record_tabular("loss_" + name, lossval)
        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))
        lrlocal = (seg["ep_lens"], seg["ep_rets"])  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)
        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        if (np.mean(rewbuffer) > EpRewMean_MAX):
            EpRewMean_MAX = np.mean(rewbuffer)
            print(iters_so_far)
            print(np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1
        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        if MPI.COMM_WORLD.Get_rank() == 0:
            logger.dump_tabular()