def run(self, layers): """Risk plugin for Padang building survey """ # Extract data H = get_hazard_layer(layers) # Ground shaking E = get_exposure_layer(layers) # Building locations question = get_question(H.get_name(), E.get_name(), self) # Map from different kinds of datasets to Padang vulnerability classes datatype = E.get_keywords()['datatype'] vclass_tag = 'VCLASS' if datatype.lower() == 'osm': # Map from OSM attributes Emap = osm2padang(E) elif datatype.lower() == 'sigab': # Map from SIGAB attributes Emap = sigab2padang(E) else: Emap = E # Interpolate hazard level to building locations I = H.interpolate(Emap, attribute_name='MMI') # Extract relevant numerical data attributes = I.get_data() N = len(I) # Calculate building damage count_high = count_medium = count_low = count_none = 0 for i in range(N): mmi = float(attributes[i]['MMI']) building_type = Emap.get_data(vclass_tag, i) damage_params = damage_curves[building_type] beta = damage_params['beta'] median = damage_params['median'] percent_damage = lognormal_cdf(mmi, median=median, sigma=beta) * 100 # Add calculated impact to existing attributes attributes[i][self.target_field] = percent_damage # Calculate statistics if percent_damage < 10: count_none += 1 if 10 <= percent_damage < 33: count_low += 1 if 33 <= percent_damage < 66: count_medium += 1 if 66 <= percent_damage: count_high += 1 # Generate impact report table_body = [question, TableRow([_('Buildings'), _('Total')], header=True), TableRow([_('All'), N]), TableRow([_('No damage'), count_none]), TableRow([_('Low damage'), count_low]), TableRow([_('Medium damage'), count_medium]), TableRow([_('High damage'), count_high])] table_body.append(TableRow(_('Notes:'), header=True)) table_body.append(_('Levels of impact are defined by post 2009 ' 'Padang earthquake survey conducted by Geoscience ' 'Australia and Institute of Teknologi Bandung.')) table_body.append(_('Unreinforced masonry is assumed where no ' 'structural information is available.')) impact_summary = Table(table_body).toNewlineFreeString() impact_table = impact_summary map_title = _('Earthquake damage to buildings') # Create style style_classes = [dict(label=_('No damage'), min=0, max=10, colour='#00ff00', transparency=1), dict(label=_('Low damage'), min=10, max=33, colour='#ffff00', transparency=1), dict(label=_('Medium damage'), min=33, max=66, colour='#ffaa00', transparency=1), dict(label=_('High damage'), min=66, max=100, colour='#ff0000', transparency=1)] style_info = dict(target_field=self.target_field, style_classes=style_classes) # Create vector layer and return V = Vector(data=attributes, projection=E.get_projection(), geometry=E.get_geometry(), name='Estimated pct damage', keywords={'impact_summary': impact_summary, 'impact_table': impact_table, 'map_title': map_title}, style_info=style_info) return V
def run(self, layers): """Risk plugin for Padang building survey """ # Extract data H = get_hazard_layer(layers) # Ground shaking E = get_exposure_layer(layers) # Building locations datatype = E.get_keywords()['datatype'] vclass_tag = 'VCLASS' if datatype.lower() == 'osm': # Map from OSM attributes to the padang building classes Emap = osm2padang(E) elif datatype.lower() == 'sigab': Emap = sigab2padang(E) elif datatype.lower() == 'padang': Emap = padang2itb(E) else: Emap = E # Interpolate hazard level to building locations Hi = H.interpolate(Emap, attribute_name='MMI') # Extract relevant numerical data coordinates = Emap.get_geometry() shaking = Hi.get_data() N = len(shaking) # List attributes to carry forward to result layer attributes = Emap.get_attribute_names() # Calculate building damage count50 = 0 count25 = 0 count10 = 0 count0 = 0 building_damage = [] for i in range(N): mmi = float(shaking[i]['MMI']) building_class = Emap.get_data(vclass_tag, i) building_type = str(int(building_class)) damage_params = damage_curves[building_type] beta = damage_params['beta'] median = damage_params['median'] percent_damage = lognormal_cdf(mmi, median=median, sigma=beta) * 100 # Collect shake level and calculated damage result_dict = {self.target_field: percent_damage, 'MMI': mmi} # Carry all orginal attributes forward for key in attributes: result_dict[key] = Emap.get_data(key, i) # Record result for this feature building_damage.append(result_dict) # Debugging #if percent_damage > 0.01: # print mmi, percent_damage # Calculate statistics if percent_damage < 10: count0 += 1 if 10 <= percent_damage < 33: count10 += 1 if 33 <= percent_damage < 66: count25 += 1 if 66 <= percent_damage: count50 += 1 # Create report Hname = H.get_name() Ename = E.get_name() impact_summary = ('<b>In case of "%s" the estimated impact to ' '"%s" ' 'is:</b><br><br><p>' % (Hname, Ename)) impact_summary += ('<table border="0" width="320px">' ' <tr><th><b>%s</b></th><th><b>%s</b></th></th>' ' <tr></tr>' ' <tr><td>%s:</td><td>%i</td></tr>' ' <tr><td>%s (<10%%):</td><td>%i</td></tr>' ' <tr><td>%s (10-33%%):</td><td>%i</td></tr>' ' <tr><td>%s (33-66%%):</td><td>%i</td></tr>' ' <tr><td>%s (66-100%%):</td><td>%i</td></tr>' '</table></font>' % (_('Buildings'), _('Total'), _('All'), N, _('No damage'), count0, _('Low damage'), count10, _('Medium damage'), count25, _('High damage'), count50)) impact_summary += '<br>' # Blank separation row impact_summary += '<b>' + _('Assumption') + ':</b><br>' # This is the proper text: #_('Levels of impact are defined by post 2009 ' # 'Padang earthquake survey conducted by Geoscience ' # 'Australia and Institute of Teknologi Bandung.')) #_('Unreinforced masonry is assumed where no ' # 'structural information is available.')) impact_summary += _('Levels of impact are defined by post 2009 ' 'Padang earthquake survey conducted by Geoscience ' 'Australia and Institute of Teknologi Bandung.') impact_summary += _('Unreinforced masonry is assumed where no ' 'structural information is available.') # Create style style_classes = [dict(label=_('No damage'), min=0, max=10, colour='#00ff00', transparency=1), dict(label=_('Low damage'), min=10, max=33, colour='#ffff00', transparency=1), dict(label=_('Medium damage'), min=33, max=66, colour='#ffaa00', transparency=1), dict(label=_('High damage'), min=66, max=100, colour='#ff0000', transparency=1)] style_info = dict(target_field=self.target_field, style_classes=style_classes) # Create vector layer and return V = Vector(data=building_damage, projection=E.get_projection(), geometry=coordinates, name='Estimated pct damage', keywords={'impact_summary': impact_summary}, style_info=style_info) return V